1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Names
open Univ
open Term
open Sign
(** This module defines the entry types for global declarations. This
information is entered in the environments. This includes global
constants/axioms, mutual inductive definitions, modules and module
types *)
(** {6 Local entries } *)
type local_entry =
| LocalDef of constr
| LocalAssum of constr
(** {6 Declaration of inductive types. } *)
(** Assume the following definition in concrete syntax:
{v Inductive I1 (x1:X1) ... (xn:Xn) : A1 := c11 : T11 | ... | c1n1 : T1n1
...
with Ip (x1:X1) ... (xn:Xn) : Ap := cp1 : Tp1 | ... | cpnp : Tpnp. v}
then, in i{^ th} block, [mind_entry_params] is [xn:Xn;...;x1:X1];
[mind_entry_arity] is [Ai], defined in context [x1:X1;...;xn:Xn];
[mind_entry_lc] is [Ti1;...;Tini], defined in context [[A'1;...;A'p;x1:X1;...;xn:Xn]] where [A'i] is [Ai] generalized over [[x1:X1;...;xn:Xn]].
*)
type one_inductive_entry = {
mind_entry_typename : identifier;
mind_entry_arity : constr;
mind_entry_consnames : identifier list;
mind_entry_lc : constr list }
type mutual_inductive_entry = {
mind_entry_record : bool;
mind_entry_finite : bool;
mind_entry_params : (identifier * local_entry) list;
mind_entry_inds : one_inductive_entry list }
(** {6 Constants (Definition/Axiom) } *)
type definition_entry = {
const_entry_body : constr;
const_entry_secctx : section_context option;
const_entry_type : types option;
const_entry_opaque : bool }
type inline = int option (* inlining level, None for no inlining *)
type parameter_entry = section_context option * types * inline
type constant_entry =
| DefinitionEntry of definition_entry
| ParameterEntry of parameter_entry
(** {6 Modules } *)
type module_struct_entry =
MSEident of module_path
| MSEfunctor of mod_bound_id * module_struct_entry * module_struct_entry
| MSEwith of module_struct_entry * with_declaration
| MSEapply of module_struct_entry * module_struct_entry
and with_declaration =
With_Module of identifier list * module_path
| With_Definition of identifier list * constr
and module_entry =
{ mod_entry_type : module_struct_entry option;
mod_entry_expr : module_struct_entry option}
|