1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Formula
open Sequent
open Unify
open Rules
open Util
open Term
open Glob_term
open Tacmach
open Tactics
open Tacticals
open Termops
open Reductionops
open Declarations
open Formula
open Sequent
open Names
open Libnames
let compare_instance inst1 inst2=
match inst1,inst2 with
Phantom(d1),Phantom(d2)->
(OrderedConstr.compare d1 d2)
| Real((m1,c1),n1),Real((m2,c2),n2)->
((-) =? (-) ==? OrderedConstr.compare) m2 m1 n1 n2 c1 c2
| Phantom(_),Real((m,_),_)-> if m=0 then -1 else 1
| Real((m,_),_),Phantom(_)-> if m=0 then 1 else -1
let compare_gr id1 id2 =
if id1==id2 then 0 else
if id1==dummy_id then 1
else if id2==dummy_id then -1
else Libnames.RefOrdered.compare id1 id2
module OrderedInstance=
struct
type t=instance * Libnames.global_reference
let compare (inst1,id1) (inst2,id2)=
(compare_instance =? compare_gr) inst2 inst1 id2 id1
(* we want a __decreasing__ total order *)
end
module IS=Set.Make(OrderedInstance)
let make_simple_atoms seq=
let ratoms=
match seq.glatom with
Some t->[t]
| None->[]
in {negative=seq.latoms;positive=ratoms}
let do_sequent setref triv id seq i dom atoms=
let flag=ref true in
let phref=ref triv in
let do_atoms a1 a2 =
let do_pair t1 t2 =
match unif_atoms i dom t1 t2 with
None->()
| Some (Phantom _) ->phref:=true
| Some c ->flag:=false;setref:=IS.add (c,id) !setref in
List.iter (fun t->List.iter (do_pair t) a2.negative) a1.positive;
List.iter (fun t->List.iter (do_pair t) a2.positive) a1.negative in
HP.iter (fun lf->do_atoms atoms lf.atoms) seq.redexes;
do_atoms atoms (make_simple_atoms seq);
!flag && !phref
let match_one_quantified_hyp setref seq lf=
match lf.pat with
Left(Lforall(i,dom,triv))|Right(Rexists(i,dom,triv))->
if do_sequent setref triv lf.id seq i dom lf.atoms then
setref:=IS.add ((Phantom dom),lf.id) !setref
| _ ->anomaly "can't happen"
let give_instances lf seq=
let setref=ref IS.empty in
List.iter (match_one_quantified_hyp setref seq) lf;
IS.elements !setref
(* collector for the engine *)
let rec collect_quantified seq=
try
let hd,seq1=take_formula seq in
(match hd.pat with
Left(Lforall(_,_,_)) | Right(Rexists(_,_,_)) ->
let (q,seq2)=collect_quantified seq1 in
((hd::q),seq2)
| _->[],seq)
with Heap.EmptyHeap -> [],seq
(* open instances processor *)
let dummy_constr=mkMeta (-1)
let dummy_bvid=id_of_string "x"
let mk_open_instance id gl m t=
let env=pf_env gl in
let evmap=Refiner.project gl in
let var_id=
if id==dummy_id then dummy_bvid else
let typ=pf_type_of gl (constr_of_global id) in
(* since we know we will get a product,
reduction is not too expensive *)
let (nam,_,_)=destProd (whd_betadeltaiota env evmap typ) in
match nam with
Name id -> id
| Anonymous -> dummy_bvid in
let revt=substl (list_tabulate (fun i->mkRel (m-i)) m) t in
let rec aux n avoid=
if n=0 then [] else
let nid=(fresh_id avoid var_id gl) in
(Name nid,None,dummy_constr)::(aux (n-1) (nid::avoid)) in
let nt=it_mkLambda_or_LetIn revt (aux m []) in
let rawt=Detyping.detype false [] [] nt in
let rec raux n t=
if n=0 then t else
match t with
GLambda(loc,name,k,_,t0)->
let t1=raux (n-1) t0 in
GLambda(loc,name,k,GHole (dummy_loc,Evd.BinderType name),t1)
| _-> anomaly "can't happen" in
let ntt=try
Pretyping.Default.understand evmap env (raux m rawt)
with e when Errors.noncritical e ->
error "Untypable instance, maybe higher-order non-prenex quantification" in
decompose_lam_n_assum m ntt
(* tactics *)
let left_instance_tac (inst,id) continue seq=
match inst with
Phantom dom->
if lookup (id,None) seq then
tclFAIL 0 (Pp.str "already done")
else
tclTHENS (cut dom)
[tclTHENLIST
[introf;
(fun gls->generalize
[mkApp(constr_of_global id,
[|mkVar (Tacmach.pf_nth_hyp_id gls 1)|])] gls);
introf;
tclSOLVE [wrap 1 false continue
(deepen (record (id,None) seq))]];
tclTRY assumption]
| Real((m,t) as c,_)->
if lookup (id,Some c) seq then
tclFAIL 0 (Pp.str "already done")
else
let special_generalize=
if m>0 then
fun gl->
let (rc,ot)= mk_open_instance id gl m t in
let gt=
it_mkLambda_or_LetIn
(mkApp(constr_of_global id,[|ot|])) rc in
generalize [gt] gl
else
generalize [mkApp(constr_of_global id,[|t|])]
in
tclTHENLIST
[special_generalize;
introf;
tclSOLVE
[wrap 1 false continue (deepen (record (id,Some c) seq))]]
let right_instance_tac inst continue seq=
match inst with
Phantom dom ->
tclTHENS (cut dom)
[tclTHENLIST
[introf;
(fun gls->
split (Glob_term.ImplicitBindings
[mkVar (Tacmach.pf_nth_hyp_id gls 1)]) gls);
tclSOLVE [wrap 0 true continue (deepen seq)]];
tclTRY assumption]
| Real ((0,t),_) ->
(tclTHEN (split (Glob_term.ImplicitBindings [t]))
(tclSOLVE [wrap 0 true continue (deepen seq)]))
| Real ((m,t),_) ->
tclFAIL 0 (Pp.str "not implemented ... yet")
let instance_tac inst=
if (snd inst)==dummy_id then
right_instance_tac (fst inst)
else
left_instance_tac inst
let quantified_tac lf backtrack continue seq gl=
let insts=give_instances lf seq in
tclORELSE
(tclFIRST (List.map (fun inst->instance_tac inst continue seq) insts))
backtrack gl
|