1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Term
open Util
open Formula
open Unify
open Tacmach
open Names
open Libnames
open Pp
let newcnt ()=
let cnt=ref (-1) in
fun b->if b then incr cnt;!cnt
let priority = (* pure heuristics, <=0 for non reversible *)
function
Right rf->
begin
match rf with
Rarrow -> 100
| Rand -> 40
| Ror -> -15
| Rfalse -> -50
| Rforall -> 100
| Rexists (_,_,_) -> -29
end
| Left lf ->
match lf with
Lfalse -> 999
| Land _ -> 90
| Lor _ -> 40
| Lforall (_,_,_) -> -30
| Lexists _ -> 60
| LA(_,lap) ->
match lap with
LLatom -> 0
| LLfalse (_,_) -> 100
| LLand (_,_) -> 80
| LLor (_,_) -> 70
| LLforall _ -> -20
| LLexists (_,_) -> 50
| LLarrow (_,_,_) -> -10
let left_reversible lpat=(priority lpat)>0
module OrderedFormula=
struct
type t=Formula.t
let compare e1 e2=
(priority e1.pat) - (priority e2.pat)
end
module OrderedConstr=
struct
type t=constr
let compare=constr_ord
end
type h_item = global_reference * (int*constr) option
module Hitem=
struct
type t = h_item
let compare (id1,co1) (id2,co2)=
(Libnames.RefOrdered.compare
=? (fun oc1 oc2 ->
match oc1,oc2 with
Some (m1,c1),Some (m2,c2) ->
((-) =? OrderedConstr.compare) m1 m2 c1 c2
| _,_->Pervasives.compare oc1 oc2)) id1 id2 co1 co2
end
module CM=Map.Make(OrderedConstr)
module History=Set.Make(Hitem)
let cm_add typ nam cm=
try
let l=CM.find typ cm in CM.add typ (nam::l) cm
with
Not_found->CM.add typ [nam] cm
let cm_remove typ nam cm=
try
let l=CM.find typ cm in
let l0=List.filter (fun id->id<>nam) l in
match l0 with
[]->CM.remove typ cm
| _ ->CM.add typ l0 cm
with Not_found ->cm
module HP=Heap.Functional(OrderedFormula)
type t=
{redexes:HP.t;
context:(global_reference list) CM.t;
latoms:constr list;
gl:types;
glatom:constr option;
cnt:counter;
history:History.t;
depth:int}
let deepen seq={seq with depth=seq.depth-1}
let record item seq={seq with history=History.add item seq.history}
let lookup item seq=
History.mem item seq.history ||
match item with
(_,None)->false
| (id,Some ((m,t) as c))->
let p (id2,o)=
match o with
None -> false
| Some ((m2,t2) as c2)->id=id2 && m2>m && more_general c2 c in
History.exists p seq.history
let rec add_formula side nam t seq gl=
match build_formula side nam t gl seq.cnt with
Left f->
begin
match side with
Concl ->
{seq with
redexes=HP.add f seq.redexes;
gl=f.constr;
glatom=None}
| _ ->
{seq with
redexes=HP.add f seq.redexes;
context=cm_add f.constr nam seq.context}
end
| Right t->
match side with
Concl ->
{seq with gl=t;glatom=Some t}
| _ ->
{seq with
context=cm_add t nam seq.context;
latoms=t::seq.latoms}
let re_add_formula_list lf seq=
let do_one f cm=
if f.id == dummy_id then cm
else cm_add f.constr f.id cm in
{seq with
redexes=List.fold_right HP.add lf seq.redexes;
context=List.fold_right do_one lf seq.context}
let find_left t seq=List.hd (CM.find t seq.context)
(*let rev_left seq=
try
let lpat=(HP.maximum seq.redexes).pat in
left_reversible lpat
with Heap.EmptyHeap -> false
*)
let no_formula seq=
seq.redexes=HP.empty
let rec take_formula seq=
let hd=HP.maximum seq.redexes
and hp=HP.remove seq.redexes in
if hd.id == dummy_id then
let nseq={seq with redexes=hp} in
if seq.gl==hd.constr then
hd,nseq
else
take_formula nseq (* discarding deprecated goal *)
else
hd,{seq with
redexes=hp;
context=cm_remove hd.constr hd.id seq.context}
let empty_seq depth=
{redexes=HP.empty;
context=CM.empty;
latoms=[];
gl=(mkMeta 1);
glatom=None;
cnt=newcnt ();
history=History.empty;
depth=depth}
let expand_constructor_hints =
list_map_append (function
| IndRef ind ->
list_tabulate (fun i -> ConstructRef (ind,i+1))
(Inductiveops.nconstructors ind)
| gr ->
[gr])
let extend_with_ref_list l seq gl=
let l = expand_constructor_hints l in
let f gr seq=
let c=constr_of_global gr in
let typ=(pf_type_of gl c) in
add_formula Hyp gr typ seq gl in
List.fold_right f l seq
open Auto
let extend_with_auto_hints l seq gl=
let seqref=ref seq in
let f p_a_t =
match p_a_t.code with
Res_pf (c,_) | Give_exact c
| Res_pf_THEN_trivial_fail (c,_) ->
(try
let gr=global_of_constr c in
let typ=(pf_type_of gl c) in
seqref:=add_formula Hint gr typ !seqref gl
with Not_found->())
| _-> () in
let g _ l = List.iter f l in
let h dbname=
let hdb=
try
searchtable_map dbname
with Not_found->
error ("Firstorder: "^dbname^" : No such Hint database") in
Hint_db.iter g hdb in
List.iter h l;
!seqref
let print_cmap map=
let print_entry c l s=
let xc=Constrextern.extern_constr false (Global.env ()) c in
str "| " ++
Util.prlist Printer.pr_global l ++
str " : " ++
Ppconstr.pr_constr_expr xc ++
cut () ++
s in
msgnl (v 0
(str "-----" ++
cut () ++
CM.fold print_entry map (mt ()) ++
str "-----"))
|