1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
|
open Util
open Names
open Term
open Pp
open Indfun_common
open Libnames
open Glob_term
open Declarations
let is_rec_info scheme_info =
let test_branche min acc (_,_,br) =
acc || (
let new_branche =
it_mkProd_or_LetIn mkProp (fst (decompose_prod_assum br)) in
let free_rels_in_br = Termops.free_rels new_branche in
let max = min + scheme_info.Tactics.npredicates in
Util.Intset.exists (fun i -> i >= min && i< max) free_rels_in_br
)
in
Util.list_fold_left_i test_branche 1 false (List.rev scheme_info.Tactics.branches)
let choose_dest_or_ind scheme_info =
if is_rec_info scheme_info
then Tactics.new_induct false
else Tactics.new_destruct false
let functional_induction with_clean c princl pat =
Dumpglob.pause ();
let res = let f,args = decompose_app c in
fun g ->
let princ,bindings, princ_type =
match princl with
| None -> (* No principle is given let's find the good one *)
begin
match kind_of_term f with
| Const c' ->
let princ_option =
let finfo = (* we first try to find out a graph on f *)
try find_Function_infos c'
with Not_found ->
errorlabstrm "" (str "Cannot find induction information on "++
Printer.pr_lconstr (mkConst c') )
in
match Tacticals.elimination_sort_of_goal g with
| InProp -> finfo.prop_lemma
| InSet -> finfo.rec_lemma
| InType -> finfo.rect_lemma
in
let princ = (* then we get the principle *)
try mkConst (Option.get princ_option )
with Option.IsNone ->
(*i If there is not default lemma defined then,
we cross our finger and try to find a lemma named f_ind
(or f_rec, f_rect) i*)
let princ_name =
Indrec.make_elimination_ident
(id_of_label (con_label c'))
(Tacticals.elimination_sort_of_goal g)
in
try
mkConst(const_of_id princ_name )
with Not_found -> (* This one is neither defined ! *)
errorlabstrm "" (str "Cannot find induction principle for "
++Printer.pr_lconstr (mkConst c') )
in
(princ,Glob_term.NoBindings, Tacmach.pf_type_of g princ)
| _ -> raise (UserError("",str "functional induction must be used with a function" ))
end
| Some ((princ,binding)) ->
princ,binding,Tacmach.pf_type_of g princ
in
let princ_infos = Tactics.compute_elim_sig princ_type in
let args_as_induction_constr =
let c_list =
if princ_infos.Tactics.farg_in_concl
then [c] else []
in
List.map (fun c -> Tacexpr.ElimOnConstr (Evd.empty,(c,NoBindings))) (args@c_list)
in
let princ' = Some (princ,bindings) in
let princ_vars =
List.fold_right
(fun a acc ->
try Idset.add (destVar a) acc
with e when Errors.noncritical e -> acc
)
args
Idset.empty
in
let old_idl = List.fold_right Idset.add (Tacmach.pf_ids_of_hyps g) Idset.empty in
let old_idl = Idset.diff old_idl princ_vars in
let subst_and_reduce g =
if with_clean
then
let idl =
map_succeed
(fun id ->
if Idset.mem id old_idl then failwith "subst_and_reduce";
id
)
(Tacmach.pf_ids_of_hyps g)
in
let flag =
Glob_term.Cbv
{Glob_term.all_flags
with Glob_term.rDelta = false;
}
in
Tacticals.tclTHEN
(Tacticals.tclMAP (fun id -> Tacticals.tclTRY (Equality.subst_gen (do_rewrite_dependent ()) [id])) idl )
(Hiddentac.h_reduce flag Tacticals.allHypsAndConcl)
g
else Tacticals.tclIDTAC g
in
Tacticals.tclTHEN
(choose_dest_or_ind
princ_infos
args_as_induction_constr
princ'
(None,pat)
None)
subst_and_reduce
g
in
Dumpglob.continue ();
res
let rec abstract_glob_constr c = function
| [] -> c
| Topconstr.LocalRawDef (x,b)::bl -> Topconstr.mkLetInC(x,b,abstract_glob_constr c bl)
| Topconstr.LocalRawAssum (idl,k,t)::bl ->
List.fold_right (fun x b -> Topconstr.mkLambdaC([x],k,t,b)) idl
(abstract_glob_constr c bl)
let interp_casted_constr_with_implicits sigma env impls c =
Constrintern.intern_gen false sigma env ~impls
~allow_patvar:false ~ltacvars:([],[]) c
(*
Construct a fixpoint as a Glob_term
and not as a constr
*)
let build_newrecursive
lnameargsardef =
let env0 = Global.env()
and sigma = Evd.empty
in
let (rec_sign,rec_impls) =
List.fold_left
(fun (env,impls) ((_,recname),bl,arityc,_) ->
let arityc = Topconstr.prod_constr_expr arityc bl in
let arity = Constrintern.interp_type sigma env0 arityc in
let impl = Constrintern.compute_internalization_data env0 Constrintern.Recursive arity [] in
(Environ.push_named (recname,None,arity) env, Idmap.add recname impl impls))
(env0,Constrintern.empty_internalization_env) lnameargsardef in
let recdef =
(* Declare local notations *)
let fs = States.freeze() in
let def =
try
List.map
(fun (_,bl,_,def) ->
let def = abstract_glob_constr def bl in
interp_casted_constr_with_implicits
sigma rec_sign rec_impls def
)
lnameargsardef
with reraise ->
States.unfreeze fs; raise reraise in
States.unfreeze fs; def
in
recdef,rec_impls
let build_newrecursive l =
let l' = List.map
(fun ((fixna,_,bll,ar,body_opt),lnot) ->
match body_opt with
| Some body ->
(fixna,bll,ar,body)
| None -> user_err_loc (dummy_loc,"Function",str "Body of Function must be given")
) l
in
build_newrecursive l'
(* Checks whether or not the mutual bloc is recursive *)
let rec is_rec names =
let names = List.fold_right Idset.add names Idset.empty in
let check_id id names = Idset.mem id names in
let rec lookup names = function
| GVar(_,id) -> check_id id names
| GRef _ | GEvar _ | GPatVar _ | GSort _ | GHole _ -> false
| GCast(_,b,_) -> lookup names b
| GRec _ -> error "GRec not handled"
| GIf(_,b,_,lhs,rhs) ->
(lookup names b) || (lookup names lhs) || (lookup names rhs)
| GLetIn(_,na,t,b) | GLambda(_,na,_,t,b) | GProd(_,na,_,t,b) ->
lookup names t || lookup (Nameops.name_fold Idset.remove na names) b
| GLetTuple(_,nal,_,t,b) -> lookup names t ||
lookup
(List.fold_left
(fun acc na -> Nameops.name_fold Idset.remove na acc)
names
nal
)
b
| GApp(_,f,args) -> List.exists (lookup names) (f::args)
| GCases(_,_,_,el,brl) ->
List.exists (fun (e,_) -> lookup names e) el ||
List.exists (lookup_br names) brl
and lookup_br names (_,idl,_,rt) =
let new_names = List.fold_right Idset.remove idl names in
lookup new_names rt
in
lookup names
let rec local_binders_length = function
(* Assume that no `{ ... } contexts occur *)
| [] -> 0
| Topconstr.LocalRawDef _::bl -> 1 + local_binders_length bl
| Topconstr.LocalRawAssum (idl,_,_)::bl -> List.length idl + local_binders_length bl
let prepare_body ((name,_,args,types,_),_) rt =
let n = local_binders_length args in
(* Pp.msgnl (str "nb lambda to chop : " ++ str (string_of_int n) ++ fnl () ++Printer.pr_glob_constr rt); *)
let fun_args,rt' = chop_rlambda_n n rt in
(fun_args,rt')
let derive_inversion fix_names =
try
(* we first transform the fix_names identifier into their corresponding constant *)
let fix_names_as_constant =
List.map (fun id -> destConst (Constrintern.global_reference id)) fix_names
in
(*
Then we check that the graphs have been defined
If one of the graphs haven't been defined
we do nothing
*)
List.iter (fun c -> ignore (find_Function_infos c)) fix_names_as_constant ;
try
Invfun.derive_correctness
Functional_principles_types.make_scheme
functional_induction
fix_names_as_constant
(*i The next call to mk_rel_id is valid since we have just construct the graph
Ensures by : register_built
i*)
(List.map
(fun id -> destInd (Constrintern.global_reference (mk_rel_id id)))
fix_names
)
with e when Errors.noncritical e ->
let e' = Cerrors.process_vernac_interp_error e in
msg_warning
(str "Cannot build inversion information" ++
if do_observe () then (fnl() ++ Errors.print e') else mt ())
with e when Errors.noncritical e -> ()
let warning_error names e =
let e = Cerrors.process_vernac_interp_error e in
let e_explain e =
match e with
| ToShow e -> spc () ++ Errors.print e
| _ -> if do_observe () then (spc () ++ Errors.print e) else mt ()
in
match e with
| Building_graph e ->
Pp.msg_warning
(str "Cannot define graph(s) for " ++
h 1 (prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names) ++
e_explain e)
| Defining_principle e ->
Pp.msg_warning
(str "Cannot define principle(s) for "++
h 1 (prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names) ++
e_explain e)
| _ -> raise e
let error_error names e =
let e = Cerrors.process_vernac_interp_error e in
let e_explain e =
match e with
| ToShow e -> spc () ++ Errors.print e
| _ -> if do_observe () then (spc () ++ Errors.print e) else mt ()
in
match e with
| Building_graph e ->
errorlabstrm ""
(str "Cannot define graph(s) for " ++
h 1 (prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names) ++
e_explain e)
| _ -> raise e
let generate_principle on_error
is_general do_built (fix_rec_l:(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) recdefs interactive_proof
(continue_proof : int -> Names.constant array -> Term.constr array -> int ->
Tacmach.tactic) : unit =
let names = List.map (function ((_, name),_,_,_,_),_ -> name) fix_rec_l in
let fun_bodies = List.map2 prepare_body fix_rec_l recdefs in
let funs_args = List.map fst fun_bodies in
let funs_types = List.map (function ((_,_,_,types,_),_) -> types) fix_rec_l in
try
(* We then register the Inductive graphs of the functions *)
Glob_term_to_relation.build_inductive names funs_args funs_types recdefs;
if do_built
then
begin
(*i The next call to mk_rel_id is valid since we have just construct the graph
Ensures by : do_built
i*)
let f_R_mut = Ident (dummy_loc,mk_rel_id (List.nth names 0)) in
let ind_kn =
fst (locate_with_msg
(pr_reference f_R_mut++str ": Not an inductive type!")
locate_ind
f_R_mut)
in
let fname_kn ((fname,_,_,_,_),_) =
let f_ref = Ident fname in
locate_with_msg
(pr_reference f_ref++str ": Not an inductive type!")
locate_constant
f_ref
in
let funs_kn = Array.of_list (List.map fname_kn fix_rec_l) in
let _ =
list_map_i
(fun i x ->
let princ = destConst (Indrec.lookup_eliminator (ind_kn,i) (InProp)) in
let princ_type = Typeops.type_of_constant (Global.env()) princ
in
Functional_principles_types.generate_functional_principle
interactive_proof
princ_type
None
None
funs_kn
i
(continue_proof 0 [|funs_kn.(i)|])
)
0
fix_rec_l
in
Array.iter (add_Function is_general) funs_kn;
()
end
with e when Errors.noncritical e ->
on_error names e
let register_struct is_rec (fixpoint_exprl:(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) =
match fixpoint_exprl with
| [((_,fname),_,bl,ret_type,body),_] when not is_rec ->
let body = match body with | Some body -> body | None -> user_err_loc (dummy_loc,"Function",str "Body of Function must be given") in
let ce,imps =
Command.interp_definition bl None body (Some ret_type)
in
Command.declare_definition
fname (Decl_kinds.Global,Decl_kinds.Definition)
ce imps (fun _ _ -> ())
| _ ->
Command.do_fixpoint fixpoint_exprl
let generate_correction_proof_wf f_ref tcc_lemma_ref
is_mes functional_ref eq_ref rec_arg_num rec_arg_type nb_args relation
(_: int) (_:Names.constant array) (_:Term.constr array) (_:int) : Tacmach.tactic =
Functional_principles_proofs.prove_principle_for_gen
(f_ref,functional_ref,eq_ref)
tcc_lemma_ref is_mes rec_arg_num rec_arg_type relation
let register_wf ?(is_mes=false) fname rec_impls wf_rel_expr wf_arg using_lemmas args ret_type body
pre_hook
=
let type_of_f = Topconstr.prod_constr_expr ret_type args in
let rec_arg_num =
let names =
List.map
snd
(Topconstr.names_of_local_assums args)
in
match wf_arg with
| None ->
if List.length names = 1 then 1
else error "Recursive argument must be specified"
| Some wf_arg ->
list_index (Name wf_arg) names
in
let unbounded_eq =
let f_app_args =
Topconstr.CAppExpl
(dummy_loc,
(None,(Ident (dummy_loc,fname))) ,
(List.map
(function
| _,Anonymous -> assert false
| _,Name e -> (Topconstr.mkIdentC e)
)
(Topconstr.names_of_local_assums args)
)
)
in
Topconstr.CApp (dummy_loc,(None,Topconstr.mkRefC (Qualid (dummy_loc,(qualid_of_string "Logic.eq")))),
[(f_app_args,None);(body,None)])
in
let eq = Topconstr.prod_constr_expr unbounded_eq args in
let hook f_ref tcc_lemma_ref functional_ref eq_ref rec_arg_num rec_arg_type
nb_args relation =
try
pre_hook
(generate_correction_proof_wf f_ref tcc_lemma_ref is_mes
functional_ref eq_ref rec_arg_num rec_arg_type nb_args relation
);
derive_inversion [fname]
with e when Errors.noncritical e ->
(* No proof done *)
()
in
Recdef.recursive_definition
is_mes fname rec_impls
type_of_f
wf_rel_expr
rec_arg_num
eq
hook
using_lemmas
let register_mes fname rec_impls wf_mes_expr wf_rel_expr_opt wf_arg using_lemmas args ret_type body =
let wf_arg_type,wf_arg =
match wf_arg with
| None ->
begin
match args with
| [Topconstr.LocalRawAssum ([(_,Name x)],k,t)] -> t,x
| _ -> error "Recursive argument must be specified"
end
| Some wf_args ->
try
match
List.find
(function
| Topconstr.LocalRawAssum(l,k,t) ->
List.exists
(function (_,Name id) -> id = wf_args | _ -> false)
l
| _ -> false
)
args
with
| Topconstr.LocalRawAssum(_,k,t) -> t,wf_args
| _ -> assert false
with Not_found -> assert false
in
let wf_rel_from_mes,is_mes =
match wf_rel_expr_opt with
| None ->
let ltof =
let make_dir l = make_dirpath (List.map id_of_string (List.rev l)) in
Libnames.Qualid (dummy_loc,Libnames.qualid_of_path
(Libnames.make_path (make_dir ["Arith";"Wf_nat"]) (id_of_string "ltof")))
in
let fun_from_mes =
let applied_mes =
Topconstr.mkAppC(wf_mes_expr,[Topconstr.mkIdentC wf_arg]) in
Topconstr.mkLambdaC ([(dummy_loc,Name wf_arg)],Topconstr.default_binder_kind,wf_arg_type,applied_mes)
in
let wf_rel_from_mes =
Topconstr.mkAppC(Topconstr.mkRefC ltof,[wf_arg_type;fun_from_mes])
in
wf_rel_from_mes,true
| Some wf_rel_expr ->
let wf_rel_with_mes =
let a = Names.id_of_string "___a" in
let b = Names.id_of_string "___b" in
Topconstr.mkLambdaC(
[dummy_loc,Name a;dummy_loc,Name b],
Topconstr.Default Lib.Explicit,
wf_arg_type,
Topconstr.mkAppC(wf_rel_expr,
[
Topconstr.mkAppC(wf_mes_expr,[Topconstr.mkIdentC a]);
Topconstr.mkAppC(wf_mes_expr,[Topconstr.mkIdentC b])
])
)
in
wf_rel_with_mes,false
in
register_wf ~is_mes:is_mes fname rec_impls wf_rel_from_mes (Some wf_arg)
using_lemmas args ret_type body
let map_option f = function
| None -> None
| Some v -> Some (f v)
let decompose_lambda_n_assum_constr_expr =
let rec decompose_lambda_n_assum_constr_expr acc n e =
if n = 0 then (List.rev acc,e)
else
match e with
| Topconstr.CLambdaN(_, [],e') -> decompose_lambda_n_assum_constr_expr acc n e'
| Topconstr.CLambdaN(lambda_loc,(nal,bk,nal_type)::bl,e') ->
let nal_length = List.length nal in
if nal_length <= n
then
decompose_lambda_n_assum_constr_expr
(Topconstr.LocalRawAssum(nal,bk,nal_type)::acc)
(n - nal_length)
(Topconstr.CLambdaN(lambda_loc,bl,e'))
else
let nal_keep,nal_expr = list_chop n nal in
(List.rev (Topconstr.LocalRawAssum(nal_keep,bk,nal_type)::acc),
Topconstr.CLambdaN(lambda_loc,(nal_expr,bk,nal_type)::bl,e')
)
| Topconstr.CLetIn(_, na,nav,e') ->
decompose_lambda_n_assum_constr_expr
(Topconstr.LocalRawDef(na,nav)::acc) (pred n) e'
| _ -> error "Not enough product or assumption"
in
decompose_lambda_n_assum_constr_expr []
let decompose_prod_n_assum_constr_expr =
let rec decompose_prod_n_assum_constr_expr acc n e =
(* Pp.msgnl (str "n := " ++ int n ++ fnl ()++ *)
(* str "e := " ++ Ppconstr.pr_lconstr_expr e); *)
if n = 0 then
(* let _ = Pp.msgnl (str "return_type := " ++ Ppconstr.pr_lconstr_expr e) in *)
(List.rev acc,e)
else
match e with
| Topconstr.CProdN(_, [],e') -> decompose_prod_n_assum_constr_expr acc n e'
| Topconstr.CProdN(lambda_loc,(nal,bk,nal_type)::bl,e') ->
let nal_length = List.length nal in
if nal_length <= n
then
(* let _ = Pp.msgnl (str "first case") in *)
decompose_prod_n_assum_constr_expr
(Topconstr.LocalRawAssum(nal,bk,nal_type)::acc)
(n - nal_length)
(if bl = [] then e' else (Topconstr.CLambdaN(lambda_loc,bl,e')))
else
(* let _ = Pp.msgnl (str "second case") in *)
let nal_keep,nal_expr = list_chop n nal in
(List.rev (Topconstr.LocalRawAssum(nal_keep,bk,nal_type)::acc),
Topconstr.CLambdaN(lambda_loc,(nal_expr,bk,nal_type)::bl,e')
)
| Topconstr.CArrow(_,premisse,concl) ->
(* let _ = Pp.msgnl (str "arrow case") in *)
decompose_prod_n_assum_constr_expr
(Topconstr.LocalRawAssum([dummy_loc,Names.Anonymous],
Topconstr.Default Lib.Explicit,premisse)
::acc)
(pred n)
concl
| Topconstr.CLetIn(_, na,nav,e') ->
decompose_prod_n_assum_constr_expr
(Topconstr.LocalRawDef(na,nav)::acc) (pred n) e'
| _ -> error "Not enough product or assumption"
in
decompose_prod_n_assum_constr_expr []
open Topconstr
let id_of_name = function
| Name id -> id
| _ -> assert false
let rec rebuild_bl (aux,assoc) bl typ =
match bl,typ with
| [], _ -> (List.rev aux,replace_vars_constr_expr assoc typ,assoc)
| (Topconstr.LocalRawAssum(nal,bk,_))::bl',typ ->
rebuild_nal (aux,assoc) bk bl' nal (List.length nal) typ
| (Topconstr.LocalRawDef(na,_))::bl',CLetIn(_,_,nat,typ') ->
rebuild_bl ((Topconstr.LocalRawDef(na,replace_vars_constr_expr assoc nat)::aux),assoc)
bl' typ'
| _ -> assert false
and rebuild_nal (aux,assoc) bk bl' nal lnal typ =
match nal,typ with
| [], _ -> rebuild_bl (aux,assoc) bl' typ
| na::nal,CArrow(_,nat,typ') ->
rebuild_nal
((LocalRawAssum([na],bk,replace_vars_constr_expr assoc nat))::aux,assoc)
bk bl' nal (pred lnal) typ'
| _,CProdN(_,[],typ) -> rebuild_nal (aux,assoc) bk bl' nal lnal typ
| _,CProdN(_,(nal',bk',nal't)::rest,typ') ->
let lnal' = List.length nal' in
if lnal' >= lnal
then
let old_nal',new_nal' = list_chop lnal nal' in
rebuild_bl ((LocalRawAssum(nal,bk,replace_vars_constr_expr assoc nal't)::aux),(List.rev_append (List.combine (List.map id_of_name (List.map snd old_nal')) (List.map id_of_name (List.map snd nal))) assoc)) bl'
(if new_nal' = [] && rest = []
then typ'
else if new_nal' = []
then CProdN(dummy_loc,rest,typ')
else CProdN(dummy_loc,((new_nal',bk',nal't)::rest),typ'))
else
let captured_nal,non_captured_nal = list_chop lnal' nal in
rebuild_nal ((LocalRawAssum(captured_nal,bk,replace_vars_constr_expr assoc nal't)::aux), (List.rev_append (List.combine (List.map id_of_name (List.map snd captured_nal)) ((List.map id_of_name (List.map snd nal)))) assoc))
bk bl' non_captured_nal (lnal - lnal') (CProdN(dummy_loc,rest,typ'))
| _ -> assert false
let rebuild_bl (aux,assoc) bl typ = rebuild_bl (aux,assoc) bl typ
let recompute_binder_list (fixpoint_exprl : (Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) =
let fixl,ntns = Command.extract_fixpoint_components false fixpoint_exprl in
let ((_,_,typel),_) = Command.interp_fixpoint fixl ntns in
let constr_expr_typel =
with_full_print (List.map (Constrextern.extern_constr false (Global.env ()))) typel in
let fixpoint_exprl_with_new_bl =
List.map2 (fun ((lna,(rec_arg_opt,rec_order),bl,ret_typ,opt_body),notation_list) fix_typ ->
let new_bl',new_ret_type,_ = rebuild_bl ([],[]) bl fix_typ in
(((lna,(rec_arg_opt,rec_order),new_bl',new_ret_type,opt_body),notation_list):(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list))
)
fixpoint_exprl constr_expr_typel
in
fixpoint_exprl_with_new_bl
let do_generate_principle on_error register_built interactive_proof
(fixpoint_exprl:(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) :unit =
List.iter (fun (_,l) -> if l <> [] then error "Function does not support notations for now") fixpoint_exprl;
let _is_struct =
match fixpoint_exprl with
| [((_,(wf_x,Topconstr.CWfRec wf_rel),_,_,_),_) as fixpoint_expr] ->
let ((((_,name),_,args,types,body)),_) as fixpoint_expr =
match recompute_binder_list [fixpoint_expr] with
| [e] -> e
| _ -> assert false
in
let fixpoint_exprl = [fixpoint_expr] in
let body = match body with | Some body -> body | None -> user_err_loc (dummy_loc,"Function",str "Body of Function must be given") in
let recdefs,rec_impls = build_newrecursive fixpoint_exprl in
let using_lemmas = [] in
let pre_hook =
generate_principle
on_error
true
register_built
fixpoint_exprl
recdefs
true
in
if register_built
then register_wf name rec_impls wf_rel (map_option snd wf_x) using_lemmas args types body pre_hook;
false
|[((_,(wf_x,Topconstr.CMeasureRec(wf_mes,wf_rel_opt)),_,_,_),_) as fixpoint_expr] ->
let ((((_,name),_,args,types,body)),_) as fixpoint_expr =
match recompute_binder_list [fixpoint_expr] with
| [e] -> e
| _ -> assert false
in
let fixpoint_exprl = [fixpoint_expr] in
let recdefs,rec_impls = build_newrecursive fixpoint_exprl in
let using_lemmas = [] in
let body = match body with | Some body -> body | None -> user_err_loc (dummy_loc,"Function",str "Body of Function must be given") in
let pre_hook =
generate_principle
on_error
true
register_built
fixpoint_exprl
recdefs
true
in
if register_built
then register_mes name rec_impls wf_mes wf_rel_opt (map_option snd wf_x) using_lemmas args types body pre_hook;
true
| _ ->
List.iter (function ((_na,(_,ord),_args,_body,_type),_not) ->
match ord with
| Topconstr.CMeasureRec _ | Topconstr.CWfRec _ ->
error
("Cannot use mutual definition with well-founded recursion or measure")
| _ -> ()
)
fixpoint_exprl;
let fixpoint_exprl = recompute_binder_list fixpoint_exprl in
let fix_names =
List.map (function (((_,name),_,_,_,_),_) -> name) fixpoint_exprl
in
(* ok all the expressions are structural *)
let recdefs,rec_impls = build_newrecursive fixpoint_exprl in
let is_rec = List.exists (is_rec fix_names) recdefs in
if register_built then register_struct is_rec fixpoint_exprl;
generate_principle
on_error
false
register_built
fixpoint_exprl
recdefs
interactive_proof
(Functional_principles_proofs.prove_princ_for_struct interactive_proof);
if register_built then derive_inversion fix_names;
true;
in
()
open Topconstr
let rec add_args id new_args b =
match b with
| CRef r ->
begin match r with
| Libnames.Ident(loc,fname) when fname = id ->
CAppExpl(dummy_loc,(None,r),new_args)
| _ -> b
end
| CFix _ | CCoFix _ -> anomaly "add_args : todo"
| CArrow(loc,b1,b2) ->
CArrow(loc,add_args id new_args b1, add_args id new_args b2)
| CProdN(loc,nal,b1) ->
CProdN(loc,
List.map (fun (nal,k,b2) -> (nal,k,add_args id new_args b2)) nal,
add_args id new_args b1)
| CLambdaN(loc,nal,b1) ->
CLambdaN(loc,
List.map (fun (nal,k,b2) -> (nal,k,add_args id new_args b2)) nal,
add_args id new_args b1)
| CLetIn(loc,na,b1,b2) ->
CLetIn(loc,na,add_args id new_args b1,add_args id new_args b2)
| CAppExpl(loc,(pf,r),exprl) ->
begin
match r with
| Libnames.Ident(loc,fname) when fname = id ->
CAppExpl(loc,(pf,r),new_args@(List.map (add_args id new_args) exprl))
| _ -> CAppExpl(loc,(pf,r),List.map (add_args id new_args) exprl)
end
| CApp(loc,(pf,b),bl) ->
CApp(loc,(pf,add_args id new_args b),
List.map (fun (e,o) -> add_args id new_args e,o) bl)
| CCases(loc,sty,b_option,cel,cal) ->
CCases(loc,sty,Option.map (add_args id new_args) b_option,
List.map (fun (b,(na,b_option)) ->
add_args id new_args b,
(na,Option.map (add_args id new_args) b_option)) cel,
List.map (fun (loc,cpl,e) -> (loc,cpl,add_args id new_args e)) cal
)
| CLetTuple(loc,nal,(na,b_option),b1,b2) ->
CLetTuple(loc,nal,(na,Option.map (add_args id new_args) b_option),
add_args id new_args b1,
add_args id new_args b2
)
| CIf(loc,b1,(na,b_option),b2,b3) ->
CIf(loc,add_args id new_args b1,
(na,Option.map (add_args id new_args) b_option),
add_args id new_args b2,
add_args id new_args b3
)
| CHole _ -> b
| CPatVar _ -> b
| CEvar _ -> b
| CSort _ -> b
| CCast(loc,b1,CastConv(ck,b2)) ->
CCast(loc,add_args id new_args b1,CastConv(ck,add_args id new_args b2))
| CCast(loc,b1,CastCoerce) ->
CCast(loc,add_args id new_args b1,CastCoerce)
| CRecord (loc, w, pars) ->
CRecord (loc,
(match w with Some w -> Some (add_args id new_args w) | _ -> None),
List.map (fun (e,o) -> e, add_args id new_args o) pars)
| CNotation _ -> anomaly "add_args : CNotation"
| CGeneralization _ -> anomaly "add_args : CGeneralization"
| CPrim _ -> b
| CDelimiters _ -> anomaly "add_args : CDelimiters"
exception Stop of Topconstr.constr_expr
(* [chop_n_arrow n t] chops the [n] first arrows in [t]
Acts on Topconstr.constr_expr
*)
let rec chop_n_arrow n t =
if n <= 0
then t (* If we have already removed all the arrows then return the type *)
else (* If not we check the form of [t] *)
match t with
| Topconstr.CArrow(_,_,t) -> (* If we have an arrow, we discard it and recall [chop_n_arrow] *)
chop_n_arrow (n-1) t
| Topconstr.CProdN(_,nal_ta',t') -> (* If we have a forall, to result are possible :
either we need to discard more than the number of arrows contained
in this product declaration then we just recall [chop_n_arrow] on
the remaining number of arrow to chop and [t'] we discard it and
recall [chop_n_arrow], either this product contains more arrows
than the number we need to chop and then we return the new type
*)
begin
try
let new_n =
let rec aux (n:int) = function
[] -> n
| (nal,k,t'')::nal_ta' ->
let nal_l = List.length nal in
if n >= nal_l
then
aux (n - nal_l) nal_ta'
else
let new_t' =
Topconstr.CProdN(dummy_loc,
((snd (list_chop n nal)),k,t'')::nal_ta',t')
in
raise (Stop new_t')
in
aux n nal_ta'
in
chop_n_arrow new_n t'
with Stop t -> t
end
| _ -> anomaly "Not enough products"
let rec get_args b t : Topconstr.local_binder list *
Topconstr.constr_expr * Topconstr.constr_expr =
match b with
| Topconstr.CLambdaN (loc, (nal_ta), b') ->
begin
let n =
(List.fold_left (fun n (nal,_,_) ->
n+List.length nal) 0 nal_ta )
in
let nal_tas,b'',t'' = get_args b' (chop_n_arrow n t) in
(List.map (fun (nal,k,ta) ->
(Topconstr.LocalRawAssum (nal,k,ta))) nal_ta)@nal_tas, b'',t''
end
| _ -> [],b,t
let make_graph (f_ref:global_reference) =
let c,c_body =
match f_ref with
| ConstRef c ->
begin try c,Global.lookup_constant c
with Not_found ->
raise (UserError ("",str "Cannot find " ++ Printer.pr_lconstr (mkConst c)) )
end
| _ -> raise (UserError ("", str "Not a function reference") )
in
Dumpglob.pause ();
(match body_of_constant c_body with
| None -> error "Cannot build a graph over an axiom !"
| Some b ->
let env = Global.env () in
let body = (force b) in
let extern_body,extern_type =
with_full_print
(fun () ->
(Constrextern.extern_constr false env body,
Constrextern.extern_type false env
(Typeops.type_of_constant_type env c_body.const_type)
)
)
()
in
let (nal_tas,b,t) = get_args extern_body extern_type in
let expr_list =
match b with
| Topconstr.CFix(loc,l_id,fixexprl) ->
let l =
List.map
(fun (id,(n,recexp),bl,t,b) ->
let loc, rec_id = Option.get n in
let new_args =
List.flatten
(List.map
(function
| Topconstr.LocalRawDef (na,_)-> []
| Topconstr.LocalRawAssum (nal,_,_) ->
List.map
(fun (loc,n) ->
CRef(Libnames.Ident(loc, Nameops.out_name n)))
nal
)
nal_tas
)
in
let b' = add_args (snd id) new_args b in
(((id, ( Some (dummy_loc,rec_id),CStructRec),nal_tas@bl,t,Some b'),[]):(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list))
)
fixexprl
in
l
| _ ->
let id = id_of_label (con_label c) in
[((dummy_loc,id),(None,Topconstr.CStructRec),nal_tas,t,Some b),[]]
in
do_generate_principle error_error false false expr_list;
(* We register the infos *)
let mp,dp,_ = repr_con c in
List.iter
(fun (((_,id),_,_,_,_),_) -> add_Function false (make_con mp dp (label_of_id id)))
expr_list);
Dumpglob.continue ()
let do_generate_principle = do_generate_principle warning_error true
|