1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* The `Quote' tactic *)
(* The basic idea is to automatize the inversion of interpetation functions
in 2-level approach
Examples are given in \texttt{theories/DEMOS/DemoQuote.v}
Suppose you have a langage \texttt{L} of 'abstract terms'
and a type \texttt{A} of 'concrete terms'
and a function \texttt{f : L -> (varmap A L) -> A}.
Then, the tactic \texttt{quote f} will replace an
expression \texttt{e} of type \texttt{A} by \texttt{(f vm t)}
such that \texttt{e} and \texttt{(f vm t)} are convertible.
The problem is then inverting the function \texttt{f}.
The tactic works when:
\begin{itemize}
\item L is a simple inductive datatype. The constructors of L may
have one of the three following forms:
\begin{enumerate}
\item ordinary recursive constructors like: \verb|Cplus : L -> L -> L|
\item variable leaf like: \verb|Cvar : index -> L|
\item constant leaf like \verb|Cconst : A -> L|
\end{enumerate}
The definition of \texttt{L} must contain at most one variable
leaf and at most one constant leaf.
When there are both a variable leaf and a constant leaf, there is
an ambiguity on inversion. The term t can be either the
interpretation of \texttt{(Cconst t)} or the interpretation of
(\texttt{Cvar}~$i$) in a variable map containing the binding $i
\rightarrow$~\texttt{t}. How to discriminate between these
choices?
To solve the dilemma, one gives to \texttt{quote} a list of
\emph{constant constructors}: a term will be considered as a
constant if it is either a constant constructor or the
application of a constant constructor to constants. For example
the list \verb+[S, O]+ defines the closed natural
numbers. \texttt{(S (S O))} is a constant when \texttt{(S x)} is
not.
The definition of constants vary for each application of the
tactic, so it can even be different for two applications of
\texttt{quote} with the same function.
\item \texttt{f} is a quite simple fixpoint on
\texttt{L}. In particular, \texttt{f} must verify:
\begin{verbatim}
(f (Cvar i)) = (varmap_find vm default_value i)
\end{verbatim}
\begin{verbatim}
(f (Cconst c)) = c
\end{verbatim}
where \texttt{index} and \texttt{varmap\_find} are those defined
the \texttt{Quote} module. \emph{The tactic won't work with
user's own variables map!!} It is mandatory to use the
variable map defined in module \texttt{Quote}.
\end{itemize}
The method to proceed is then clear:
\begin{itemize}
\item Start with an empty hashtable of "registed leafs"
that maps constr to integers and a "variable counter" equal to 0.
\item Try to match the term with every right hand side of the
definition of \texttt{f}.
If there is one match, returns the correponding left hand
side and call yourself recursively to get the arguments of this
left hand side.
If there is no match, we are at a leaf. That is the
interpretation of either a variable or a constant.
If it is a constant, return \texttt{Cconst} applied to that
constant.
If not, it is a variable. Look in the hashtable
if this leaf has been already encountered. If not, increment
the variable counter and add an entry to the hashtable; then
return \texttt{(Cvar !variables\_counter)}
\end{itemize}
*)
(*i*)
open Pp
open Util
open Names
open Term
open Pattern
open Matching
open Tacmach
open Tactics
open Tacexpr
(*i*)
(*s First, we need to access some Coq constants
We do that lazily, because this code can be linked before
the constants are loaded in the environment *)
let constant dir s = Coqlib.gen_constant "Quote" ("quote"::dir) s
let coq_Empty_vm = lazy (constant ["Quote"] "Empty_vm")
let coq_Node_vm = lazy (constant ["Quote"] "Node_vm")
let coq_varmap_find = lazy (constant ["Quote"] "varmap_find")
let coq_Right_idx = lazy (constant ["Quote"] "Right_idx")
let coq_Left_idx = lazy (constant ["Quote"] "Left_idx")
let coq_End_idx = lazy (constant ["Quote"] "End_idx")
(*s Then comes the stuff to decompose the body of interpetation function
and pre-compute the inversion data.
For a function like:
\begin{verbatim}
Fixpoint interp (vm:varmap Prop) (f:form) :=
match f with
| f_and f1 f1 f2 => (interp f1) /\ (interp f2)
| f_or f1 f1 f2 => (interp f1) \/ (interp f2)
| f_var i => varmap_find Prop default_v i vm
| f_const c => c
end.
\end{verbatim}
With the constant constructors \texttt{C1}, \dots, \texttt{Cn}, the
corresponding scheme will be:
\begin{verbatim}
{normal_lhs_rhs =
[ "(f_and ?1 ?2)", "?1 /\ ?2";
"(f_or ?1 ?2)", " ?1 \/ ?2";];
return_type = "Prop";
constants = Some [C1,...Cn];
variable_lhs = Some "(f_var ?1)";
constant_lhs = Some "(f_const ?1)"
}
\end{verbatim}
If there is no constructor for variables in the type \texttt{form},
then [variable_lhs] is [None]. Idem for constants and
[constant_lhs]. Both cannot be equal to [None].
The metas in the RHS must correspond to those in the LHS (one cannot
exchange ?1 and ?2 in the example above)
*)
module ConstrSet = Set.Make(
struct
type t = constr
let compare = constr_ord
end)
type inversion_scheme = {
normal_lhs_rhs : (constr * constr_pattern) list;
variable_lhs : constr option;
return_type : constr;
constants : ConstrSet.t;
constant_lhs : constr option }
(*s [compute_ivs gl f cs] computes the inversion scheme associated to
[f:constr] with constants list [cs:constr list] in the context of
goal [gl]. This function uses the auxiliary functions
[i_can't_do_that], [decomp_term], [compute_lhs] and [compute_rhs]. *)
let i_can't_do_that () = error "Quote: not a simple fixpoint"
let decomp_term c = kind_of_term (strip_outer_cast c)
(*s [compute_lhs typ i nargsi] builds the term \texttt{(C ?nargsi ...
?2 ?1)}, where \texttt{C} is the [i]-th constructor of inductive
type [typ] *)
let coerce_meta_out id =
let s = string_of_id id in
int_of_string (String.sub s 1 (String.length s - 1))
let coerce_meta_in n =
id_of_string ("M" ^ string_of_int n)
let compute_lhs typ i nargsi =
match kind_of_term typ with
| Ind(sp,0) ->
let argsi = Array.init nargsi (fun j -> mkMeta (nargsi - j)) in
mkApp (mkConstruct ((sp,0),i+1), argsi)
| _ -> i_can't_do_that ()
(*s This function builds the pattern from the RHS. Recursive calls are
replaced by meta-variables ?i corresponding to those in the LHS *)
let compute_rhs bodyi index_of_f =
let rec aux c =
match kind_of_term c with
| App (j, args) when isRel j && destRel j = index_of_f (* recursive call *) ->
let i = destRel (array_last args) in
PMeta (Some (coerce_meta_in i))
| App (f,args) ->
PApp (snd (pattern_of_constr Evd.empty f), Array.map aux args)
| Cast (c,_,_) -> aux c
| _ -> snd (pattern_of_constr Evd.empty c)
in
aux bodyi
(*s Now the function [compute_ivs] itself *)
let compute_ivs gl f cs =
let cst =
try destConst f
with e when Errors.noncritical e -> i_can't_do_that ()
in
let body = Environ.constant_value (Global.env()) cst in
match decomp_term body with
| Fix(([| len |], 0), ([| name |], [| typ |], [| body2 |])) ->
let (args3, body3) = decompose_lam body2 in
let nargs3 = List.length args3 in
begin match decomp_term body3 with
| Case(_,p,c,lci) -> (* <p> Case c of c1 ... cn end *)
let n_lhs_rhs = ref []
and v_lhs = ref (None : constr option)
and c_lhs = ref (None : constr option) in
Array.iteri
(fun i ci ->
let argsi, bodyi = decompose_lam ci in
let nargsi = List.length argsi in
(* REL (narg3 + nargsi + 1) is f *)
(* REL nargsi+1 to REL nargsi + nargs3 are arguments of f *)
(* REL 1 to REL nargsi are argsi (reverse order) *)
(* First we test if the RHS is the RHS for constants *)
if isRel bodyi && destRel bodyi = 1 then
c_lhs := Some (compute_lhs (snd (List.hd args3))
i nargsi)
(* Then we test if the RHS is the RHS for variables *)
else begin match decompose_app bodyi with
| vmf, [_; _; a3; a4 ]
when isRel a3 & isRel a4 &
pf_conv_x gl vmf
(Lazy.force coq_varmap_find)->
v_lhs := Some (compute_lhs
(snd (List.hd args3))
i nargsi)
(* Third case: this is a normal LHS-RHS *)
| _ ->
n_lhs_rhs :=
(compute_lhs (snd (List.hd args3)) i nargsi,
compute_rhs bodyi (nargs3 + nargsi + 1))
:: !n_lhs_rhs
end)
lci;
if !c_lhs = None & !v_lhs = None then i_can't_do_that ();
(* The Cases predicate is a lambda; we assume no dependency *)
let p = match kind_of_term p with
| Lambda (_,_,p) -> Termops.pop p
| _ -> p
in
{ normal_lhs_rhs = List.rev !n_lhs_rhs;
variable_lhs = !v_lhs;
return_type = p;
constants = List.fold_right ConstrSet.add cs ConstrSet.empty;
constant_lhs = !c_lhs }
| _ -> i_can't_do_that ()
end
|_ -> i_can't_do_that ()
(* TODO for that function:
\begin{itemize}
\item handle the case where the return type is an argument of the
function
\item handle the case of simple mutual inductive (for example terms
and lists of terms) formulas with the corresponding mutual
recursvive interpretation functions.
\end{itemize}
*)
(*s Stuff to build variables map, currently implemented as complete
binary search trees (see file \texttt{Quote.v}) *)
(* First the function to distinghish between constants (closed terms)
and variables (open terms) *)
let rec closed_under cset t =
(ConstrSet.mem t cset) or
(match (kind_of_term t) with
| Cast(c,_,_) -> closed_under cset c
| App(f,l) -> closed_under cset f && array_for_all (closed_under cset) l
| _ -> false)
(*s [btree_of_array [| c1; c2; c3; c4; c5 |]] builds the complete
binary search tree containing the [ci], that is:
\begin{verbatim}
c1
/ \
c2 c3
/ \
c4 c5
\end{verbatim}
The second argument is a constr (the common type of the [ci])
*)
let btree_of_array a ty =
let size_of_a = Array.length a in
let semi_size_of_a = size_of_a lsr 1 in
let node = Lazy.force coq_Node_vm
and empty = mkApp (Lazy.force coq_Empty_vm, [| ty |]) in
let rec aux n =
if n > size_of_a
then empty
else if n > semi_size_of_a
then mkApp (node, [| ty; a.(n-1); empty; empty |])
else mkApp (node, [| ty; a.(n-1); aux (2*n); aux (2*n+1) |])
in
aux 1
(*s [btree_of_array] and [path_of_int] verify the following invariant:\\
{\tt (varmap\_find A dv }[(path_of_int n)] [(btree_of_array a ty)]
= [a.(n)]\\
[n] must be [> 0] *)
let path_of_int n =
(* returns the list of digits of n in reverse order with
initial 1 removed *)
let rec digits_of_int n =
if n=1 then []
else (n mod 2 = 1)::(digits_of_int (n lsr 1))
in
List.fold_right
(fun b c -> mkApp ((if b then Lazy.force coq_Right_idx
else Lazy.force coq_Left_idx),
[| c |]))
(List.rev (digits_of_int n))
(Lazy.force coq_End_idx)
(*s The tactic works with a list of subterms sharing the same
variables map. We need to sort terms in order to avoid than
strange things happen during replacement of terms by their
'abstract' counterparties. *)
(* [subterm t t'] tests if constr [t'] occurs in [t] *)
(* This function does not descend under binders (lambda and Cases) *)
let rec subterm gl (t : constr) (t' : constr) =
(pf_conv_x gl t t') or
(match (kind_of_term t) with
| App (f,args) -> array_exists (fun t -> subterm gl t t') args
| Cast(t,_,_) -> (subterm gl t t')
| _ -> false)
(*s We want to sort the list according to reverse subterm order. *)
(* Since it's a partial order the algoritm of Sort.list won't work !! *)
let rec sort_subterm gl l =
let rec insert c = function
| [] -> [c]
| (h::t as l) when eq_constr c h -> l (* Avoid doing the same work twice *)
| h::t -> if subterm gl c h then c::h::t else h::(insert c t)
in
match l with
| [] -> []
| h::t -> insert h (sort_subterm gl t)
module Constrhash = Hashtbl.Make
(struct type t = constr
let equal = eq_constr
let hash = hash_constr
end)
(*s Now we are able to do the inversion itself.
We destructurate the term and use an imperative hashtable
to store leafs that are already encountered.
The type of arguments is:\\
[ivs : inversion_scheme]\\
[lc: constr list]\\
[gl: goal sigma]\\ *)
let quote_terms ivs lc gl =
Coqlib.check_required_library ["Coq";"quote";"Quote"];
let varhash = (Constrhash.create 17 : constr Constrhash.t) in
let varlist = ref ([] : constr list) in (* list of variables *)
let counter = ref 1 in (* number of variables created + 1 *)
let rec aux c =
let rec auxl l =
match l with
| (lhs, rhs)::tail ->
begin try
let s1 = matches rhs c in
let s2 = List.map (fun (i,c_i) -> (coerce_meta_out i,aux c_i)) s1
in
Termops.subst_meta s2 lhs
with PatternMatchingFailure -> auxl tail
end
| [] ->
begin match ivs.variable_lhs with
| None ->
begin match ivs.constant_lhs with
| Some c_lhs -> Termops.subst_meta [1, c] c_lhs
| None -> anomaly "invalid inversion scheme for quote"
end
| Some var_lhs ->
begin match ivs.constant_lhs with
| Some c_lhs when closed_under ivs.constants c ->
Termops.subst_meta [1, c] c_lhs
| _ ->
begin
try Constrhash.find varhash c
with Not_found ->
let newvar =
Termops.subst_meta [1, (path_of_int !counter)]
var_lhs in
begin
incr counter;
varlist := c :: !varlist;
Constrhash.add varhash c newvar;
newvar
end
end
end
end
in
auxl ivs.normal_lhs_rhs
in
let lp = List.map aux lc in
(lp, (btree_of_array (Array.of_list (List.rev !varlist))
ivs.return_type ))
(*s actually we could "quote" a list of terms instead of a single
term. Ring for example needs that, but Ring doesn't use Quote
yet. *)
let quote f lid gl =
let f = pf_global gl f in
let cl = List.map (pf_global gl) lid in
let ivs = compute_ivs gl f cl in
let (p, vm) = match quote_terms ivs [(pf_concl gl)] gl with
| [p], vm -> (p,vm)
| _ -> assert false
in
match ivs.variable_lhs with
| None -> Tactics.convert_concl (mkApp (f, [| p |])) DEFAULTcast gl
| Some _ -> Tactics.convert_concl (mkApp (f, [| vm; p |])) DEFAULTcast gl
let gen_quote cont c f lid gl =
let f = pf_global gl f in
let cl = List.map (pf_global gl) lid in
let ivs = compute_ivs gl f cl in
let (p, vm) = match quote_terms ivs [c] gl with
| [p], vm -> (p,vm)
| _ -> assert false
in
match ivs.variable_lhs with
| None -> cont (mkApp (f, [| p |])) gl
| Some _ -> cont (mkApp (f, [| vm; p |])) gl
(*i
Just testing ...
#use "include.ml";;
open Quote;;
let r = glob_constr_of_string;;
let ivs = {
normal_lhs_rhs =
[ r "(f_and ?1 ?2)", r "?1/\?2";
r "(f_not ?1)", r "~?1"];
variable_lhs = Some (r "(f_atom ?1)");
return_type = r "Prop";
constants = ConstrSet.empty;
constant_lhs = (r "nat")
};;
let t1 = r "True/\(True /\ ~False)";;
let t2 = r "True/\~~False";;
quote_term ivs () t1;;
quote_term ivs () t2;;
let ivs2 =
normal_lhs_rhs =
[ r "(f_and ?1 ?2)", r "?1/\?2";
r "(f_not ?1)", r "~?1"
r "True", r "f_true"];
variable_lhs = Some (r "(f_atom ?1)");
return_type = r "Prop";
constants = ConstrSet.empty;
constant_lhs = (r "nat")
i*)
|