1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open Util
open Names
open Nameops
open Term
open Sign
open Environ
open Libnames
open Nametab
(* Sorts and sort family *)
let print_sort = function
| Prop Pos -> (str "Set")
| Prop Null -> (str "Prop")
| Type u -> (str "Type(" ++ Univ.pr_uni u ++ str ")")
let pr_sort_family = function
| InSet -> (str "Set")
| InProp -> (str "Prop")
| InType -> (str "Type")
let pr_name = function
| Name id -> pr_id id
| Anonymous -> str "_"
let pr_con sp = str(string_of_con sp)
let rec pr_constr c = match kind_of_term c with
| Rel n -> str "#"++int n
| Meta n -> str "Meta(" ++ int n ++ str ")"
| Var id -> pr_id id
| Sort s -> print_sort s
| Cast (c,_, t) -> hov 1
(str"(" ++ pr_constr c ++ cut() ++
str":" ++ pr_constr t ++ str")")
| Prod (Name(id),t,c) -> hov 1
(str"forall " ++ pr_id id ++ str":" ++ pr_constr t ++ str"," ++
spc() ++ pr_constr c)
| Prod (Anonymous,t,c) -> hov 0
(str"(" ++ pr_constr t ++ str " ->" ++ spc() ++
pr_constr c ++ str")")
| Lambda (na,t,c) -> hov 1
(str"fun " ++ pr_name na ++ str":" ++
pr_constr t ++ str" =>" ++ spc() ++ pr_constr c)
| LetIn (na,b,t,c) -> hov 0
(str"let " ++ pr_name na ++ str":=" ++ pr_constr b ++
str":" ++ brk(1,2) ++ pr_constr t ++ cut() ++
pr_constr c)
| App (c,l) -> hov 1
(str"(" ++ pr_constr c ++ spc() ++
prlist_with_sep spc pr_constr (Array.to_list l) ++ str")")
| Evar (e,l) -> hov 1
(str"Evar#" ++ int e ++ str"{" ++
prlist_with_sep spc pr_constr (Array.to_list l) ++str"}")
| Const c -> str"Cst(" ++ pr_con c ++ str")"
| Ind (sp,i) -> str"Ind(" ++ pr_mind sp ++ str"," ++ int i ++ str")"
| Construct ((sp,i),j) ->
str"Constr(" ++ pr_mind sp ++ str"," ++ int i ++ str"," ++ int j ++ str")"
| Case (ci,p,c,bl) -> v 0
(hv 0 (str"<"++pr_constr p++str">"++ cut() ++ str"Case " ++
pr_constr c ++ str"of") ++ cut() ++
prlist_with_sep (fun _ -> brk(1,2)) pr_constr (Array.to_list bl) ++
cut() ++ str"end")
| Fix ((t,i),(lna,tl,bl)) ->
let fixl = Array.mapi (fun i na -> (na,t.(i),tl.(i),bl.(i))) lna in
hov 1
(str"fix " ++ int i ++ spc() ++ str"{" ++
v 0 (prlist_with_sep spc (fun (na,i,ty,bd) ->
pr_name na ++ str"/" ++ int i ++ str":" ++ pr_constr ty ++
cut() ++ str":=" ++ pr_constr bd) (Array.to_list fixl)) ++
str"}")
| CoFix(i,(lna,tl,bl)) ->
let fixl = Array.mapi (fun i na -> (na,tl.(i),bl.(i))) lna in
hov 1
(str"cofix " ++ int i ++ spc() ++ str"{" ++
v 0 (prlist_with_sep spc (fun (na,ty,bd) ->
pr_name na ++ str":" ++ pr_constr ty ++
cut() ++ str":=" ++ pr_constr bd) (Array.to_list fixl)) ++
str"}")
let term_printer = ref (fun _ -> pr_constr)
let print_constr_env t = !term_printer t
let print_constr t = !term_printer (Global.env()) t
let set_print_constr f = term_printer := f
let pr_var_decl env (id,c,typ) =
let pbody = match c with
| None -> (mt ())
| Some c ->
(* Force evaluation *)
let pb = print_constr_env env c in
(str" := " ++ pb ++ cut () ) in
let pt = print_constr_env env typ in
let ptyp = (str" : " ++ pt) in
(pr_id id ++ hov 0 (pbody ++ ptyp))
let pr_rel_decl env (na,c,typ) =
let pbody = match c with
| None -> mt ()
| Some c ->
(* Force evaluation *)
let pb = print_constr_env env c in
(str":=" ++ spc () ++ pb ++ spc ()) in
let ptyp = print_constr_env env typ in
match na with
| Anonymous -> hov 0 (str"<>" ++ spc () ++ pbody ++ str":" ++ spc () ++ ptyp)
| Name id -> hov 0 (pr_id id ++ spc () ++ pbody ++ str":" ++ spc () ++ ptyp)
let print_named_context env =
hv 0 (fold_named_context
(fun env d pps ->
pps ++ ws 2 ++ pr_var_decl env d)
env ~init:(mt ()))
let print_rel_context env =
hv 0 (fold_rel_context
(fun env d pps -> pps ++ ws 2 ++ pr_rel_decl env d)
env ~init:(mt ()))
let print_env env =
let sign_env =
fold_named_context
(fun env d pps ->
let pidt = pr_var_decl env d in
(pps ++ fnl () ++ pidt))
env ~init:(mt ())
in
let db_env =
fold_rel_context
(fun env d pps ->
let pnat = pr_rel_decl env d in (pps ++ fnl () ++ pnat))
env ~init:(mt ())
in
(sign_env ++ db_env)
(*let current_module = ref empty_dirpath
let set_module m = current_module := m*)
let new_univ_level =
let univ_gen = ref 0 in
(fun sp ->
incr univ_gen;
Univ.make_universe_level (Lib.library_dp(),!univ_gen))
let new_univ () = Univ.make_universe (new_univ_level ())
let new_Type () = mkType (new_univ ())
let new_Type_sort () = Type (new_univ ())
(* This refreshes universes in types; works only for inferred types (i.e. for
types of the form (x1:A1)...(xn:An)B with B a sort or an atom in
head normal form) *)
let refresh_universes_gen strict t =
let modified = ref false in
let rec refresh t = match kind_of_term t with
| Sort (Type u) when strict or u <> Univ.type0m_univ ->
modified := true; new_Type ()
| Prod (na,u,v) -> mkProd (na,u,refresh v)
| _ -> t in
let t' = refresh t in
if !modified then t' else t
let refresh_universes = refresh_universes_gen false
let refresh_universes_strict = refresh_universes_gen true
let new_sort_in_family = function
| InProp -> prop_sort
| InSet -> set_sort
| InType -> Type (new_univ ())
(* [Rel (n+m);...;Rel(n+1)] *)
let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i))
let rel_list n m =
let rec reln l p =
if p>m then l else reln (mkRel(n+p)::l) (p+1)
in
reln [] 1
(* Same as [rel_list] but takes a context as argument and skips let-ins *)
let extended_rel_list n hyps =
let rec reln l p = function
| (_,None,_) :: hyps -> reln (mkRel (n+p) :: l) (p+1) hyps
| (_,Some _,_) :: hyps -> reln l (p+1) hyps
| [] -> l
in
reln [] 1 hyps
let extended_rel_vect n hyps = Array.of_list (extended_rel_list n hyps)
let push_rel_assum (x,t) env = push_rel (x,None,t) env
let push_rels_assum assums =
push_rel_context (List.map (fun (x,t) -> (x,None,t)) assums)
let push_named_rec_types (lna,typarray,_) env =
let ctxt =
array_map2_i
(fun i na t ->
match na with
| Name id -> (id, None, lift i t)
| Anonymous -> anomaly "Fix declarations must be named")
lna typarray in
Array.fold_left
(fun e assum -> push_named assum e) env ctxt
let rec lookup_rel_id id sign =
let rec lookrec = function
| (n, (Anonymous,_,_)::l) -> lookrec (n+1,l)
| (n, (Name id',b,t)::l) -> if id' = id then (n,b,t) else lookrec (n+1,l)
| (_, []) -> raise Not_found
in
lookrec (1,sign)
(* Constructs either [forall x:t, c] or [let x:=b:t in c] *)
let mkProd_or_LetIn (na,body,t) c =
match body with
| None -> mkProd (na, t, c)
| Some b -> mkLetIn (na, b, t, c)
(* Constructs either [forall x:t, c] or [c] in which [x] is replaced by [b] *)
let mkProd_wo_LetIn (na,body,t) c =
match body with
| None -> mkProd (na, t, c)
| Some b -> subst1 b c
let it_mkProd init = List.fold_left (fun c (n,t) -> mkProd (n, t, c)) init
let it_mkLambda init = List.fold_left (fun c (n,t) -> mkLambda (n, t, c)) init
let it_named_context_quantifier f ~init =
List.fold_left (fun c d -> f d c) init
let it_mkProd_or_LetIn init = it_named_context_quantifier mkProd_or_LetIn ~init
let it_mkProd_wo_LetIn init = it_named_context_quantifier mkProd_wo_LetIn ~init
let it_mkLambda_or_LetIn init = it_named_context_quantifier mkLambda_or_LetIn ~init
let it_mkNamedProd_or_LetIn init = it_named_context_quantifier mkNamedProd_or_LetIn ~init
let it_mkNamedProd_wo_LetIn init = it_named_context_quantifier mkNamedProd_wo_LetIn ~init
let it_mkNamedLambda_or_LetIn init = it_named_context_quantifier mkNamedLambda_or_LetIn ~init
(* *)
(* strips head casts and flattens head applications *)
let rec strip_head_cast c = match kind_of_term c with
| App (f,cl) ->
let rec collapse_rec f cl2 = match kind_of_term f with
| App (g,cl1) -> collapse_rec g (Array.append cl1 cl2)
| Cast (c,_,_) -> collapse_rec c cl2
| _ -> if Array.length cl2 = 0 then f else mkApp (f,cl2)
in
collapse_rec f cl
| Cast (c,_,_) -> strip_head_cast c
| _ -> c
let rec drop_extra_implicit_args c = match kind_of_term c with
(* Removed trailing extra implicit arguments, what improves compatibility
for constants with recently added maximal implicit arguments *)
| App (f,args) when isEvar (array_last args) ->
drop_extra_implicit_args
(mkApp (f,fst (array_chop (Array.length args - 1) args)))
| _ -> c
(* Get the last arg of an application *)
let last_arg c = match kind_of_term c with
| App (f,cl) -> array_last cl
| _ -> anomaly "last_arg"
(* Get the last arg of an application *)
let decompose_app_vect c =
match kind_of_term c with
| App (f,cl) -> (f, cl)
| _ -> (c,[||])
let adjust_app_list_size f1 l1 f2 l2 =
let len1 = List.length l1 and len2 = List.length l2 in
if len1 = len2 then (f1,l1,f2,l2)
else if len1 < len2 then
let extras,restl2 = list_chop (len2-len1) l2 in
(f1, l1, applist (f2,extras), restl2)
else
let extras,restl1 = list_chop (len1-len2) l1 in
(applist (f1,extras), restl1, f2, l2)
let adjust_app_array_size f1 l1 f2 l2 =
let len1 = Array.length l1 and len2 = Array.length l2 in
if len1 = len2 then (f1,l1,f2,l2)
else if len1 < len2 then
let extras,restl2 = array_chop (len2-len1) l2 in
(f1, l1, appvect (f2,extras), restl2)
else
let extras,restl1 = array_chop (len1-len2) l1 in
(appvect (f1,extras), restl1, f2, l2)
(* [map_constr_with_named_binders g f l c] maps [f l] on the immediate
subterms of [c]; it carries an extra data [l] (typically a name
list) which is processed by [g na] (which typically cons [na] to
[l]) at each binder traversal (with name [na]); it is not recursive
and the order with which subterms are processed is not specified *)
let map_constr_with_named_binders g f l c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> c
| Cast (c,k,t) -> mkCast (f l c, k, f l t)
| Prod (na,t,c) -> mkProd (na, f l t, f (g na l) c)
| Lambda (na,t,c) -> mkLambda (na, f l t, f (g na l) c)
| LetIn (na,b,t,c) -> mkLetIn (na, f l b, f l t, f (g na l) c)
| App (c,al) -> mkApp (f l c, Array.map (f l) al)
| Evar (e,al) -> mkEvar (e, Array.map (f l) al)
| Case (ci,p,c,bl) -> mkCase (ci, f l p, f l c, Array.map (f l) bl)
| Fix (ln,(lna,tl,bl)) ->
let l' = Array.fold_left (fun l na -> g na l) l lna in
mkFix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl))
| CoFix(ln,(lna,tl,bl)) ->
let l' = Array.fold_left (fun l na -> g na l) l lna in
mkCoFix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl))
(* [map_constr_with_binders_left_to_right g f n c] maps [f n] on the
immediate subterms of [c]; it carries an extra data [n] (typically
a lift index) which is processed by [g] (which typically add 1 to
[n]) at each binder traversal; the subterms are processed from left
to right according to the usual representation of the constructions
(this may matter if [f] does a side-effect); it is not recursive;
in fact, the usual representation of the constructions is at the
time being almost those of the ML representation (except for
(co-)fixpoint) *)
let fold_rec_types g (lna,typarray,_) e =
let ctxt = array_map2_i (fun i na t -> (na, None, lift i t)) lna typarray in
Array.fold_left (fun e assum -> g assum e) e ctxt
let map_constr_with_binders_left_to_right g f l c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> c
| Cast (c,k,t) -> let c' = f l c in mkCast (c',k,f l t)
| Prod (na,t,c) ->
let t' = f l t in
mkProd (na, t', f (g (na,None,t) l) c)
| Lambda (na,t,c) ->
let t' = f l t in
mkLambda (na, t', f (g (na,None,t) l) c)
| LetIn (na,b,t,c) ->
let b' = f l b in
let t' = f l t in
let c' = f (g (na,Some b,t) l) c in
mkLetIn (na, b', t', c')
| App (c,[||]) -> assert false
| App (c,al) ->
(*Special treatment to be able to recognize partially applied subterms*)
let a = al.(Array.length al - 1) in
let hd = f l (mkApp (c, Array.sub al 0 (Array.length al - 1))) in
mkApp (hd, [| f l a |])
| Evar (e,al) -> mkEvar (e, array_map_left (f l) al)
| Case (ci,p,c,bl) ->
(* In v8 concrete syntax, predicate is after the term to match! *)
let c' = f l c in
let p' = f l p in
mkCase (ci, p', c', array_map_left (f l) bl)
| Fix (ln,(lna,tl,bl as fx)) ->
let l' = fold_rec_types g fx l in
let (tl',bl') = array_map_left_pair (f l) tl (f l') bl in
mkFix (ln,(lna,tl',bl'))
| CoFix(ln,(lna,tl,bl as fx)) ->
let l' = fold_rec_types g fx l in
let (tl',bl') = array_map_left_pair (f l) tl (f l') bl in
mkCoFix (ln,(lna,tl',bl'))
(* strong *)
let map_constr_with_full_binders g f l cstr = match kind_of_term cstr with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> cstr
| Cast (c,k, t) ->
let c' = f l c in
let t' = f l t in
if c==c' && t==t' then cstr else mkCast (c', k, t')
| Prod (na,t,c) ->
let t' = f l t in
let c' = f (g (na,None,t) l) c in
if t==t' && c==c' then cstr else mkProd (na, t', c')
| Lambda (na,t,c) ->
let t' = f l t in
let c' = f (g (na,None,t) l) c in
if t==t' && c==c' then cstr else mkLambda (na, t', c')
| LetIn (na,b,t,c) ->
let b' = f l b in
let t' = f l t in
let c' = f (g (na,Some b,t) l) c in
if b==b' && t==t' && c==c' then cstr else mkLetIn (na, b', t', c')
| App (c,al) ->
let c' = f l c in
let al' = Array.map (f l) al in
if c==c' && array_for_all2 (==) al al' then cstr else mkApp (c', al')
| Evar (e,al) ->
let al' = Array.map (f l) al in
if array_for_all2 (==) al al' then cstr else mkEvar (e, al')
| Case (ci,p,c,bl) ->
let p' = f l p in
let c' = f l c in
let bl' = Array.map (f l) bl in
if p==p' && c==c' && array_for_all2 (==) bl bl' then cstr else
mkCase (ci, p', c', bl')
| Fix (ln,(lna,tl,bl)) ->
let tl' = Array.map (f l) tl in
let l' =
array_fold_left2 (fun l na t -> g (na,None,t) l) l lna tl in
let bl' = Array.map (f l') bl in
if array_for_all2 (==) tl tl' && array_for_all2 (==) bl bl'
then cstr
else mkFix (ln,(lna,tl',bl'))
| CoFix(ln,(lna,tl,bl)) ->
let tl' = Array.map (f l) tl in
let l' =
array_fold_left2 (fun l na t -> g (na,None,t) l) l lna tl in
let bl' = Array.map (f l') bl in
if array_for_all2 (==) tl tl' && array_for_all2 (==) bl bl'
then cstr
else mkCoFix (ln,(lna,tl',bl'))
(* [fold_constr_with_binders g f n acc c] folds [f n] on the immediate
subterms of [c] starting from [acc] and proceeding from left to
right according to the usual representation of the constructions as
[fold_constr] but it carries an extra data [n] (typically a lift
index) which is processed by [g] (which typically add 1 to [n]) at
each binder traversal; it is not recursive *)
let fold_constr_with_binders g f n acc c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> acc
| Cast (c,_, t) -> f n (f n acc c) t
| Prod (_,t,c) -> f (g n) (f n acc t) c
| Lambda (_,t,c) -> f (g n) (f n acc t) c
| LetIn (_,b,t,c) -> f (g n) (f n (f n acc b) t) c
| App (c,l) -> Array.fold_left (f n) (f n acc c) l
| Evar (_,l) -> Array.fold_left (f n) acc l
| Case (_,p,c,bl) -> Array.fold_left (f n) (f n (f n acc p) c) bl
| Fix (_,(lna,tl,bl)) ->
let n' = iterate g (Array.length tl) n in
let fd = array_map2 (fun t b -> (t,b)) tl bl in
Array.fold_left (fun acc (t,b) -> f n' (f n acc t) b) acc fd
| CoFix (_,(lna,tl,bl)) ->
let n' = iterate g (Array.length tl) n in
let fd = array_map2 (fun t b -> (t,b)) tl bl in
Array.fold_left (fun acc (t,b) -> f n' (f n acc t) b) acc fd
(* [iter_constr_with_full_binders g f acc c] iters [f acc] on the immediate
subterms of [c]; it carries an extra data [acc] which is processed by [g] at
each binder traversal; it is not recursive and the order with which
subterms are processed is not specified *)
let iter_constr_with_full_binders g f l c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> ()
| Cast (c,_, t) -> f l c; f l t
| Prod (na,t,c) -> f l t; f (g (na,None,t) l) c
| Lambda (na,t,c) -> f l t; f (g (na,None,t) l) c
| LetIn (na,b,t,c) -> f l b; f l t; f (g (na,Some b,t) l) c
| App (c,args) -> f l c; Array.iter (f l) args
| Evar (_,args) -> Array.iter (f l) args
| Case (_,p,c,bl) -> f l p; f l c; Array.iter (f l) bl
| Fix (_,(lna,tl,bl)) ->
let l' = array_fold_left2 (fun l na t -> g (na,None,t) l) l lna tl in
Array.iter (f l) tl;
Array.iter (f l') bl
| CoFix (_,(lna,tl,bl)) ->
let l' = array_fold_left2 (fun l na t -> g (na,None,t) l) l lna tl in
Array.iter (f l) tl;
Array.iter (f l') bl
(***************************)
(* occurs check functions *)
(***************************)
exception Occur
let occur_meta c =
let rec occrec c = match kind_of_term c with
| Meta _ -> raise Occur
| _ -> iter_constr occrec c
in try occrec c; false with Occur -> true
let occur_existential c =
let rec occrec c = match kind_of_term c with
| Evar _ -> raise Occur
| _ -> iter_constr occrec c
in try occrec c; false with Occur -> true
let occur_meta_or_existential c =
let rec occrec c = match kind_of_term c with
| Evar _ -> raise Occur
| Meta _ -> raise Occur
| _ -> iter_constr occrec c
in try occrec c; false with Occur -> true
let occur_const s c =
let rec occur_rec c = match kind_of_term c with
| Const sp when sp=s -> raise Occur
| _ -> iter_constr occur_rec c
in
try occur_rec c; false with Occur -> true
let occur_evar n c =
let rec occur_rec c = match kind_of_term c with
| Evar (sp,_) when sp=n -> raise Occur
| _ -> iter_constr occur_rec c
in
try occur_rec c; false with Occur -> true
let occur_in_global env id constr =
let vars = vars_of_global env constr in
if List.mem id vars then raise Occur
let occur_var env id c =
let rec occur_rec c =
match kind_of_term c with
| Var _ | Const _ | Ind _ | Construct _ -> occur_in_global env id c
| _ -> iter_constr occur_rec c
in
try occur_rec c; false with Occur -> true
let occur_var_in_decl env hyp (_,c,typ) =
match c with
| None -> occur_var env hyp typ
| Some body ->
occur_var env hyp typ ||
occur_var env hyp body
(* returns the list of free debruijn indices in a term *)
let free_rels m =
let rec frec depth acc c = match kind_of_term c with
| Rel n -> if n >= depth then Intset.add (n-depth+1) acc else acc
| _ -> fold_constr_with_binders succ frec depth acc c
in
frec 1 Intset.empty m
(* collects all metavar occurences, in left-to-right order, preserving
* repetitions and all. *)
let collect_metas c =
let rec collrec acc c =
match kind_of_term c with
| Meta mv -> list_add_set mv acc
| _ -> fold_constr collrec acc c
in
List.rev (collrec [] c)
(* collects all vars; warning: this is only visible vars, not dependencies in
all section variables; for the latter, use global_vars_set *)
let collect_vars c =
let rec aux vars c = match kind_of_term c with
| Var id -> Idset.add id vars
| _ -> fold_constr aux vars c in
aux Idset.empty c
(* Tests whether [m] is a subterm of [t]:
[m] is appropriately lifted through abstractions of [t] *)
let dependent_main noevar m t =
let rec deprec m t =
if eq_constr m t then
raise Occur
else
match kind_of_term m, kind_of_term t with
| App (fm,lm), App (ft,lt) when Array.length lm < Array.length lt ->
deprec m (mkApp (ft,Array.sub lt 0 (Array.length lm)));
Array.iter (deprec m)
(Array.sub lt
(Array.length lm) ((Array.length lt) - (Array.length lm)))
| _, Cast (c,_,_) when noevar & isMeta c -> ()
| _, Evar _ when noevar -> ()
| _ -> iter_constr_with_binders (lift 1) deprec m t
in
try deprec m t; false with Occur -> true
let dependent = dependent_main false
let dependent_no_evar = dependent_main true
let count_occurrences m t =
let n = ref 0 in
let rec countrec m t =
if eq_constr m t then
incr n
else
match kind_of_term m, kind_of_term t with
| App (fm,lm), App (ft,lt) when Array.length lm < Array.length lt ->
countrec m (mkApp (ft,Array.sub lt 0 (Array.length lm)));
Array.iter (countrec m)
(Array.sub lt
(Array.length lm) ((Array.length lt) - (Array.length lm)))
| _, Cast (c,_,_) when isMeta c -> ()
| _, Evar _ -> ()
| _ -> iter_constr_with_binders (lift 1) countrec m t
in
countrec m t;
!n
(* Synonymous *)
let occur_term = dependent
let pop t = lift (-1) t
(***************************)
(* bindings functions *)
(***************************)
type meta_type_map = (metavariable * types) list
type meta_value_map = (metavariable * constr) list
let rec subst_meta bl c =
match kind_of_term c with
| Meta i -> (try List.assoc i bl with Not_found -> c)
| _ -> map_constr (subst_meta bl) c
(* First utilities for avoiding telescope computation for subst_term *)
let prefix_application eq_fun (k,c) (t : constr) =
let c' = collapse_appl c and t' = collapse_appl t in
match kind_of_term c', kind_of_term t' with
| App (f1,cl1), App (f2,cl2) ->
let l1 = Array.length cl1
and l2 = Array.length cl2 in
if l1 <= l2
&& eq_fun c' (mkApp (f2, Array.sub cl2 0 l1)) then
Some (mkApp (mkRel k, Array.sub cl2 l1 (l2 - l1)))
else
None
| _ -> None
let my_prefix_application eq_fun (k,c) (by_c : constr) (t : constr) =
let c' = collapse_appl c and t' = collapse_appl t in
match kind_of_term c', kind_of_term t' with
| App (f1,cl1), App (f2,cl2) ->
let l1 = Array.length cl1
and l2 = Array.length cl2 in
if l1 <= l2
&& eq_fun c' (mkApp (f2, Array.sub cl2 0 l1)) then
Some (mkApp ((lift k by_c), Array.sub cl2 l1 (l2 - l1)))
else
None
| _ -> None
(* Recognizing occurrences of a given subterm in a term: [subst_term c t]
substitutes [(Rel 1)] for all occurrences of term [c] in a term [t];
works if [c] has rels *)
let subst_term_gen eq_fun c t =
let rec substrec (k,c as kc) t =
match prefix_application eq_fun kc t with
| Some x -> x
| None ->
if eq_fun c t then mkRel k
else
map_constr_with_binders (fun (k,c) -> (k+1,lift 1 c)) substrec kc t
in
substrec (1,c) t
let subst_term = subst_term_gen eq_constr
(* Recognizing occurrences of a given subterm in a term :
[replace_term c1 c2 t] substitutes [c2] for all occurrences of
term [c1] in a term [t]; works if [c1] and [c2] have rels *)
let replace_term_gen eq_fun c by_c in_t =
let rec substrec (k,c as kc) t =
match my_prefix_application eq_fun kc by_c t with
| Some x -> x
| None ->
(if eq_fun c t then (lift k by_c) else
map_constr_with_binders (fun (k,c) -> (k+1,lift 1 c))
substrec kc t)
in
substrec (0,c) in_t
let replace_term = replace_term_gen eq_constr
(* Substitute only at a list of locations or excluding a list of
locations; in the occurrences list (b,l), b=true means no
occurrence except the ones in l and b=false, means all occurrences
except the ones in l *)
type hyp_location_flag = (* To distinguish body and type of local defs *)
| InHyp
| InHypTypeOnly
| InHypValueOnly
type occurrences = bool * int list
let all_occurrences = (false,[])
let no_occurrences_in_set = (true,[])
let error_invalid_occurrence l =
let l = list_uniquize (List.sort Pervasives.compare l) in
errorlabstrm ""
(str ("Invalid occurrence " ^ plural (List.length l) "number" ^": ") ++
prlist_with_sep spc int l ++ str ".")
let pr_position (cl,pos) =
let clpos = match cl with
| None -> str " of the goal"
| Some (id,InHyp) -> str " of hypothesis " ++ pr_id id
| Some (id,InHypTypeOnly) -> str " of the type of hypothesis " ++ pr_id id
| Some (id,InHypValueOnly) -> str " of the body of hypothesis " ++ pr_id id in
int pos ++ clpos
let error_cannot_unify_occurrences nested (cl2,pos2,t2) (cl1,pos1,t1) (nowhere_except_in,locs) =
let s = if nested then "Found nested occurrences of the pattern"
else "Found incompatible occurrences of the pattern" in
errorlabstrm ""
(str s ++ str ":" ++
spc () ++ str "Matched term " ++ quote (print_constr t2) ++
strbrk " at position " ++ pr_position (cl2,pos2) ++
strbrk " is not compatible with matched term " ++
quote (print_constr t1) ++ strbrk " at position " ++
pr_position (cl1,pos1) ++ str ".")
let is_selected pos (nowhere_except_in,locs) =
nowhere_except_in && List.mem pos locs ||
not nowhere_except_in && not (List.mem pos locs)
exception NotUnifiable
type 'a testing_function = {
match_fun : constr -> 'a;
merge_fun : 'a -> 'a -> 'a;
mutable testing_state : 'a;
mutable last_found : ((identifier * hyp_location_flag) option * int * constr) option
}
let subst_closed_term_occ_gen_modulo (nowhere_except_in,locs as plocs) test cl occ t =
let maxocc = List.fold_right max locs 0 in
let pos = ref occ in
let nested = ref false in
let add_subst t subst =
try
test.testing_state <- test.merge_fun subst test.testing_state;
test.last_found <- Some (cl,!pos,t)
with NotUnifiable ->
let lastpos = Option.get test.last_found in
error_cannot_unify_occurrences !nested (cl,!pos,t) lastpos plocs in
let rec substrec k t =
if nowhere_except_in & !pos > maxocc then t else
try
let subst = test.match_fun t in
if is_selected !pos plocs then
(add_subst t subst; incr pos;
(* Check nested matching subterms *)
nested := true; ignore (subst_below k t); nested := false;
(* Do the effective substitution *)
mkRel k)
else
(incr pos; subst_below k t)
with NotUnifiable ->
subst_below k t
and subst_below k t =
map_constr_with_binders_left_to_right (fun d k -> k+1) substrec k t
in
let t' = substrec 1 t in
(!pos, t')
let is_nowhere (nowhere_except_in,locs) = nowhere_except_in && locs = []
let check_used_occurrences nbocc (nowhere_except_in,locs) =
let rest = List.filter (fun o -> o >= nbocc) locs in
if rest <> [] then error_invalid_occurrence rest
let proceed_with_occurrences f plocs x =
if is_nowhere plocs then (* optimization *) x else
begin
assert (List.for_all (fun x -> x >= 0) (snd plocs));
let (nbocc,x) = f 1 x in
check_used_occurrences nbocc plocs;
x
end
let make_eq_test c = {
match_fun = (fun c' -> if eq_constr c c' then () else raise NotUnifiable);
merge_fun = (fun () () -> ());
testing_state = ();
last_found = None
}
let subst_closed_term_occ_gen plocs pos c t =
subst_closed_term_occ_gen_modulo plocs (make_eq_test c) None pos t
let subst_closed_term_occ plocs c t =
proceed_with_occurrences (fun occ -> subst_closed_term_occ_gen plocs occ c)
plocs t
let subst_closed_term_occ_modulo plocs test cl t =
proceed_with_occurrences
(subst_closed_term_occ_gen_modulo plocs test cl) plocs t
let map_named_declaration_with_hyploc f hyploc acc (id,bodyopt,typ) =
let f = f (Some (id,hyploc)) in
match bodyopt,hyploc with
| None, InHypValueOnly ->
errorlabstrm "" (pr_id id ++ str " has no value.")
| None, _ | Some _, InHypTypeOnly ->
let acc,typ = f acc typ in acc,(id,bodyopt,typ)
| Some body, InHypValueOnly ->
let acc,body = f acc body in acc,(id,Some body,typ)
| Some body, InHyp ->
let acc,body = f acc body in
let acc,typ = f acc typ in
acc,(id,Some body,typ)
let subst_closed_term_occ_decl (plocs,hyploc) c d =
proceed_with_occurrences
(map_named_declaration_with_hyploc
(fun _ occ -> subst_closed_term_occ_gen plocs occ c) hyploc) plocs d
let subst_closed_term_occ_decl_modulo (plocs,hyploc) test d =
proceed_with_occurrences
(map_named_declaration_with_hyploc
(subst_closed_term_occ_gen_modulo plocs test)
hyploc)
plocs d
let vars_of_env env =
let s =
Sign.fold_named_context (fun (id,_,_) s -> Idset.add id s)
(named_context env) ~init:Idset.empty in
Sign.fold_rel_context
(fun (na,_,_) s -> match na with Name id -> Idset.add id s | _ -> s)
(rel_context env) ~init:s
let add_vname vars = function
Name id -> Idset.add id vars
| _ -> vars
(*************************)
(* Names environments *)
(*************************)
type names_context = name list
let add_name n nl = n::nl
let lookup_name_of_rel p names =
try List.nth names (p-1)
with Invalid_argument _ | Failure _ -> raise Not_found
let rec lookup_rel_of_name id names =
let rec lookrec n = function
| Anonymous :: l -> lookrec (n+1) l
| (Name id') :: l -> if id' = id then n else lookrec (n+1) l
| [] -> raise Not_found
in
lookrec 1 names
let empty_names_context = []
let ids_of_rel_context sign =
Sign.fold_rel_context
(fun (na,_,_) l -> match na with Name id -> id::l | Anonymous -> l)
sign ~init:[]
let ids_of_named_context sign =
Sign.fold_named_context (fun (id,_,_) idl -> id::idl) sign ~init:[]
let ids_of_context env =
(ids_of_rel_context (rel_context env))
@ (ids_of_named_context (named_context env))
let names_of_rel_context env =
List.map (fun (na,_,_) -> na) (rel_context env)
let is_section_variable id =
try let _ = Global.lookup_named id in true
with Not_found -> false
let isGlobalRef c =
match kind_of_term c with
| Const _ | Ind _ | Construct _ | Var _ -> true
| _ -> false
let has_polymorphic_type c =
match (Global.lookup_constant c).Declarations.const_type with
| Declarations.PolymorphicArity _ -> true
| _ -> false
let base_sort_cmp pb s0 s1 =
match (s0,s1) with
| (Prop c1, Prop c2) -> c1 = Null or c2 = Pos (* Prop <= Set *)
| (Prop c1, Type u) -> pb = Reduction.CUMUL
| (Type u1, Type u2) -> true
| _ -> false
(* eq_constr extended with universe erasure *)
let compare_constr_univ f cv_pb t1 t2 =
match kind_of_term t1, kind_of_term t2 with
Sort s1, Sort s2 -> base_sort_cmp cv_pb s1 s2
| Prod (_,t1,c1), Prod (_,t2,c2) ->
f Reduction.CONV t1 t2 & f cv_pb c1 c2
| _ -> compare_constr (f Reduction.CONV) t1 t2
let rec constr_cmp cv_pb t1 t2 = compare_constr_univ constr_cmp cv_pb t1 t2
let eq_constr = constr_cmp Reduction.CONV
(* App(c,[t1,...tn]) -> ([c,t1,...,tn-1],tn)
App(c,[||]) -> ([],c) *)
let split_app c = match kind_of_term c with
App(c,l) ->
let len = Array.length l in
if len=0 then ([],c) else
let last = Array.get l (len-1) in
let prev = Array.sub l 0 (len-1) in
c::(Array.to_list prev), last
| _ -> assert false
let hdtl l = List.hd l, List.tl l
type subst = (rel_context*constr) Intmap.t
exception CannotFilter
let filtering env cv_pb c1 c2 =
let evm = ref Intmap.empty in
let define cv_pb e1 ev c1 =
try let (e2,c2) = Intmap.find ev !evm in
let shift = List.length e1 - List.length e2 in
if constr_cmp cv_pb c1 (lift shift c2) then () else raise CannotFilter
with Not_found ->
evm := Intmap.add ev (e1,c1) !evm
in
let rec aux env cv_pb c1 c2 =
match kind_of_term c1, kind_of_term c2 with
| App _, App _ ->
let ((p1,l1),(p2,l2)) = (split_app c1),(split_app c2) in
aux env cv_pb l1 l2; if p1=[] & p2=[] then () else
aux env cv_pb (applist (hdtl p1)) (applist (hdtl p2))
| Prod (n,t1,c1), Prod (_,t2,c2) ->
aux env cv_pb t1 t2;
aux ((n,None,t1)::env) cv_pb c1 c2
| _, Evar (ev,_) -> define cv_pb env ev c1
| Evar (ev,_), _ -> define cv_pb env ev c2
| _ ->
if compare_constr_univ
(fun pb c1 c2 -> aux env pb c1 c2; true) cv_pb c1 c2 then ()
else raise CannotFilter
(* TODO: le reste des binders *)
in
aux env cv_pb c1 c2; !evm
let decompose_prod_letin : constr -> int * rel_context * constr =
let rec prodec_rec i l c = match kind_of_term c with
| Prod (n,t,c) -> prodec_rec (succ i) ((n,None,t)::l) c
| LetIn (n,d,t,c) -> prodec_rec (succ i) ((n,Some d,t)::l) c
| Cast (c,_,_) -> prodec_rec i l c
| _ -> i,l,c in
prodec_rec 0 []
let align_prod_letin c a : rel_context * constr =
let (lc,_,_) = decompose_prod_letin c in
let (la,l,a) = decompose_prod_letin a in
if not (la >= lc) then invalid_arg "align_prod_letin";
let (l1,l2) = Util.list_chop lc l in
l2,it_mkProd_or_LetIn a l1
(* On reduit une serie d'eta-redex de tete ou rien du tout *)
(* [x1:c1;...;xn:cn]@(f;a1...an;x1;...;xn) --> @(f;a1...an) *)
(* Remplace 2 versions prcdentes bugges *)
let rec eta_reduce_head c =
match kind_of_term c with
| Lambda (_,c1,c') ->
(match kind_of_term (eta_reduce_head c') with
| App (f,cl) ->
let lastn = (Array.length cl) - 1 in
if lastn < 1 then anomaly "application without arguments"
else
(match kind_of_term cl.(lastn) with
| Rel 1 ->
let c' =
if lastn = 1 then f
else mkApp (f, Array.sub cl 0 lastn)
in
if noccurn 1 c'
then lift (-1) c'
else c
| _ -> c)
| _ -> c)
| _ -> c
(* alpha-eta conversion : ignore print names and casts *)
let eta_eq_constr =
let rec aux t1 t2 =
let t1 = eta_reduce_head (strip_head_cast t1)
and t2 = eta_reduce_head (strip_head_cast t2) in
t1=t2 or compare_constr aux t1 t2
in aux
(* iterator on rel context *)
let process_rel_context f env =
let sign = named_context_val env in
let rels = rel_context env in
let env0 = reset_with_named_context sign env in
Sign.fold_rel_context f rels ~init:env0
let assums_of_rel_context sign =
Sign.fold_rel_context
(fun (na,c,t) l ->
match c with
Some _ -> l
| None -> (na, t)::l)
sign ~init:[]
let map_rel_context_in_env f env sign =
let rec aux env acc = function
| d::sign ->
aux (push_rel d env) (map_rel_declaration (f env) d :: acc) sign
| [] ->
acc
in
aux env [] (List.rev sign)
let map_rel_context_with_binders f sign =
let rec aux k = function
| d::sign -> map_rel_declaration (f k) d :: aux (k-1) sign
| [] -> []
in
aux (rel_context_length sign) sign
let substl_rel_context l =
map_rel_context_with_binders (fun k -> substnl l (k-1))
let lift_rel_context n =
map_rel_context_with_binders (liftn n)
let smash_rel_context sign =
let rec aux acc = function
| [] -> acc
| (_,None,_ as d) :: l -> aux (d::acc) l
| (_,Some b,_) :: l ->
(* Quadratic in the number of let but there are probably a few of them *)
aux (List.rev (substl_rel_context [b] (List.rev acc))) l
in List.rev (aux [] sign)
let adjust_subst_to_rel_context sign l =
let rec aux subst sign l =
match sign, l with
| (_,None,_)::sign', a::args' -> aux (a::subst) sign' args'
| (_,Some c,_)::sign', args' ->
aux (substl (List.rev subst) c :: subst) sign' args'
| [], [] -> List.rev subst
| _ -> anomaly "Instance and signature do not match"
in aux [] (List.rev sign) l
let fold_named_context_both_sides f l ~init = list_fold_right_and_left f l init
let rec mem_named_context id = function
| (id',_,_) :: _ when id=id' -> true
| _ :: sign -> mem_named_context id sign
| [] -> false
let clear_named_body id env =
let rec aux _ = function
| (id',Some c,t) when id = id' -> push_named (id,None,t)
| d -> push_named d in
fold_named_context aux env ~init:(reset_context env)
let global_vars env ids = Idset.elements (global_vars_set env ids)
let global_vars_set_of_decl env = function
| (_,None,t) -> global_vars_set env t
| (_,Some c,t) ->
Idset.union (global_vars_set env t)
(global_vars_set env c)
let dependency_closure env sign hyps =
if Idset.is_empty hyps then [] else
let (_,lh) =
Sign.fold_named_context_reverse
(fun (hs,hl) (x,_,_ as d) ->
if Idset.mem x hs then
(Idset.union (global_vars_set_of_decl env d) (Idset.remove x hs),
x::hl)
else (hs,hl))
~init:(hyps,[])
sign in
List.rev lh
(* Combinators on judgments *)
let on_judgment f j = { uj_val = f j.uj_val; uj_type = f j.uj_type }
let on_judgment_value f j = { j with uj_val = f j.uj_val }
let on_judgment_type f j = { j with uj_type = f j.uj_type }
(* Cut a context ctx in 2 parts (ctx1,ctx2) with ctx1 containing k
variables; skips let-in's *)
let context_chop k ctx =
let rec chop_aux acc = function
| (0, l2) -> (List.rev acc, l2)
| (n, ((_,Some _,_ as h)::t)) -> chop_aux (h::acc) (n, t)
| (n, (h::t)) -> chop_aux (h::acc) (pred n, t)
| (_, []) -> anomaly "context_chop"
in chop_aux [] (k,ctx)
(* Do not skip let-in's *)
let env_rel_context_chop k env =
let rels = rel_context env in
let ctx1,ctx2 = list_chop k rels in
push_rel_context ctx2 (reset_with_named_context (named_context_val env) env),
ctx1
(*******************************************)
(* Functions to deal with impossible cases *)
(*******************************************)
let impossible_default_case = ref None
let set_impossible_default_clause c = impossible_default_case := Some c
let coq_unit_judge =
let na1 = Name (id_of_string "A") in
let na2 = Name (id_of_string "H") in
fun () ->
match !impossible_default_case with
| Some (id,type_of_id) ->
make_judge id type_of_id
| None ->
(* In case the constants id/ID are not defined *)
make_judge (mkLambda (na1,mkProp,mkLambda(na2,mkRel 1,mkRel 1)))
(mkProd (na1,mkProp,mkArrow (mkRel 1) (mkRel 2)))
|