1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Equality
open Hipattern
open Names
open Pp
open Proof_type
open Tacticals
open Tacinterp
open Tactics
open Term
open Termops
open Util
open Glob_term
open Vernacinterp
open Tacexpr
open Mod_subst
(* Rewriting rules *)
type rew_rule = { rew_lemma: constr;
rew_type: types;
rew_pat: constr;
rew_l2r: bool;
rew_tac: glob_tactic_expr }
let subst_hint subst hint =
let cst' = subst_mps subst hint.rew_lemma in
let typ' = subst_mps subst hint.rew_type in
let pat' = subst_mps subst hint.rew_pat in
let t' = Tacinterp.subst_tactic subst hint.rew_tac in
if hint.rew_lemma == cst' && hint.rew_type == typ' && hint.rew_tac == t' then hint else
{ hint with
rew_lemma = cst'; rew_type = typ';
rew_pat = pat'; rew_tac = t' }
module HintIdent =
struct
type t = int * rew_rule
let compare (i,t) (i',t') =
Pervasives.compare i i'
(* Pervasives.compare t.rew_lemma t'.rew_lemma *)
let subst s (i,t) = (i,subst_hint s t)
let constr_of (i,t) = t.rew_pat
end
module HintOpt =
struct
let reduce c = c
let direction = true
end
module HintDN = Term_dnet.Make(HintIdent)(HintOpt)
(* Summary and Object declaration *)
let rewtab =
ref (Stringmap.empty : HintDN.t Stringmap.t)
let _ =
let init () = rewtab := Stringmap.empty in
let freeze () = !rewtab in
let unfreeze fs = rewtab := fs in
Summary.declare_summary "autorewrite"
{ Summary.freeze_function = freeze;
Summary.unfreeze_function = unfreeze;
Summary.init_function = init }
let find_base bas =
try Stringmap.find bas !rewtab
with
Not_found ->
errorlabstrm "AutoRewrite"
(str ("Rewriting base "^(bas)^" does not exist."))
let find_rewrites bas =
List.rev_map snd (HintDN.find_all (find_base bas))
let find_matches bas pat =
let base = find_base bas in
let res = HintDN.search_pattern base pat in
List.map (fun ((_,rew), esubst, subst) -> rew) res
let print_rewrite_hintdb bas =
ppnl (str "Database " ++ str bas ++ (Pp.cut ()) ++
prlist_with_sep Pp.cut
(fun h ->
str (if h.rew_l2r then "rewrite -> " else "rewrite <- ") ++
Printer.pr_lconstr h.rew_lemma ++ str " of type " ++ Printer.pr_lconstr h.rew_type ++
str " then use tactic " ++
Pptactic.pr_glob_tactic (Global.env()) h.rew_tac)
(find_rewrites bas))
type raw_rew_rule = loc * constr * bool * raw_tactic_expr
(* Applies all the rules of one base *)
let one_base general_rewrite_maybe_in tac_main bas =
let lrul = find_rewrites bas in
let lrul = List.map (fun h -> (h.rew_lemma,h.rew_l2r,Tacinterp.eval_tactic h.rew_tac)) lrul in
tclREPEAT_MAIN (tclPROGRESS (List.fold_left (fun tac (csr,dir,tc) ->
tclTHEN tac
(tclREPEAT_MAIN
(tclTHENFIRST (general_rewrite_maybe_in dir csr tc) tac_main)))
tclIDTAC lrul))
(* The AutoRewrite tactic *)
let autorewrite ?(conds=Naive) tac_main lbas =
tclREPEAT_MAIN (tclPROGRESS
(List.fold_left (fun tac bas ->
tclTHEN tac
(one_base (fun dir c tac ->
let tac = tac, conds in
general_rewrite dir all_occurrences true false ~tac c)
tac_main bas))
tclIDTAC lbas))
let autorewrite_multi_in ?(conds=Naive) idl tac_main lbas : tactic =
fun gl ->
(* let's check at once if id exists (to raise the appropriate error) *)
let _ = List.map (Tacmach.pf_get_hyp gl) idl in
let general_rewrite_in id =
let id = ref id in
let to_be_cleared = ref false in
fun dir cstr tac gl ->
let last_hyp_id =
match Tacmach.pf_hyps gl with
(last_hyp_id,_,_)::_ -> last_hyp_id
| _ -> (* even the hypothesis id is missing *)
error ("No such hypothesis: " ^ (string_of_id !id) ^".")
in
let gl' = general_rewrite_in dir all_occurrences true ~tac:(tac, conds) false !id cstr false gl in
let gls = gl'.Evd.it in
match gls with
g::_ ->
(match Environ.named_context_of_val (Goal.V82.hyps gl'.Evd.sigma g) with
(lastid,_,_)::_ ->
if last_hyp_id <> lastid then
begin
let gl'' =
if !to_be_cleared then
tclTHEN (fun _ -> gl') (tclTRY (clear [!id])) gl
else gl' in
id := lastid ;
to_be_cleared := true ;
gl''
end
else
begin
to_be_cleared := false ;
gl'
end
| _ -> assert false) (* there must be at least an hypothesis *)
| _ -> assert false (* rewriting cannot complete a proof *)
in
tclMAP (fun id ->
tclREPEAT_MAIN (tclPROGRESS
(List.fold_left (fun tac bas ->
tclTHEN tac (one_base (general_rewrite_in id) tac_main bas)) tclIDTAC lbas)))
idl gl
let autorewrite_in ?(conds=Naive) id = autorewrite_multi_in ~conds [id]
let gen_auto_multi_rewrite conds tac_main lbas cl =
let try_do_hyps treat_id l =
autorewrite_multi_in ~conds (List.map treat_id l) tac_main lbas
in
if cl.concl_occs <> all_occurrences_expr &
cl.concl_occs <> no_occurrences_expr
then
error "The \"at\" syntax isn't available yet for the autorewrite tactic."
else
let compose_tac t1 t2 =
match cl.onhyps with
| Some [] -> t1
| _ -> tclTHENFIRST t1 t2
in
compose_tac
(if cl.concl_occs <> no_occurrences_expr then autorewrite ~conds tac_main lbas else tclIDTAC)
(match cl.onhyps with
| Some l -> try_do_hyps (fun ((_,id),_) -> id) l
| None ->
fun gl ->
(* try to rewrite in all hypothesis
(except maybe the rewritten one) *)
let ids = Tacmach.pf_ids_of_hyps gl
in try_do_hyps (fun id -> id) ids gl)
let auto_multi_rewrite ?(conds=Naive) = gen_auto_multi_rewrite conds Refiner.tclIDTAC
let auto_multi_rewrite_with ?(conds=Naive) tac_main lbas cl gl =
let onconcl = cl.Tacexpr.concl_occs <> no_occurrences_expr in
match onconcl,cl.Tacexpr.onhyps with
| false,Some [_] | true,Some [] | false,Some [] ->
(* autorewrite with .... in clause using tac n'est sur que
si clause represente soit le but soit UNE hypothese
*)
gen_auto_multi_rewrite conds tac_main lbas cl gl
| _ ->
Util.errorlabstrm "autorewrite"
(strbrk "autorewrite .. in .. using can only be used either with a unique hypothesis or on the conclusion.")
(* Functions necessary to the library object declaration *)
let cache_hintrewrite (_,(rbase,lrl)) =
let base =
try find_base rbase
with e when Errors.noncritical e -> HintDN.empty
in
let max =
try fst (Util.list_last (HintDN.find_all base))
with e when Errors.noncritical e -> 0
in
let lrl = HintDN.map (fun (i,h) -> (i + max, h)) lrl in
rewtab:=Stringmap.add rbase (HintDN.union lrl base) !rewtab
let subst_hintrewrite (subst,(rbase,list as node)) =
let list' = HintDN.subst subst list in
if list' == list then node else
(rbase,list')
let classify_hintrewrite x = Libobject.Substitute x
(* Declaration of the Hint Rewrite library object *)
let inHintRewrite : string * HintDN.t -> Libobject.obj =
Libobject.declare_object {(Libobject.default_object "HINT_REWRITE") with
Libobject.cache_function = cache_hintrewrite;
Libobject.load_function = (fun _ -> cache_hintrewrite);
Libobject.subst_function = subst_hintrewrite;
Libobject.classify_function = classify_hintrewrite }
open Clenv
type hypinfo = {
hyp_cl : clausenv;
hyp_prf : constr;
hyp_ty : types;
hyp_car : constr;
hyp_rel : constr;
hyp_l2r : bool;
hyp_left : constr;
hyp_right : constr;
}
let evd_convertible env evd x y =
try
ignore(Unification.w_unify ~flags:Unification.elim_flags env evd Reduction.CONV x y); true
(* try ignore(Evarconv.the_conv_x env x y evd); true *)
with e when Errors.noncritical e -> false
let decompose_applied_relation metas env sigma c ctype left2right =
let find_rel ty =
let eqclause = Clenv.mk_clenv_from_env env sigma None (c,ty) in
let eqclause =
if metas then eqclause
else clenv_pose_metas_as_evars eqclause (Evd.undefined_metas eqclause.evd)
in
let (equiv, args) = decompose_app (Clenv.clenv_type eqclause) in
let rec split_last_two = function
| [c1;c2] -> [],(c1, c2)
| x::y::z ->
let l,res = split_last_two (y::z) in x::l, res
| _ -> raise Not_found
in
try
let others,(c1,c2) = split_last_two args in
let ty1, ty2 =
Typing.type_of env eqclause.evd c1, Typing.type_of env eqclause.evd c2
in
(* if not (evd_convertible env eqclause.evd ty1 ty2) then None *)
(* else *)
Some { hyp_cl=eqclause; hyp_prf=(Clenv.clenv_value eqclause); hyp_ty = ty;
hyp_car=ty1; hyp_rel=mkApp (equiv, Array.of_list others);
hyp_l2r=left2right; hyp_left=c1; hyp_right=c2; }
with Not_found -> None
in
match find_rel ctype with
| Some c -> Some c
| None ->
let ctx,t' = Reductionops.splay_prod_assum env sigma ctype in (* Search for underlying eq *)
match find_rel (it_mkProd_or_LetIn t' ctx) with
| Some c -> Some c
| None -> None
let find_applied_relation metas loc env sigma c left2right =
let ctype = Typing.type_of env sigma c in
match decompose_applied_relation metas env sigma c ctype left2right with
| Some c -> c
| None ->
user_err_loc (loc, "decompose_applied_relation",
str"The type" ++ spc () ++ Printer.pr_constr_env env ctype ++
spc () ++ str"of this term does not end with an applied relation.")
(* To add rewriting rules to a base *)
let add_rew_rules base lrul =
let counter = ref 0 in
let lrul =
List.fold_left
(fun dn (loc,c,b,t) ->
let info = find_applied_relation false loc (Global.env ()) Evd.empty c b in
let pat = if b then info.hyp_left else info.hyp_right in
let rul = { rew_lemma = c; rew_type = info.hyp_ty;
rew_pat = pat; rew_l2r = b;
rew_tac = Tacinterp.glob_tactic t}
in incr counter;
HintDN.add pat (!counter, rul) dn) HintDN.empty lrul
in Lib.add_anonymous_leaf (inHintRewrite (base,lrul))
|