File: constrextern.ml

package info (click to toggle)
coq 8.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 30,604 kB
  • sloc: ml: 192,230; sh: 2,585; python: 2,206; ansic: 1,878; makefile: 818; lisp: 202; xml: 24; sed: 2
file content (1318 lines) | stat: -rw-r--r-- 53,298 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(*i*)
open Pp
open CErrors
open Util
open Names
open Nameops
open Termops
open Libnames
open Globnames
open Namegen
open Impargs
open CAst
open Constrexpr
open Constrexpr_ops
open Notation_ops
open Glob_term
open Glob_ops
open Pattern
open Nametab
open Notation
open Detyping
open Decl_kinds

module NamedDecl = Context.Named.Declaration
(*i*)

(* Translation from glob_constr to front constr *)

(**********************************************************************)
(* Parametrization                                                    *)

(* This governs printing of local context of references *)
let print_arguments = ref false

(* If true, prints local context of evars *)
let print_evar_arguments = Detyping.print_evar_arguments

(* This governs printing of implicit arguments.  When
   [print_implicits] is on then [print_implicits_explicit_args] tells
   how implicit args are printed. If on, implicit args are printed
   with the form (id:=arg) otherwise arguments are printed normally and
   the function is prefixed by "@" *)
let print_implicits = ref false
let print_implicits_explicit_args = ref false

(* Tells if implicit arguments not known to be inferable from a rigid
   position are systematically printed *)
let print_implicits_defensive = ref true

(* This forces printing of coercions *)
let print_coercions = ref false

(* This forces printing universe names of Type{.} *)
let print_universes = Detyping.print_universes

(* This suppresses printing of primitive tokens (e.g. numeral) and notations *)
let print_no_symbol = ref false

(**********************************************************************)
(* Turning notations and scopes on and off for printing *)
module IRuleSet = Set.Make(struct
    type t = interp_rule
    let compare x y = Pervasives.compare x y
  end)

let inactive_notations_table =
  Summary.ref ~name:"inactive_notations_table" (IRuleSet.empty)
let inactive_scopes_table    =
  Summary.ref ~name:"inactive_scopes_table" CString.Set.empty

let show_scope scopt =
  match scopt with
  | None -> str ""
  | Some sc -> spc () ++ str "in scope" ++ spc () ++ str sc

let _show_inactive_notations () =
  begin
    if CString.Set.is_empty !inactive_scopes_table
    then
      Feedback.msg_notice (str "No inactive notation scopes.")
    else
      let _ = Feedback.msg_notice (str "Inactive notation scopes:") in
      CString.Set.iter (fun sc -> Feedback.msg_notice (str "  " ++ str sc))
        !inactive_scopes_table
  end;
  if IRuleSet.is_empty !inactive_notations_table
  then
    Feedback.msg_notice (str "No individual inactive notations.")
  else
    let _ = Feedback.msg_notice (str "Inactive notations:") in
    IRuleSet.iter
      (function
       | NotationRule (scopt, ntn) ->
         Feedback.msg_notice (pr_notation ntn ++ show_scope scopt)
       | SynDefRule kn -> Feedback.msg_notice (str (string_of_qualid (Nametab.shortest_qualid_of_syndef Id.Set.empty kn))))
      !inactive_notations_table

let deactivate_notation nr =
  match nr with
  | SynDefRule kn ->
     (* shouldn't we check wether it is well defined? *)
     inactive_notations_table := IRuleSet.add nr !inactive_notations_table
  | NotationRule (scopt, ntn) ->
     match availability_of_notation (scopt, ntn) (scopt, []) with
     | None -> user_err ~hdr:"Notation"
                        (pr_notation ntn ++ spc () ++ str "does not exist"
                         ++ (match scopt with
                             | None -> spc () ++ str "in the empty scope."
                             | Some _ -> show_scope scopt ++ str "."))
     | Some _ ->
        if IRuleSet.mem nr !inactive_notations_table then
          Feedback.msg_warning
            (str "Notation" ++ spc () ++ pr_notation ntn ++ spc ()
             ++ str "is already inactive" ++ show_scope scopt ++ str ".")
        else inactive_notations_table := IRuleSet.add nr !inactive_notations_table

let reactivate_notation nr =
  try
    inactive_notations_table :=
      IRuleSet.remove nr !inactive_notations_table
  with Not_found ->
    match nr with
    | NotationRule (scopt, ntn) ->
       Feedback.msg_warning (str "Notation" ++ spc () ++ pr_notation ntn ++ spc ()
                             ++ str "is already active" ++ show_scope scopt ++
  str ".")
    | SynDefRule kn ->
       let s = string_of_qualid (Nametab.shortest_qualid_of_syndef Id.Set.empty kn) in
       Feedback.msg_warning
         (str "Notation" ++ spc () ++ str s
          ++ spc () ++ str "is already active.")


let deactivate_scope sc =
  ignore (find_scope sc); (* ensures that the scope exists *)
  if CString.Set.mem sc !inactive_scopes_table
  then
    Feedback.msg_warning (str "Notation Scope" ++ spc () ++ str sc ++ spc ()
                          ++ str "is already inactive.")
  else
    inactive_scopes_table := CString.Set.add sc !inactive_scopes_table

let reactivate_scope sc =
  try
    inactive_scopes_table := CString.Set.remove sc !inactive_scopes_table
  with Not_found ->
    Feedback.msg_warning (str "Notation Scope" ++ spc () ++ str sc ++ spc ()
                          ++ str "is already active.")

let is_inactive_rule nr =
  IRuleSet.mem nr !inactive_notations_table ||
  match nr with
    | NotationRule (Some sc, ntn) -> CString.Set.mem sc !inactive_scopes_table
    | NotationRule (None, ntn) -> false
    | SynDefRule _ -> false

(* args: notation, scope, activate/deactivate *)
let toggle_scope_printing ~scope ~activate =
  if activate then
    reactivate_scope scope
  else
    deactivate_scope scope

let toggle_notation_printing ?scope ~notation ~activate =
  if activate then
    reactivate_notation (NotationRule (scope, notation))
  else
    deactivate_notation (NotationRule (scope, notation))

(* This governs printing of projections using the dot notation symbols *)
let print_projections = ref false

let print_meta_as_hole = ref false

let with_universes f = Flags.with_option print_universes f
let with_meta_as_hole f = Flags.with_option print_meta_as_hole f
let without_symbols f = Flags.with_option print_no_symbol f

let without_specific_symbols l =
  Flags.with_modified_ref inactive_notations_table
    (fun tbl -> IRuleSet.(union (of_list l) tbl))

(**********************************************************************)
(* Control printing of records *)

(* Set Record Printing flag *)
let record_print = ref true

let _ =
  let open Goptions in
  declare_bool_option
    { optdepr  = false;
      optname  = "record printing";
      optkey   = ["Printing";"Records"];
      optread  = (fun () -> !record_print);
      optwrite = (fun b -> record_print := b) }


let is_record indsp =
  try
    let _ = Recordops.lookup_structure indsp in
    true
  with Not_found -> false

let encode_record r =
  let indsp = global_inductive r in
  if not (is_record indsp) then
    user_err ?loc:r.CAst.loc ~hdr:"encode_record"
      (str "This type is not a structure type.");
  indsp

module PrintingRecordRecord =
  PrintingInductiveMake (struct
    let encode = encode_record
    let field = "Record"
    let title = "Types leading to pretty-printing using record notation: "
    let member_message s b =
      str "Terms of " ++ s ++
      str
      (if b then " are printed using record notation"
      else " are not printed using record notation")
  end)

module PrintingRecordConstructor =
  PrintingInductiveMake (struct
    let encode = encode_record
    let field = "Constructor"
    let title = "Types leading to pretty-printing using constructor form: "
    let member_message s b =
      str "Terms of " ++ s ++
      str
      (if b then " are printed using constructor form"
      else " are not printed using constructor form")
  end)

module PrintingRecord = Goptions.MakeRefTable(PrintingRecordRecord)
module PrintingConstructor = Goptions.MakeRefTable(PrintingRecordConstructor)

(**********************************************************************)
(* Various externalisation functions *)

let insert_delimiters e = function
  | None -> e
  | Some sc -> CAst.make @@ CDelimiters (sc,e)

let insert_pat_delimiters ?loc p = function
  | None -> p
  | Some sc -> CAst.make ?loc @@ CPatDelimiters (sc,p)

let insert_pat_alias ?loc p = function
  | Anonymous -> p
  | Name _ as na -> CAst.make ?loc @@ CPatAlias (p,(CAst.make ?loc na))

let rec insert_coercion ?loc l c = match l with
  | [] -> c
  | ntn::l -> CAst.make ?loc @@ CNotation (ntn,([insert_coercion ?loc l c],[],[],[]))

let rec insert_pat_coercion ?loc l c = match l with
  | [] -> c
  | ntn::l -> CAst.make ?loc @@ CPatNotation (ntn,([insert_pat_coercion ?loc l c],[]),[])

(**********************************************************************)
(* conversion of references                                           *)

let extern_evar n l = CEvar (n,l)

(** We allow customization of the global_reference printer.
    For instance, in the debugger the tables of global references
    may be inaccurate *)

let default_extern_reference ?loc vars r =
  shortest_qualid_of_global ?loc vars r

let my_extern_reference = ref default_extern_reference

let set_extern_reference f = my_extern_reference := f
let get_extern_reference () = !my_extern_reference

let extern_reference ?loc vars l = !my_extern_reference vars l

(**********************************************************************)
(* mapping patterns to cases_pattern_expr                                *)

let add_patt_for_params ind l =
  if !Flags.in_debugger then l else
    Util.List.addn (Inductiveops.inductive_nparamdecls ind) (CAst.make @@ CPatAtom None) l

let add_cpatt_for_params ind l =
  if !Flags.in_debugger then l else
    Util.List.addn  (Inductiveops.inductive_nparamdecls ind) (DAst.make @@ PatVar Anonymous) l

let drop_implicits_in_patt cst nb_expl args =
  let impl_st = (implicits_of_global cst) in
  let impl_data = extract_impargs_data impl_st in
  let rec impls_fit l = function
    |[],t -> Some (List.rev_append l t)
    |_,[] -> None
    |h::t, { CAst.v = CPatAtom None }::tt when is_status_implicit h -> impls_fit l (t,tt)
    |h::_,_ when is_status_implicit h -> None
    |_::t,hh::tt -> impls_fit (hh::l) (t,tt)
  in let rec aux = function
    |[] -> None
    |(_,imps)::t -> match impls_fit [] (imps,args) with
	|None -> aux t
	|x -> x
     in
     if Int.equal nb_expl 0 then aux impl_data
     else
       let imps = List.skipn_at_least nb_expl (select_stronger_impargs impl_st) in
       impls_fit [] (imps,args)

let destPrim = function { CAst.v = CPrim t } -> Some t | _ -> None
let destPatPrim = function { CAst.v = CPatPrim t } -> Some t | _ -> None

let is_number s =
  let rec aux i =
    Int.equal (String.length s) i ||
    match s.[i] with '0'..'9' -> aux (i+1) | _ -> false
  in aux 0

let is_zero s =
  let rec aux i =
    Int.equal (String.length s) i || (s.[i] == '0' && aux (i+1))
  in aux 0

let make_notation_gen loc ntn mknot mkprim destprim l bl =
  match snd ntn,List.map destprim l with
    (* Special case to avoid writing "- 3" for e.g. (Z.opp 3) *)
    | "- _", [Some (Numeral (p,true))] when not (is_zero p) ->
        assert (bl=[]);
        mknot (loc,ntn,([mknot (loc,(InConstrEntrySomeLevel,"( _ )"),l,[])]),[])
    | _ ->
	match decompose_notation_key ntn, l with
        | (InConstrEntrySomeLevel,[Terminal "-"; Terminal x]), [] when is_number x ->
	   mkprim (loc, Numeral (x,false))
        | (InConstrEntrySomeLevel,[Terminal x]), [] when is_number x ->
	   mkprim (loc, Numeral (x,true))
        | _ -> mknot (loc,ntn,l,bl)

let make_notation loc ntn (terms,termlists,binders,binderlists as subst) =
  if not (List.is_empty termlists) || not (List.is_empty binderlists) then
    CAst.make ?loc @@ CNotation (ntn,subst)
  else
    make_notation_gen loc ntn
      (fun (loc,ntn,l,bl) -> CAst.make ?loc @@ CNotation (ntn,(l,[],bl,[])))
      (fun (loc,p) -> CAst.make ?loc @@ CPrim p)
      destPrim terms binders

let make_pat_notation ?loc ntn (terms,termlists as subst) args =
  if not (List.is_empty termlists) then (CAst.make ?loc @@ CPatNotation (ntn,subst,args)) else
  make_notation_gen loc ntn
    (fun (loc,ntn,l,_) -> CAst.make ?loc @@ CPatNotation (ntn,(l,[]),args))
    (fun (loc,p)     -> CAst.make ?loc @@ CPatPrim p)
    destPatPrim terms []

let mkPat ?loc qid l = CAst.make ?loc @@
  (* Normally irrelevant test with v8 syntax, but let's do it anyway *)
  if List.is_empty l then CPatAtom (Some qid) else CPatCstr (qid,None,l)

let pattern_printable_in_both_syntax (ind,_ as c) =
  let impl_st = extract_impargs_data (implicits_of_global (ConstructRef c)) in
  let nb_params = Inductiveops.inductive_nparams ind in
  List.exists (fun (_,impls) ->
    (List.length impls >= nb_params) &&
      let params,args = Util.List.chop nb_params impls in
      (List.for_all is_status_implicit params)&&(List.for_all (fun x -> not (is_status_implicit x)) args)
  ) impl_st

 (* Better to use extern_glob_constr composed with injection/retraction ?? *)
let rec extern_cases_pattern_in_scope (custom,scopes as allscopes) vars pat =
  try
    if !Flags.in_debugger || !Flags.raw_print || !print_no_symbol then raise No_match;
    let (na,sc,p) = uninterp_prim_token_cases_pattern pat in
    match availability_of_entry_coercion custom InConstrEntrySomeLevel with
      | None -> raise No_match
      | Some coercion ->
    match availability_of_prim_token p sc scopes with
      | None -> raise No_match
      | Some key ->
	let loc = cases_pattern_loc pat in
        insert_pat_coercion ?loc coercion
          (insert_pat_alias ?loc (insert_pat_delimiters ?loc (CAst.make ?loc @@ CPatPrim p) key) na)
  with No_match ->
    try
      if !Flags.in_debugger || !Flags.raw_print || !print_no_symbol then raise No_match;
      extern_notation_pattern allscopes vars pat
        (uninterp_cases_pattern_notations pat)
    with No_match ->
    let loc = pat.CAst.loc in
    match DAst.get pat with
    | PatVar (Name id) when entry_has_ident custom -> CAst.make ?loc (CPatAtom (Some (qualid_of_ident ?loc id)))
    | pat ->
    match availability_of_entry_coercion custom InConstrEntrySomeLevel with
    | None -> raise No_match
    | Some coercion ->
      let allscopes = (InConstrEntrySomeLevel,scopes) in
      let pat = match pat with
        | PatVar (Name id) -> CAst.make ?loc (CPatAtom (Some (qualid_of_ident ?loc id)))
        | PatVar (Anonymous) -> CAst.make ?loc (CPatAtom None)
	| PatCstr(cstrsp,args,na) ->
          let args = List.map (extern_cases_pattern_in_scope allscopes vars) args in
	  let p =
	    try
              if !Flags.raw_print then raise Exit;
	      let projs = Recordops.lookup_projections (fst cstrsp) in
	      let rec ip projs args acc =
		match projs, args with
		  | [], [] -> acc
		  | proj :: q, pat :: tail ->
                     let acc =
                       match proj, pat with
		       | _, { CAst.v = CPatAtom None } ->
		          (* we don't want to have 'x := _' in our patterns *)
                          acc
		       | Some c, _ ->
                          ((extern_reference ?loc Id.Set.empty (ConstRef c), pat) :: acc)
                       | _ -> raise No_match in
                     ip q tail acc
	          | _ -> assert false
	      in
	      CPatRecord(List.rev (ip projs args []))
	    with
		Not_found | No_match | Exit ->
                  let c = extern_reference Id.Set.empty (ConstructRef cstrsp) in
                  if !asymmetric_patterns then
		    if pattern_printable_in_both_syntax cstrsp
		    then CPatCstr (c, None, args)
		    else CPatCstr (c, Some (add_patt_for_params (fst cstrsp) args), [])
		  else
		    let full_args = add_patt_for_params (fst cstrsp) args in
		    match drop_implicits_in_patt (ConstructRef cstrsp) 0 full_args with
		      | Some true_args -> CPatCstr (c, None, true_args)
		      | None           -> CPatCstr (c, Some full_args, [])
          in
          insert_pat_alias ?loc (CAst.make ?loc p) na
      in
      insert_pat_coercion coercion pat

and apply_notation_to_pattern ?loc gr ((subst,substlist),(nb_to_drop,more_args))
    (custom, (tmp_scope, scopes) as allscopes) vars =
  function
    | NotationRule (sc,ntn) ->
      begin
        match availability_of_entry_coercion custom (fst ntn) with
        | None -> raise No_match
        | Some coercion ->
        match availability_of_notation (sc,ntn) (tmp_scope,scopes) with
	  (* Uninterpretation is not allowed in current context *)
	  | None -> raise No_match
	  (* Uninterpretation is allowed in current context *)
	  | Some (scopt,key) ->
	    let scopes' = Option.List.cons scopt scopes in
	    let l =
              List.map (fun (c,(subentry,(scopt,scl))) ->
                extern_cases_pattern_in_scope (subentry,(scopt,scl@scopes')) vars c)
		subst in
	    let ll =
              List.map (fun (c,(subentry,(scopt,scl))) ->
                let subscope = (subentry,(scopt,scl@scopes')) in
		List.map (extern_cases_pattern_in_scope subscope vars) c)
		substlist in
	    let l2 = List.map (extern_cases_pattern_in_scope allscopes vars) more_args in
            let l2' = if !asymmetric_patterns || not (List.is_empty ll) then l2
	      else
		match drop_implicits_in_patt gr nb_to_drop l2 with
		  |Some true_args -> true_args
		  |None -> raise No_match
	    in
            insert_pat_coercion coercion
              (insert_pat_delimiters ?loc
                 (make_pat_notation ?loc ntn (l,ll) l2') key)
      end
    | SynDefRule kn ->
      match availability_of_entry_coercion custom InConstrEntrySomeLevel with
      | None -> raise No_match
      | Some coercion ->
      let qid = shortest_qualid_of_syndef ?loc vars kn in
      let l1 =
        List.rev_map (fun (c,(subentry,(scopt,scl))) ->
          extern_cases_pattern_in_scope (subentry,(scopt,scl@scopes)) vars c)
          subst in
      let l2 = List.map (extern_cases_pattern_in_scope allscopes vars) more_args in
      let l2' = if !asymmetric_patterns then l2
	else
	  match drop_implicits_in_patt gr (nb_to_drop + List.length l1) l2 with
	    |Some true_args -> true_args
	    |None -> raise No_match
      in
      assert (List.is_empty substlist);
      insert_pat_coercion ?loc coercion (mkPat ?loc qid (List.rev_append l1 l2'))
and extern_notation_pattern allscopes vars t = function
  | [] -> raise No_match
  | (keyrule,pat,n as _rule)::rules ->
    try
      if is_inactive_rule keyrule then raise No_match;
      let loc = t.loc in
      match DAst.get t with
        | PatCstr (cstr,args,na) ->
          let t = if na = Anonymous then t else DAst.make ?loc (PatCstr (cstr,args,Anonymous)) in
	  let p = apply_notation_to_pattern ?loc (ConstructRef cstr)
	    (match_notation_constr_cases_pattern t pat) allscopes vars keyrule in
	  insert_pat_alias ?loc p na
	| PatVar Anonymous -> CAst.make ?loc @@ CPatAtom None
        | PatVar (Name id) -> CAst.make ?loc @@ CPatAtom (Some (qualid_of_ident ?loc id))
    with
	No_match -> extern_notation_pattern allscopes vars t rules

let rec extern_notation_ind_pattern allscopes vars ind args = function
  | [] -> raise No_match
  | (keyrule,pat,n as _rule)::rules ->
    try
      if is_inactive_rule keyrule then raise No_match;
      apply_notation_to_pattern (IndRef ind)
	(match_notation_constr_ind_pattern ind args pat) allscopes vars keyrule
    with
	No_match -> extern_notation_ind_pattern allscopes vars ind args rules

let extern_ind_pattern_in_scope (custom,scopes as allscopes) vars ind args =
  (* pboutill: There are letins in pat which is incompatible with notations and
     not explicit application. *)
  if !Flags.in_debugger||Inductiveops.inductive_has_local_defs ind then
    let c = extern_reference vars (IndRef ind) in
    let args = List.map (extern_cases_pattern_in_scope allscopes vars) args in
    CAst.make @@ CPatCstr (c, Some (add_patt_for_params ind args), [])
  else
    try
      if !Flags.raw_print || !print_no_symbol then raise No_match;
      extern_notation_ind_pattern allscopes vars ind args
          (uninterp_ind_pattern_notations ind)
    with No_match ->
      let c = extern_reference vars (IndRef ind) in
      let args = List.map (extern_cases_pattern_in_scope allscopes vars) args in
      match drop_implicits_in_patt (IndRef ind) 0 args with
	   |Some true_args -> CAst.make @@ CPatCstr (c, None, true_args)
	   |None           -> CAst.make @@ CPatCstr (c, Some args, [])

let extern_cases_pattern vars p =
  extern_cases_pattern_in_scope (InConstrEntrySomeLevel,(None,[])) vars p

(**********************************************************************)
(* Externalising applications *)

let occur_name na aty =
  match na with
    | Name id -> occur_var_constr_expr id aty
    | Anonymous -> false

let is_gvar id c = match DAst.get c with
| GVar id' -> Id.equal id id'
| _ -> false

let is_projection nargs = function
  | Some r when not !Flags.in_debugger && not !Flags.raw_print && !print_projections ->
    (try
       let n = Recordops.find_projection_nparams r + 1 in
	 if n <= nargs then Some n
	 else None
     with Not_found -> None)
  | _ -> None

let is_hole = function CHole _ | CEvar _ -> true | _ -> false

let is_significant_implicit a =
  not (is_hole (a.CAst.v))

let is_needed_for_correct_partial_application tail imp =
  List.is_empty tail && not (maximal_insertion_of imp)

exception Expl

(* Implicit args indexes are in ascending order *)
(* inctx is useful only if there is a last argument to be deduced from ctxt *)
let explicitize inctx impl (cf,f) args =
  let impl = if !Constrintern.parsing_explicit then [] else impl in
  let n = List.length args in
  let rec exprec q = function
    | a::args, imp::impl when is_status_implicit imp ->
        let tail = exprec (q+1) (args,impl) in
        let visible =
          !Flags.raw_print ||
          (!print_implicits && !print_implicits_explicit_args) ||
          (is_needed_for_correct_partial_application tail imp) ||
	  (!print_implicits_defensive &&
	   (not (is_inferable_implicit inctx n imp) || !Flags.beautify) &&
	   is_significant_implicit (Lazy.force a))
	in
        if visible then
          (Lazy.force a,Some (make @@ ExplByName (name_of_implicit imp))) :: tail
	else
	  tail
    | a::args, _::impl -> (Lazy.force a,None) :: exprec (q+1) (args,impl)
    | args, [] -> List.map (fun a -> (Lazy.force a,None)) args (*In case of polymorphism*)
    | [], (imp :: _) when is_status_implicit imp && maximal_insertion_of imp -> 
      (* The non-explicit application cannot be parsed back with the same type *)
      raise Expl
    | [], _ -> []
  in
  let ip = is_projection (List.length args) cf in
  let expl () = 
    match ip with
    | Some i ->
      (* Careful: It is possible to have declared implicits ending
         before the principal argument *)
      let is_impl =
        try is_status_implicit (List.nth impl (i-1))
        with Failure _ -> false
      in
      if is_impl
      then raise Expl
      else
	let (args1,args2) = List.chop i args in
        let (impl1,impl2) = try List.chop i impl with Failure _ -> impl, [] in
	let args1 = exprec 1 (args1,impl1) in
	let args2 = exprec (i+1) (args2,impl2) in
	let ip = Some (List.length args1) in
	  CApp ((ip,f),args1@args2)
    | None ->
      let args = exprec 1 (args,impl) in
	if List.is_empty args then f.CAst.v else CApp ((None, f), args)
  in
    try expl ()
    with Expl -> 
      let f',us = match f with { CAst.v = CRef (f,us) } -> f,us | _ -> assert false in
      let ip = if !print_projections then ip else None in
	CAppExpl ((ip, f', us), List.map Lazy.force args)

let is_start_implicit = function
  | imp :: _ -> is_status_implicit imp && maximal_insertion_of imp
  | [] -> false

let extern_global impl f us =
  if not !Constrintern.parsing_explicit && is_start_implicit impl
  then
    CAppExpl ((None, f, us), [])
  else
    CRef (f,us)

let extern_app inctx impl (cf,f) us args =
  if List.is_empty args then
    (* If coming from a notation "Notation a := @b" *)
    CAppExpl ((None, f, us), [])
  else if not !Constrintern.parsing_explicit &&
    ((!Flags.raw_print ||
      (!print_implicits && not !print_implicits_explicit_args)) &&
     List.exists is_status_implicit impl)
  then
    let args = List.map Lazy.force args in
    CAppExpl ((is_projection (List.length args) cf,f,us), args)
  else
    explicitize inctx impl (cf, CAst.make @@ CRef (f,us)) args

let rec fill_arg_scopes args subscopes (entry,(_,scopes) as all) = match args, subscopes with
| [], _ -> []
| a :: args, scopt :: subscopes ->
  (a, (entry, (scopt, scopes))) :: fill_arg_scopes args subscopes all
| a :: args, [] ->
  (a, (entry, (None, scopes))) :: fill_arg_scopes args [] all

let extern_args extern env args =
  let map (arg, argscopes) = lazy (extern argscopes env arg) in
  List.map map args

let match_coercion_app c = match DAst.get c with
  | GApp (r, args) ->
    begin match DAst.get r with
    | GRef (r,_) -> Some (c.CAst.loc, r, 0, args)
    | _ -> None
    end
  | _ -> None

let rec remove_coercions inctx c =
  match match_coercion_app c with
  | Some (loc,r,pars,args) when not (!Flags.raw_print || !print_coercions) ->
      let nargs = List.length args in
      (try match Classops.hide_coercion r with
	  | Some n when (n - pars) < nargs && (inctx || (n - pars)+1 < nargs) ->
	      (* We skip a coercion *)
	      let l = List.skipn (n - pars) args in
	      let (a,l) = match l with a::l -> (a,l) | [] -> assert false in
              (* Recursively remove the head coercions *)
	      let a' = remove_coercions true a in
	      (* Don't flatten App's in case of funclass so that
		 (atomic) notations on [a] work; should be compatible
		 since printer does not care whether App's are
		 collapsed or not and notations with an implicit
		 coercion using funclass either would have already
		 been confused with ordinary application or would have need
                 a surrounding context and the coercion to funclass would
                 have been made explicit to match *)
	      if List.is_empty l then a' else DAst.make ?loc @@ GApp (a',l)
	  | _ -> c
      with Not_found -> c)
  | _ -> c

let rec flatten_application c = match DAst.get c with
  | GApp (f, l) ->
    begin match DAst.get f with
    | GApp(a,l') ->
      let loc = c.CAst.loc in
      flatten_application (DAst.make ?loc @@ GApp (a,l'@l))
    | _ -> c
    end
  | a -> c

(**********************************************************************)
(* mapping glob_constr to numerals (in presence of coercions, choose the *)
(* one with no delimiter if possible)                                 *)

let extern_possible_prim_token (custom,scopes) r =
  try
    let (sc,n) = uninterp_prim_token r in
    match availability_of_entry_coercion custom InConstrEntrySomeLevel with
    | None -> raise No_match
    | Some coercion ->
    match availability_of_prim_token n sc scopes with
    | None -> None
    | Some key -> Some (insert_coercion coercion (insert_delimiters (CAst.make ?loc:(loc_of_glob_constr r) @@ CPrim n) key))
  with No_match ->
    None

let extern_optimal_prim_token scopes r r' =
  let c = extern_possible_prim_token scopes r in
  let c' = if r==r' then None else extern_possible_prim_token scopes r' in
  match c,c' with
  | Some n, (Some ({ CAst.v = CDelimiters _}) | None) | _, Some n -> n
  | _ -> raise No_match

(**********************************************************************)
(* mapping decl                                                       *)

let extended_glob_local_binder_of_decl loc = function
  | (p,bk,None,t) -> GLocalAssum (p,bk,t)
  | (p,bk,Some x, t) ->
    match DAst.get t with
    | GHole (_, IntroAnonymous, None) -> GLocalDef (p,bk,x,None)
    | _ -> GLocalDef (p,bk,x,Some t)

let extended_glob_local_binder_of_decl ?loc u = DAst.make ?loc (extended_glob_local_binder_of_decl loc u)

(**********************************************************************)
(* mapping glob_constr to constr_expr                                    *)

let extern_glob_sort = function
  | GProp -> GProp
  | GSet -> GSet
  | GType _ as s when !print_universes -> s
  | GType _ -> GType []

let extern_universes = function
  | Some _ as l when !print_universes -> l
  | _ -> None

let extern_ref vars ref us =
  extern_global (select_stronger_impargs (implicits_of_global ref))
    (extern_reference vars ref) (extern_universes us)

let extern_var ?loc id = CRef (qualid_of_ident ?loc id,None)

let rec extern inctx scopes vars r =
  let r' = remove_coercions inctx r in
  try
    if !Flags.raw_print || !print_no_symbol then raise No_match;
    extern_optimal_prim_token scopes r r'
  with No_match ->
  try
    let r'' = flatten_application r' in
    if !Flags.raw_print || !print_no_symbol then raise No_match;
    extern_notation scopes vars r'' (uninterp_notations r'')
  with No_match ->
  let loc = r'.CAst.loc in
  match DAst.get r' with
  | GRef (ref,us) when entry_has_global (fst scopes) -> CAst.make ?loc (extern_ref vars ref us)

  | GVar id when entry_has_ident (fst scopes) -> CAst.make ?loc (extern_var ?loc id)

  | c ->

  match availability_of_entry_coercion (fst scopes) InConstrEntrySomeLevel with
  | None -> raise No_match
  | Some coercion ->

  let scopes = (InConstrEntrySomeLevel, snd scopes) in
  let c = match c with

  (* The remaining cases are only for the constr entry *)

  | GRef (ref,us) -> extern_ref vars ref us

  | GVar id -> extern_var ?loc id

  | GEvar (n,[]) when !print_meta_as_hole -> CHole (None, IntroAnonymous, None)

  | GEvar (n,l) ->
      extern_evar n (List.map (on_snd (extern false scopes vars)) l)

  | GPatVar kind ->
      if !print_meta_as_hole then CHole (None, IntroAnonymous, None) else
       (match kind with
         | Evar_kinds.SecondOrderPatVar n -> CPatVar n
         | Evar_kinds.FirstOrderPatVar n -> CEvar (n,[]))

  | GApp (f,args) ->
      (match DAst.get f with
	 | GRef (ref,us) ->
	     let subscopes = find_arguments_scope ref in
             let args = fill_arg_scopes args subscopes scopes in
	     begin
	       try
                 if !Flags.raw_print then raise Exit;
		 let cstrsp = match ref with ConstructRef c -> c | _ -> raise Not_found in
		 let struc = Recordops.lookup_structure (fst cstrsp) in
                 if PrintingRecord.active (fst cstrsp) then
                   ()
                 else if PrintingConstructor.active (fst cstrsp) then
                   raise Exit
                 else if not !record_print then
                   raise Exit;
		 let projs = struc.Recordops.s_PROJ in
		 let locals = struc.Recordops.s_PROJKIND in
		 let rec cut args n =
		   if Int.equal n 0 then args
		   else
		     match args with
		     | [] -> raise No_match
		     | _ :: t -> cut t (n - 1) in
		 let args = cut args struc.Recordops.s_EXPECTEDPARAM in
		 let rec ip projs locs args acc =
		   match projs with
		     | [] -> acc
		     | None :: q -> raise No_match
		     | Some c :: q ->
		         match locs with
			   | [] -> anomaly (Pp.str "projections corruption [Constrextern.extern].")
			   | (_, false) :: locs' ->
			       (* we don't want to print locals *)
			       ip q locs' args acc
			   | (_, true) :: locs' ->
			       match args with
				 | [] -> raise No_match
				     (* we give up since the constructor is not complete *)
				 | (arg, scopes) :: tail ->
                                     let head = extern true scopes vars arg in
                                     ip q locs' tail ((extern_reference ?loc Id.Set.empty (ConstRef c), head) :: acc)
		   in
		 CRecord (List.rev (ip projs locals args []))
	       with
		 | Not_found | No_match | Exit ->
                    let args = extern_args (extern true) vars args in
		     extern_app inctx
		       (select_stronger_impargs (implicits_of_global ref))
                       (Some ref,extern_reference ?loc vars ref) (extern_universes us) args
	     end

	 | _       ->
	   explicitize inctx [] (None,sub_extern false scopes vars f)
             (List.map (fun c -> lazy (sub_extern true scopes vars c)) args))

  | GLetIn (na,b,t,c) ->
      CLetIn (make ?loc na,sub_extern false scopes vars b,
              Option.map (extern_typ scopes vars) t,
              extern inctx scopes (add_vname vars na) c)

  | GProd (na,bk,t,c) ->
      let t = extern_typ scopes vars t in
      factorize_prod scopes (add_vname vars na) na bk t c

  | GLambda (na,bk,t,c) ->
      let t = extern_typ scopes vars t in
      factorize_lambda inctx scopes (add_vname vars na) na bk t c

  | GCases (sty,rtntypopt,tml,eqns) ->
    let vars' =
      List.fold_right (Name.fold_right Id.Set.add)
	(cases_predicate_names tml) vars in
    let rtntypopt' = Option.map (extern_typ scopes vars') rtntypopt in
    let tml = List.map (fun (tm,(na,x)) ->
                 let na' = match na, DAst.get tm with
                   | Anonymous, GVar id ->
                      begin match rtntypopt with
                            | None -> None
                            | Some ntn ->
                               if occur_glob_constr id ntn then
                                 Some (CAst.make Anonymous)
                               else None
                      end
                   | Anonymous, _ -> None
                   | Name id, GVar id' when Id.equal id id' -> None
                   | Name _, _ -> Some (CAst.make na) in
                 (sub_extern false scopes vars tm,
                  na',
                  Option.map (fun {CAst.loc;v=(ind,nal)} ->
                              let args = List.map (fun x -> DAst.make @@ PatVar x) nal in
                              let fullargs = add_cpatt_for_params ind args in
                              extern_ind_pattern_in_scope scopes vars ind fullargs
                             ) x))
                tml
    in
    let eqns = List.map (extern_eqn inctx scopes vars) (factorize_eqns eqns) in
    CCases (sty,rtntypopt',tml,eqns)

  | GLetTuple (nal,(na,typopt),tm,b) ->
    CLetTuple (List.map CAst.make nal,
        (Option.map (fun _ -> (make na)) typopt,
         Option.map (extern_typ scopes (add_vname vars na)) typopt),
        sub_extern false scopes vars tm,
        extern inctx scopes (List.fold_left add_vname vars nal) b)

  | GIf (c,(na,typopt),b1,b2) ->
      CIf (sub_extern false scopes vars c,
        (Option.map (fun _ -> (CAst.make na)) typopt,
         Option.map (extern_typ scopes (add_vname vars na)) typopt),
        sub_extern inctx scopes vars b1, sub_extern inctx scopes vars b2)

  | GRec (fk,idv,blv,tyv,bv) ->
      let vars' = Array.fold_right Id.Set.add idv vars in
      (match fk with
	 | GFix (nv,n) ->
	     let listdecl =
	       Array.mapi (fun i fi ->
                 let (bl,ty,def) = blv.(i), tyv.(i), bv.(i) in
                 let bl = List.map (extended_glob_local_binder_of_decl ?loc) bl in
                 let (assums,ids,bl) = extern_local_binder scopes vars bl in
                 let vars0 = List.fold_right (Name.fold_right Id.Set.add) ids vars in
                 let vars1 = List.fold_right (Name.fold_right Id.Set.add) ids vars' in
		 let n =
		   match fst nv.(i) with
		     | None -> None
                     | Some x -> Some (CAst.make @@ Name.get_id (List.nth assums x))
		 in
		 let ro = extern_recursion_order scopes vars (snd nv.(i)) in
                 ((CAst.make fi), (n, ro), bl, extern_typ scopes vars0 ty,
                  extern false scopes vars1 def)) idv
	     in
             CFix (CAst.(make ?loc idv.(n)), Array.to_list listdecl)
	 | GCoFix n ->
	     let listdecl =
               Array.mapi (fun i fi ->
                 let bl = List.map (extended_glob_local_binder_of_decl ?loc) blv.(i) in
                 let (_,ids,bl) = extern_local_binder scopes vars bl in
                 let vars0 = List.fold_right (Name.fold_right Id.Set.add) ids vars in
                 let vars1 = List.fold_right (Name.fold_right Id.Set.add) ids vars' in
                 ((CAst.make fi),bl,extern_typ scopes vars0 tyv.(i),
                  sub_extern false scopes vars1 bv.(i))) idv
	     in
             CCoFix (CAst.(make ?loc idv.(n)),Array.to_list listdecl))

  | GSort s -> CSort (extern_glob_sort s)

  | GHole (e,naming,_) -> CHole (Some e, naming, None) (** TODO: extern tactics. *)

  | GCast (c, c') ->
      CCast (sub_extern true scopes vars c,
             map_cast_type (extern_typ scopes vars) c')

  in insert_coercion coercion (CAst.make ?loc c)

and extern_typ (subentry,(_,scopes)) =
  extern true (subentry,(Notation.current_type_scope_name (),scopes))

and sub_extern inctx (subentry,(_,scopes)) = extern inctx (subentry,(None,scopes))

and factorize_prod scopes vars na bk aty c =
  let store, get = set_temporary_memory () in
  match na, DAst.get c with
  | Name id, GCases (Constr.LetPatternStyle, None, [(e,(Anonymous,None))],(_::_ as eqns))
         when is_gvar id e && List.length (store (factorize_eqns eqns)) = 1 ->
    (match get () with
     | [{CAst.v=(ids,disj_of_patl,b)}] ->
      let disjpat = List.map (function [pat] -> pat | _ -> assert false) disj_of_patl in
      let disjpat = if occur_glob_constr id b then List.map (set_pat_alias id) disjpat else disjpat in
      let b = extern_typ scopes vars b in
      let p = mkCPatOr (List.map (extern_cases_pattern_in_scope scopes vars) disjpat) in
      let binder = CLocalPattern (make ?loc:c.loc (p,None)) in
      (match b.v with
      | CProdN (bl,b) -> CProdN (binder::bl,b)
      | _ -> CProdN ([binder],b))
     | _ -> assert false)
  | _, _ ->
      let c = extern_typ scopes vars c in
      match na, c.v with
      | Name id, CProdN (CLocalAssum(nal,Default bk',ty)::bl,b)
           when binding_kind_eq bk bk' && constr_expr_eq aty ty
                && not (occur_var_constr_expr id ty) (* avoid na in ty escapes scope *) ->
         CProdN (CLocalAssum(make na::nal,Default bk,aty)::bl,b)
      | _, CProdN (bl,b) ->
         CProdN (CLocalAssum([make na],Default bk,aty)::bl,b)
      | _, _ ->
         CProdN ([CLocalAssum([make na],Default bk,aty)],c)

and factorize_lambda inctx scopes vars na bk aty c =
  let store, get = set_temporary_memory () in
  match na, DAst.get c with
  | Name id, GCases (Constr.LetPatternStyle, None, [(e,(Anonymous,None))],(_::_ as eqns))
         when is_gvar id e && List.length (store (factorize_eqns eqns)) = 1 ->
    (match get () with
     | [{CAst.v=(ids,disj_of_patl,b)}] ->
      let disjpat = List.map (function [pat] -> pat | _ -> assert false) disj_of_patl in
      let disjpat = if occur_glob_constr id b then List.map (set_pat_alias id) disjpat else disjpat in
      let b = sub_extern inctx scopes vars b in
      let p = mkCPatOr (List.map (extern_cases_pattern_in_scope scopes vars) disjpat) in
      let binder = CLocalPattern (make ?loc:c.loc (p,None)) in
      (match b.v with
      | CLambdaN (bl,b) -> CLambdaN (binder::bl,b)
      | _ -> CLambdaN ([binder],b))
     | _ -> assert false)
  | _, _ ->
      let c = sub_extern inctx scopes vars c in
      match c.v with
      | CLambdaN (CLocalAssum(nal,Default bk',ty)::bl,b)
           when binding_kind_eq bk bk' && constr_expr_eq aty ty
                && not (occur_name na ty) (* avoid na in ty escapes scope *) ->
         CLambdaN (CLocalAssum(make na::nal,Default bk,aty)::bl,b)
      | CLambdaN (bl,b) ->
         CLambdaN (CLocalAssum([make na],Default bk,aty)::bl,b)
      | _ ->
         CLambdaN ([CLocalAssum([make na],Default bk,aty)],c)

and extern_local_binder scopes vars = function
    [] -> ([],[],[])
  | b :: l ->
    match DAst.get b with
    | GLocalDef (na,bk,bd,ty) ->
      let (assums,ids,l) =
        extern_local_binder scopes (Name.fold_right Id.Set.add na vars) l in
      (assums,na::ids,
       CLocalDef(CAst.make na, extern false scopes vars bd,
                   Option.map (extern false scopes vars) ty) :: l)

    | GLocalAssum (na,bk,ty) ->
      let ty = extern_typ scopes vars ty in
      (match extern_local_binder scopes (Name.fold_right Id.Set.add na vars) l with
          (assums,ids,CLocalAssum(nal,k,ty')::l)
            when constr_expr_eq ty ty' &&
              match na with Name id -> not (occur_var_constr_expr id ty')
                | _ -> true ->
              (na::assums,na::ids,
               CLocalAssum(CAst.make na::nal,k,ty')::l)
        | (assums,ids,l) ->
            (na::assums,na::ids,
             CLocalAssum([CAst.make na],Default bk,ty) :: l))

    | GLocalPattern ((p,_),_,bk,ty) ->
      let ty =
        if !Flags.raw_print then Some (extern_typ scopes vars ty) else None in
      let p = mkCPatOr (List.map (extern_cases_pattern vars) p) in
      let (assums,ids,l) = extern_local_binder scopes vars l in
      (assums,ids, CLocalPattern(CAst.make @@ (p,ty)) :: l)

and extern_eqn inctx scopes vars {CAst.loc;v=(ids,pll,c)} =
  let pll = List.map (List.map (extern_cases_pattern_in_scope scopes vars)) pll in
  make ?loc (pll,extern inctx scopes vars c)

and extern_notation (custom,scopes as allscopes) vars t = function
  | [] -> raise No_match
  | (keyrule,pat,n as _rule)::rules ->
      let loc = Glob_ops.loc_of_glob_constr t in
      try
        if is_inactive_rule keyrule then raise No_match;
	(* Adjusts to the number of arguments expected by the notation *)
	let (t,args,argsscopes,argsimpls) = match DAst.get t ,n with
	  | GApp (f,args), Some n
	      when List.length args >= n ->
	      let args1, args2 = List.chop n args in
              let subscopes, impls =
                match DAst.get f with
                | GRef (ref,us) ->
	          let subscopes =
		    try List.skipn n (find_arguments_scope ref)
                    with Failure _ -> [] in
	          let impls =
		    let impls =
		      select_impargs_size
		        (List.length args) (implicits_of_global ref) in
		    try List.skipn n impls with Failure _ -> [] in
                  subscopes,impls
                | _ ->
                  [], [] in
	      (if Int.equal n 0 then f else DAst.make @@ GApp (f,args1)),
	      args2, subscopes, impls
	  | GApp (f, args), None ->
            begin match DAst.get f with
            | GRef (ref,us) ->
	      let subscopes = find_arguments_scope ref in
	      let impls =
		  select_impargs_size
		    (List.length args) (implicits_of_global ref) in
	      f, args, subscopes, impls
            | _ -> t, [], [], []
            end
	  | GRef (ref,us), Some 0 -> DAst.make @@ GApp (t,[]), [], [], []
          | _, None -> t, [], [], []
          | _ -> raise No_match in
	(* Try matching ... *)
        let terms,termlists,binders,binderlists =
          match_notation_constr !print_universes t pat in
	(* Try availability of interpretation ... *)
        let e =
          match keyrule with
          | NotationRule (sc,ntn) ->
             (match availability_of_entry_coercion custom (fst ntn) with
             | None -> raise No_match
             | Some coercion ->
               match availability_of_notation (sc,ntn) scopes with
                  (* Uninterpretation is not allowed in current context *)
              | None -> raise No_match
                  (* Uninterpretation is allowed in current context *)
	      | Some (scopt,key) ->
                  let scopes' = Option.List.cons scopt (snd scopes) in
	          let l =
                    List.map (fun (c,(subentry,(scopt,scl))) ->
		      extern (* assuming no overloading: *) true
                        (subentry,(scopt,scl@scopes')) vars c)
                      terms in
		  let ll =
                    List.map (fun (c,(subentry,(scopt,scl))) ->
                      List.map (extern true (subentry,(scopt,scl@scopes')) vars) c)
                      termlists in
                  let bl =
                    List.map (fun (bl,(subentry,(scopt,scl))) ->
                      mkCPatOr (List.map (extern_cases_pattern_in_scope (subentry,(scopt,scl@scopes')) vars) bl))
                      binders in
                  let bll =
                    List.map (fun (bl,(subentry,(scopt,scl))) ->
                      pi3 (extern_local_binder (subentry,(scopt,scl@scopes')) vars bl))
                      binderlists in
                  insert_coercion coercion (insert_delimiters (make_notation loc ntn (l,ll,bl,bll)) key))
          | SynDefRule kn ->
             match availability_of_entry_coercion custom InConstrEntrySomeLevel with
             | None -> raise No_match
             | Some coercion ->
	      let l =
                List.map (fun (c,(subentry,(scopt,scl))) ->
                  extern true (subentry,(scopt,scl@snd scopes)) vars c, None)
		  terms in
              let a = CRef (shortest_qualid_of_syndef ?loc vars kn,None) in
              insert_coercion coercion (CAst.make ?loc @@ if List.is_empty l then a else CApp ((None, CAst.make a),l)) in
 	if List.is_empty args then e
	else
          let args = fill_arg_scopes args argsscopes allscopes in
	  let args = extern_args (extern true) vars args in
	  CAst.make ?loc @@ explicitize false argsimpls (None,e) args
      with
	  No_match -> extern_notation allscopes vars t rules

and extern_recursion_order scopes vars = function
    GStructRec -> CStructRec
  | GWfRec c -> CWfRec (extern true scopes vars c)
  | GMeasureRec (m,r) -> CMeasureRec (extern true scopes vars m,
				     Option.map (extern true scopes vars) r)


let extern_glob_constr vars c =
  extern false (InConstrEntrySomeLevel,(None,[])) vars c

let extern_glob_type vars c =
  extern_typ (InConstrEntrySomeLevel,(None,[])) vars c

(******************************************************************)
(* Main translation function from constr -> constr_expr *)

let extern_constr_gen lax goal_concl_style scopt env sigma t =
  (* "goal_concl_style" means do alpha-conversion using the "goal" convention *)
  (* i.e.: avoid using the names of goal/section/rel variables and the short *)
  (* names of global definitions of current module when computing names for *)
  (* bound variables. *)
  (* Not "goal_concl_style" means do alpha-conversion avoiding only *)
  (* those goal/section/rel variables that occurs in the subterm under *)
  (* consideration; see namegen.ml for further details *)
  let avoid = if goal_concl_style then vars_of_env env else Id.Set.empty in
  let r = Detyping.detype Detyping.Later ~lax:lax goal_concl_style avoid env sigma t in
  let vars = vars_of_env env in
  extern false (InConstrEntrySomeLevel,(scopt,[])) vars r

let extern_constr_in_scope goal_concl_style scope env sigma t =
  extern_constr_gen false goal_concl_style (Some scope) env sigma t

let extern_constr ?(lax=false) goal_concl_style env sigma t =
  extern_constr_gen lax goal_concl_style None env sigma t

let extern_type goal_concl_style env sigma t =
  let avoid = if goal_concl_style then vars_of_env env else Id.Set.empty in
  let r = Detyping.detype Detyping.Later goal_concl_style avoid env sigma t in
  extern_glob_type (vars_of_env env) r

let extern_sort sigma s = extern_glob_sort (detype_sort sigma s)

let extern_closed_glob ?lax goal_concl_style env sigma t =
  let avoid = if goal_concl_style then vars_of_env env else Id.Set.empty in
  let r =
    Detyping.detype_closed_glob ?lax goal_concl_style avoid env sigma t
  in
  let vars = vars_of_env env in
  extern false (InConstrEntrySomeLevel,(None,[])) vars r

(******************************************************************)
(* Main translation function from pattern -> constr_expr *)

let any_any_branch =
  (* | _ => _ *)
  CAst.make ([],[DAst.make @@ PatVar Anonymous], DAst.make @@ GHole (Evar_kinds.InternalHole,IntroAnonymous,None))

let compute_displayed_name_in_pattern sigma avoid na c =
  let open Namegen in
  compute_displayed_name_in_gen (fun _ -> Patternops.noccurn_pattern) sigma avoid na c

let rec glob_of_pat avoid env sigma pat = DAst.make @@ match pat with
  | PRef ref -> GRef (ref,None)
  | PVar id  -> GVar id
  | PEvar (evk,l) ->
      let test decl = function PVar id' -> Id.equal (NamedDecl.get_id decl) id' | _ -> false in
      let l = Evd.evar_instance_array test (Evd.find sigma evk) l in
      let id = match Evd.evar_ident evk sigma with
      | None -> Id.of_string "__"
      | Some id -> id
      in
      GEvar (id,List.map (on_snd (glob_of_pat avoid env sigma)) l)
  | PRel n ->
      let id = try match lookup_name_of_rel n env with
	| Name id   -> id
	| Anonymous ->
	    anomaly ~label:"glob_constr_of_pattern" (Pp.str "index to an anonymous variable.")
      with Not_found -> Id.of_string ("_UNBOUND_REL_"^(string_of_int n)) in
      GVar id
  | PMeta None -> GHole (Evar_kinds.InternalHole, IntroAnonymous,None)
  | PMeta (Some n) -> GPatVar (Evar_kinds.FirstOrderPatVar n)
  | PProj (p,c) -> GApp (DAst.make @@ GRef (ConstRef (Projection.constant p),None),
			 [glob_of_pat avoid env sigma c])
  | PApp (f,args) ->
      GApp (glob_of_pat avoid env sigma f,Array.map_to_list (glob_of_pat avoid env sigma) args)
  | PSoApp (n,args) ->
      GApp (DAst.make @@ GPatVar (Evar_kinds.SecondOrderPatVar n),
        List.map (glob_of_pat avoid env sigma) args)
  | PProd (na,t,c) ->
      let na',avoid' = compute_displayed_name_in_pattern sigma avoid na c in
      let env' = Termops.add_name na' env in
      GProd (na',Explicit,glob_of_pat avoid env sigma t,glob_of_pat avoid' env' sigma c)
  | PLetIn (na,b,t,c) ->
      let na',avoid' = Namegen.compute_displayed_let_name_in sigma Namegen.RenamingForGoal avoid na c in
      let env' = Termops.add_name na' env in
      GLetIn (na',glob_of_pat avoid env sigma b, Option.map (glob_of_pat avoid env sigma) t,
              glob_of_pat avoid' env' sigma c)
  | PLambda (na,t,c) ->
      let na',avoid' = compute_displayed_name_in_pattern sigma avoid na c in
      let env' = Termops.add_name na' env in
      GLambda (na',Explicit,glob_of_pat avoid env sigma t, glob_of_pat avoid' env' sigma c)
  | PIf (c,b1,b2) ->
      GIf (glob_of_pat avoid env sigma c, (Anonymous,None),
           glob_of_pat avoid env sigma b1, glob_of_pat avoid env sigma b2)
  | PCase ({cip_style=Constr.LetStyle; cip_ind_tags=None},PMeta None,tm,[(0,n,b)]) ->
      let nal,b = it_destRLambda_or_LetIn_names n (glob_of_pat avoid env sigma b) in
      GLetTuple (nal,(Anonymous,None),glob_of_pat avoid env sigma tm,b)
  | PCase (info,p,tm,bl) ->
      let mat = match bl, info.cip_ind with
	| [], _ -> []
	| _, Some ind ->
	  let bl' = List.map (fun (i,n,c) -> (i,n,glob_of_pat avoid env sigma c)) bl in
	  simple_cases_matrix_of_branches ind bl'
	| _, None -> anomaly (Pp.str "PCase with some branches but unknown inductive.")
      in
      let mat = if info.cip_extensible then mat @ [any_any_branch] else mat
      in
      let indnames,rtn = match p, info.cip_ind, info.cip_ind_tags with
	| PMeta None, _, _ -> (Anonymous,None),None
	| _, Some ind, Some nargs ->
	  return_type_of_predicate ind nargs (glob_of_pat avoid env sigma p)
	| _ -> anomaly (Pp.str "PCase with non-trivial predicate but unknown inductive.")
      in
      GCases (Constr.RegularStyle,rtn,[glob_of_pat avoid env sigma tm,indnames],mat)
  | PFix ((ln,i),(lna,tl,bl)) ->
     let def_avoid, def_env, lfi =
       Array.fold_left
         (fun (avoid, env, l) na ->
           let id = Namegen.next_name_away na avoid in
           (Id.Set.add id avoid, Name id :: env, id::l))
      (avoid, env, []) lna in
     let n = Array.length tl in
     let v = Array.map3
               (fun c t i -> Detyping.share_pattern_names glob_of_pat (i+1) [] def_avoid def_env sigma c (Patternops.lift_pattern n t))
    bl tl ln in
     GRec(GFix (Array.map (fun i -> Some i, GStructRec) ln,i),Array.of_list (List.rev lfi),
       Array.map (fun (bl,_,_) -> bl) v,
       Array.map (fun (_,_,ty) -> ty) v,
       Array.map (fun (_,bd,_) -> bd) v)
  | PCoFix (ln,(lna,tl,bl)) ->
     let def_avoid, def_env, lfi =
       Array.fold_left
         (fun (avoid, env, l) na ->
           let id = Namegen.next_name_away na avoid in
           (Id.Set.add id avoid, Name id :: env, id::l))
         (avoid, env, []) lna in
     let ntys = Array.length tl in
     let v = Array.map2
               (fun c t -> share_pattern_names glob_of_pat 0 [] def_avoid def_env sigma c (Patternops.lift_pattern ntys t))
               bl tl in
     GRec(GCoFix ln,Array.of_list (List.rev lfi),
          Array.map (fun (bl,_,_) -> bl) v,
          Array.map (fun (_,_,ty) -> ty) v,
          Array.map (fun (_,bd,_) -> bd) v)
  | PSort s -> GSort s

let extern_constr_pattern env sigma pat =
  extern true (InConstrEntrySomeLevel,(None,[])) Id.Set.empty (glob_of_pat Id.Set.empty env sigma pat)

let extern_rel_context where env sigma sign =
  let a = detype_rel_context Detyping.Later where Id.Set.empty (names_of_rel_context env,env) sigma sign in
  let vars = vars_of_env env in
  let a = List.map (extended_glob_local_binder_of_decl) a in
  pi3 (extern_local_binder (InConstrEntrySomeLevel,(None,[])) vars a)