File: environ.ml

package info (click to toggle)
coq 8.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 30,604 kB
  • sloc: ml: 192,230; sh: 2,585; python: 2,206; ansic: 1,878; makefile: 818; lisp: 202; xml: 24; sed: 2
file content (704 lines) | stat: -rw-r--r-- 21,899 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(* Author: Jean-Christophe Filliâtre as part of the rebuilding of Coq
   around a purely functional abstract type-checker, Aug 1999 *)
(* Cleaning and lightening of the kernel by Bruno Barras, Nov 2001 *)
(* Flag for predicativity of Set by Hugo Herbelin in Oct 2003 *)
(* Support for virtual machine by Benjamin Grégoire in Oct 2004 *)
(* Support for retroknowledge by Arnaud Spiwack in May 2007 *)
(* Support for assumption dependencies by Arnaud Spiwack in May 2007 *)

(* Miscellaneous maintenance by Bruno Barras, Hugo Herbelin, Jean-Marc
   Notin, Matthieu Sozeau *)

(* This file defines the type of environments on which the
   type-checker works, together with simple related functions *)

open CErrors
open Util
open Names
open Constr
open Vars
open Declarations
open Context.Rel.Declaration

module NamedDecl = Context.Named.Declaration

(* The type of environments. *)

(* The key attached to each constant is used by the VM to retrieve previous *)
(* evaluations of the constant. It is essentially an index in the symbols table *)
(* used by the VM. *)
type key = int CEphemeron.key option ref

(** Linking information for the native compiler. *)

type link_info =
  | Linked of string
  | LinkedInteractive of string
  | NotLinked

type constant_key = constant_body * (link_info ref * key)

type mind_key = mutual_inductive_body * link_info ref

type globals = {
  env_constants : constant_key Cmap_env.t;
  env_inductives : mind_key Mindmap_env.t;
  env_modules : module_body MPmap.t;
  env_modtypes : module_type_body MPmap.t;
}

type stratification = {
  env_universes : UGraph.t;
  env_engagement : engagement
}

type val_kind =
    | VKvalue of (Vmvalues.values * Id.Set.t) CEphemeron.key
    | VKnone

type lazy_val = val_kind ref

let force_lazy_val vk = match !vk with
| VKnone -> None
| VKvalue v -> try Some (CEphemeron.get v) with CEphemeron.InvalidKey -> None

let dummy_lazy_val () = ref VKnone
let build_lazy_val vk key = vk := VKvalue (CEphemeron.create key)

type named_context_val = {
  env_named_ctx : Constr.named_context;
  env_named_map : (Constr.named_declaration * lazy_val) Id.Map.t;
}

type rel_context_val = {
  env_rel_ctx : Constr.rel_context;
  env_rel_map : (Constr.rel_declaration * lazy_val) Range.t;
}

type env = {
  env_globals       : globals;
  env_named_context : named_context_val; (* section variables *)
  env_rel_context   : rel_context_val;
  env_nb_rel        : int;
  env_stratification : stratification;
  env_typing_flags  : typing_flags;
  retroknowledge : Retroknowledge.retroknowledge;
  indirect_pterms : Opaqueproof.opaquetab;
}

let empty_named_context_val = {
  env_named_ctx = [];
  env_named_map = Id.Map.empty;
}

let empty_rel_context_val = {
  env_rel_ctx = [];
  env_rel_map = Range.empty;
}

let empty_env = {
  env_globals = {
    env_constants = Cmap_env.empty;
    env_inductives = Mindmap_env.empty;
    env_modules = MPmap.empty;
    env_modtypes = MPmap.empty};
  env_named_context = empty_named_context_val;
  env_rel_context = empty_rel_context_val;
  env_nb_rel = 0;
  env_stratification = {
    env_universes = UGraph.initial_universes;
    env_engagement = PredicativeSet };
  env_typing_flags = Declareops.safe_flags Conv_oracle.empty;
  retroknowledge = Retroknowledge.initial_retroknowledge;
  indirect_pterms = Opaqueproof.empty_opaquetab }


(* Rel context *)

let push_rel_context_val d ctx = {
  env_rel_ctx = Context.Rel.add d ctx.env_rel_ctx;
  env_rel_map = Range.cons (d, ref VKnone) ctx.env_rel_map;
}

let match_rel_context_val ctx = match ctx.env_rel_ctx with
| [] -> None
| decl :: rem ->
  let (_, lval) = Range.hd ctx.env_rel_map in
  let ctx = { env_rel_ctx = rem; env_rel_map = Range.tl ctx.env_rel_map } in
  Some (decl, lval, ctx)

let push_rel d env =
    { env with
      env_rel_context = push_rel_context_val d env.env_rel_context;
      env_nb_rel = env.env_nb_rel + 1 }

let lookup_rel n env =
  try fst (Range.get env.env_rel_context.env_rel_map (n - 1))
  with Invalid_argument _ -> raise Not_found

let lookup_rel_val n env =
  try snd (Range.get env.env_rel_context.env_rel_map (n - 1))
  with Invalid_argument _ -> raise Not_found

let rel_skipn n ctx = {
  env_rel_ctx = Util.List.skipn n ctx.env_rel_ctx;
  env_rel_map = Range.skipn n ctx.env_rel_map;
}

let env_of_rel n env =
  { env with
    env_rel_context = rel_skipn n env.env_rel_context;
    env_nb_rel = env.env_nb_rel - n
  }

(* Named context *)

let push_named_context_val_val d rval ctxt =
(*   assert (not (Id.Map.mem (NamedDecl.get_id d) ctxt.env_named_map)); *)
  {
    env_named_ctx = Context.Named.add d ctxt.env_named_ctx;
    env_named_map = Id.Map.add (NamedDecl.get_id d) (d, rval) ctxt.env_named_map;
  }

let push_named_context_val d ctxt =
  push_named_context_val_val d (ref VKnone) ctxt

let match_named_context_val c = match c.env_named_ctx with
| [] -> None
| decl :: ctx ->
  let (_, v) = Id.Map.find (NamedDecl.get_id decl) c.env_named_map in
  let map = Id.Map.remove (NamedDecl.get_id decl) c.env_named_map in
  let cval = { env_named_ctx = ctx; env_named_map = map } in
  Some (decl, v, cval)

let map_named_val f ctxt =
  let open Context.Named.Declaration in
  let fold accu d =
    let d' = map_constr f d in
    let accu =
      if d == d' then accu
      else Id.Map.modify (get_id d) (fun _ (_, v) -> (d', v)) accu
    in
    (accu, d')
  in
  let map, ctx = List.fold_left_map fold ctxt.env_named_map ctxt.env_named_ctx in
  if map == ctxt.env_named_map then ctxt
  else { env_named_ctx = ctx; env_named_map = map }

let push_named d env =
  {env with env_named_context = push_named_context_val d env.env_named_context}

let lookup_named id env =
  fst (Id.Map.find id env.env_named_context.env_named_map)

let lookup_named_val id env =
  snd(Id.Map.find id env.env_named_context.env_named_map)

let lookup_named_ctxt id ctxt =
  fst (Id.Map.find id ctxt.env_named_map)

let fold_constants f env acc =
  Cmap_env.fold (fun c (body,_) acc -> f c body acc) env.env_globals.env_constants acc

(* Global constants *)

let lookup_constant_key kn env =
  Cmap_env.find kn env.env_globals.env_constants

let lookup_constant kn env =
  fst (Cmap_env.find kn env.env_globals.env_constants)

(* Mutual Inductives *)
let lookup_mind kn env =
  fst (Mindmap_env.find kn env.env_globals.env_inductives)

let lookup_mind_key kn env =
  Mindmap_env.find kn env.env_globals.env_inductives

let oracle env = env.env_typing_flags.conv_oracle
let set_oracle env o =
  let env_typing_flags = { env.env_typing_flags with conv_oracle = o } in
  { env with env_typing_flags }

let engagement env = env.env_stratification.env_engagement
let typing_flags env = env.env_typing_flags

let is_impredicative_set env = 
  match engagement env with
  | ImpredicativeSet -> true
  | _ -> false

let type_in_type env = not (typing_flags env).check_universes
let deactivated_guard env = not (typing_flags env).check_guarded

let universes env = env.env_stratification.env_universes
let named_context env = env.env_named_context.env_named_ctx
let named_context_val env = env.env_named_context
let rel_context env = env.env_rel_context.env_rel_ctx
let opaque_tables env = env.indirect_pterms
let set_opaque_tables env indirect_pterms = { env with indirect_pterms }

let empty_context env =
  match env.env_rel_context.env_rel_ctx, env.env_named_context.env_named_ctx with
  | [], [] -> true
  | _ -> false

(* Rel context *)
let evaluable_rel n env =
  is_local_def (lookup_rel n env)

let nb_rel env = env.env_nb_rel

let push_rel_context ctxt x = Context.Rel.fold_outside push_rel ctxt ~init:x

let push_rec_types (lna,typarray,_) env =
  let ctxt = Array.map2_i (fun i na t -> LocalAssum (na, lift i t)) lna typarray in
  Array.fold_left (fun e assum -> push_rel assum e) env ctxt

let fold_rel_context f env ~init =
  let rec fold_right env =
    match match_rel_context_val env.env_rel_context with
    | None -> init
    | Some (rd, _, rc) ->
	let env =
	  { env with
	    env_rel_context = rc;
	    env_nb_rel = env.env_nb_rel - 1 } in
	f env rd (fold_right env)
  in fold_right env

(* Named context *)

let named_context_of_val c = c.env_named_ctx

let ids_of_named_context_val c = Id.Map.domain c.env_named_map

let empty_named_context = Context.Named.empty

let push_named_context = List.fold_right push_named

let val_of_named_context ctxt =
  List.fold_right push_named_context_val ctxt empty_named_context_val


let eq_named_context_val c1 c2 =
   c1 == c2 || Context.Named.equal Constr.equal (named_context_of_val c1) (named_context_of_val c2)

(* A local const is evaluable if it is defined  *)

open Context.Named.Declaration

let named_type id env =
  get_type (lookup_named id env)

let named_body id env =
  get_value (lookup_named id env)

let evaluable_named id env =
  match named_body id env with
  | Some _      -> true
  | _          -> false

let reset_with_named_context ctxt env =
  { env with
    env_named_context = ctxt;
    env_rel_context = empty_rel_context_val;
    env_nb_rel = 0 }

let reset_context = reset_with_named_context empty_named_context_val

let pop_rel_context n env =
  let rec skip n ctx =
    if Int.equal n 0 then ctx
    else match match_rel_context_val ctx with
    | None -> invalid_arg "List.skipn"
    | Some (_, _, ctx) -> skip (pred n) ctx
  in
  let ctxt = env.env_rel_context in
  { env with
    env_rel_context = skip n ctxt;
    env_nb_rel = env.env_nb_rel - n }

let fold_named_context f env ~init =
  let rec fold_right env =
    match match_named_context_val env.env_named_context with
    | None -> init
    | Some (d, v, rem) ->
	let env =
	  reset_with_named_context rem env in
	f env d (fold_right env)
  in fold_right env

let fold_named_context_reverse f ~init env =
  Context.Named.fold_inside f ~init:init (named_context env)


(* Universe constraints *)

let map_universes f env =
  let s = env.env_stratification in
    { env with env_stratification =
	 { s with env_universes = f s.env_universes } }

let set_universes env u =
  { env with env_stratification = { env.env_stratification with env_universes = u } }

let add_constraints c env =
  if Univ.Constraint.is_empty c then env
  else map_universes (UGraph.merge_constraints c) env

let check_constraints c env =
  UGraph.check_constraints c env.env_stratification.env_universes

let push_constraints_to_env (_,univs) env =
  add_constraints univs env

let add_universes strict ctx g =
  let g = Array.fold_left
            (fun g v -> UGraph.add_universe v strict g)
	    g (Univ.Instance.to_array (Univ.UContext.instance ctx))
  in
    UGraph.merge_constraints (Univ.UContext.constraints ctx) g
			   
let push_context ?(strict=false) ctx env =
  map_universes (add_universes strict ctx) env

let add_universes_set strict ctx g =
  let g = Univ.LSet.fold
            (* Be lenient, module typing reintroduces universes and constraints due to includes *)
	    (fun v g -> try UGraph.add_universe v strict g with UGraph.AlreadyDeclared -> g)
	    (Univ.ContextSet.levels ctx) g
  in UGraph.merge_constraints (Univ.ContextSet.constraints ctx) g

let push_context_set ?(strict=false) ctx env =
  map_universes (add_universes_set strict ctx) env

let set_engagement c env = (* Unsafe *)
  { env with env_stratification =
    { env.env_stratification with env_engagement = c } }

let set_typing_flags c env = (* Unsafe *)
  { env with env_typing_flags = c }

(* Global constants *)

let no_link_info = NotLinked

let add_constant_key kn cb linkinfo env =
  let new_constants =
    Cmap_env.add kn (cb,(ref linkinfo, ref None)) env.env_globals.env_constants in
  let new_globals =
    { env.env_globals with
	env_constants = new_constants } in
  { env with env_globals = new_globals }

let add_constant kn cb env =
  add_constant_key kn cb no_link_info env

let constraints_of cb u =
  match cb.const_universes with
  | Monomorphic_const _ -> Univ.Constraint.empty
  | Polymorphic_const ctx -> Univ.AUContext.instantiate u ctx

(* constant_type gives the type of a constant *)
let constant_type env (kn,u) =
  let cb = lookup_constant kn env in
  match cb.const_universes with
  | Monomorphic_const _ -> cb.const_type, Univ.Constraint.empty
  | Polymorphic_const ctx -> 
    let csts = constraints_of cb u in
    (subst_instance_constr u cb.const_type, csts)

let constant_context env kn =
  let cb = lookup_constant kn env in
  match cb.const_universes with
  | Monomorphic_const _ -> Univ.AUContext.empty
  | Polymorphic_const ctx -> ctx

type const_evaluation_result = NoBody | Opaque

exception NotEvaluableConst of const_evaluation_result

let constant_value_and_type env (kn, u) =
  let cb = lookup_constant kn env in
    if Declareops.constant_is_polymorphic cb then
      let cst = constraints_of cb u in
      let b' = match cb.const_body with
	| Def l_body -> Some (subst_instance_constr u (Mod_subst.force_constr l_body))
	| OpaqueDef _ -> None
	| Undef _ -> None
      in
	b', subst_instance_constr u cb.const_type, cst
    else 
      let b' = match cb.const_body with
	| Def l_body -> Some (Mod_subst.force_constr l_body)
	| OpaqueDef _ -> None
	| Undef _ -> None
      in b', cb.const_type, Univ.Constraint.empty

(* These functions should be called under the invariant that [env] 
   already contains the constraints corresponding to the constant 
   application. *)

(* constant_type gives the type of a constant *)
let constant_type_in env (kn,u) =
  let cb = lookup_constant kn env in
    if Declareops.constant_is_polymorphic cb then
      subst_instance_constr u cb.const_type
    else cb.const_type

let constant_value_in env (kn,u) =
  let cb = lookup_constant kn env in
  match cb.const_body with
    | Def l_body -> 
      let b = Mod_subst.force_constr l_body in
	subst_instance_constr u b
    | OpaqueDef _ -> raise (NotEvaluableConst Opaque)
    | Undef _ -> raise (NotEvaluableConst NoBody)

let constant_opt_value_in env cst =
  try Some (constant_value_in env cst)
  with NotEvaluableConst _ -> None

(* A global const is evaluable if it is defined and not opaque *)
let evaluable_constant kn env =
  let cb = lookup_constant kn env in
    match cb.const_body with
    | Def _ -> true
    | OpaqueDef _ -> false
    | Undef _ -> false

let polymorphic_constant cst env =
  Declareops.constant_is_polymorphic (lookup_constant cst env)

let polymorphic_pconstant (cst,u) env =
  if Univ.Instance.is_empty u then false
  else polymorphic_constant cst env

let type_in_type_constant cst env =
  not (lookup_constant cst env).const_typing_flags.check_universes

let lookup_projection p env =
  let mind,i = Projection.inductive p in
  let mib = lookup_mind mind env in
  (if not (Int.equal mib.mind_nparams (Projection.npars p))
   then anomaly ~label:"lookup_projection" Pp.(str "Bad number of parameters on projection."));
  match mib.mind_record with
  | NotRecord | FakeRecord -> anomaly ~label:"lookup_projection" Pp.(str "not a projection")
  | PrimRecord infos ->
    let _,_,typs = infos.(i) in
    typs.(Projection.arg p)

let get_projection env ind ~proj_arg =
  let mib = lookup_mind (fst ind) env in
  Declareops.inductive_make_projection ind mib ~proj_arg

let get_projections env ind =
  let mib = lookup_mind (fst ind) env in
  Declareops.inductive_make_projections ind mib

(* Mutual Inductives *)
let polymorphic_ind (mind,i) env =
  Declareops.inductive_is_polymorphic (lookup_mind mind env)

let polymorphic_pind (ind,u) env =
  if Univ.Instance.is_empty u then false
  else polymorphic_ind ind env

let type_in_type_ind (mind,i) env =
  not (lookup_mind mind env).mind_typing_flags.check_universes

let template_polymorphic_ind (mind,i) env =
  match (lookup_mind mind env).mind_packets.(i).mind_arity with 
  | TemplateArity _ -> true
  | RegularArity _ -> false

let template_polymorphic_pind (ind,u) env =
  if not (Univ.Instance.is_empty u) then false
  else template_polymorphic_ind ind env
  
let add_mind_key kn (mind, _ as mind_key) env =
  let new_inds = Mindmap_env.add kn mind_key env.env_globals.env_inductives in
  let new_globals =
    { env.env_globals with
        env_inductives = new_inds; } in
  { env with env_globals = new_globals }

let add_mind kn mib env =
  let li = ref no_link_info in add_mind_key kn (mib, li) env

(* Lookup of section variables *)

let lookup_constant_variables c env =
  let cmap = lookup_constant c env in
  Context.Named.to_vars cmap.const_hyps

let lookup_inductive_variables (kn,i) env =
  let mis = lookup_mind kn env in
  Context.Named.to_vars mis.mind_hyps

let lookup_constructor_variables (ind,_) env =
  lookup_inductive_variables ind env

(* Returns the list of global variables in a term *)

let vars_of_global env constr =
  match kind constr with
      Var id -> Id.Set.singleton id
    | Const (kn, _) -> lookup_constant_variables kn env
    | Ind (ind, _) -> lookup_inductive_variables ind env
    | Construct (cstr, _) -> lookup_constructor_variables cstr env
    (** FIXME: is Proj missing? *)
    | _ -> raise Not_found

let global_vars_set env constr =
  let rec filtrec acc c =
    let acc =
      match kind c with
      | Var _ | Const _ | Ind _ | Construct _ ->
	  Id.Set.union (vars_of_global env c) acc
      | _ ->
	  acc in
    Constr.fold filtrec acc c
  in
    filtrec Id.Set.empty constr


(* [keep_hyps env ids] keeps the part of the section context of [env] which
   contains the variables of the set [ids], and recursively the variables
   contained in the types of the needed variables. *)

let really_needed env needed =
  Context.Named.fold_inside
    (fun need decl ->
      if Id.Set.mem (get_id decl) need then
        let globc =
          match decl with
            | LocalAssum _ -> Id.Set.empty
            | LocalDef (_,c,_) -> global_vars_set env c in
        Id.Set.union
          (global_vars_set env (get_type decl))
          (Id.Set.union globc need)
      else need)
    ~init:needed
    (named_context env)

let keep_hyps env needed =
  let really_needed = really_needed env needed in
  Context.Named.fold_outside
    (fun d nsign ->
      if Id.Set.mem (get_id d) really_needed then Context.Named.add d nsign
      else nsign)
    (named_context env)
    ~init:empty_named_context

(* Modules *)

let add_modtype mtb env =
  let mp = mtb.mod_mp in
  let new_modtypes = MPmap.add mp mtb env.env_globals.env_modtypes in
  let new_globals = { env.env_globals with env_modtypes = new_modtypes } in
  { env with env_globals = new_globals }

let shallow_add_module mb env =
  let mp = mb.mod_mp in
  let new_mods = MPmap.add mp mb env.env_globals.env_modules in
  let new_globals = { env.env_globals with env_modules = new_mods } in
  { env with env_globals = new_globals }

let lookup_module mp env =
    MPmap.find mp env.env_globals.env_modules


let lookup_modtype mp env = 
  MPmap.find mp env.env_globals.env_modtypes

(*s Judgments. *)

type ('constr, 'types) punsafe_judgment = {
  uj_val : 'constr;
  uj_type : 'types }

type unsafe_judgment = (constr, types) punsafe_judgment

let make_judge v tj =
  { uj_val = v;
    uj_type = tj }

let j_val j = j.uj_val
let j_type j = j.uj_type

type 'types punsafe_type_judgment = {
  utj_val : 'types;
  utj_type : Sorts.t }

type unsafe_type_judgment = types punsafe_type_judgment

exception Hyp_not_found

let apply_to_hyp ctxt id f =
  let rec aux rtail ctxt =
    match match_named_context_val ctxt with
    | Some (d, v, ctxt) ->
	if Id.equal (get_id d) id then
          push_named_context_val_val (f ctxt.env_named_ctx d rtail) v ctxt
	else
	  let ctxt' = aux (d::rtail) ctxt in
	  push_named_context_val_val d v ctxt'
    | None -> raise Hyp_not_found
  in aux [] ctxt

(* To be used in Logic.clear_hyps *)
let remove_hyps ids check_context check_value ctxt =
  let rec remove_hyps ctxt = match match_named_context_val ctxt with
  | None -> empty_named_context_val, false
  | Some (d, v, rctxt) ->
    let (ans, seen) = remove_hyps rctxt in
    if Id.Set.mem (get_id d) ids then (ans, true)
    else if not seen then ctxt, false
    else
      let rctxt' = ans in
      let d' = check_context d in
      let v' = check_value v in
      if d == d' && v == v' && rctxt == rctxt' then
        ctxt, true
      else push_named_context_val_val d' v' rctxt', true
  in
  fst (remove_hyps ctxt)

(*spiwack: the following functions assemble the pieces of the retroknowledge
   note that the "consistent" register function is available in the module
   Safetyping, Environ only synchronizes the proactive and the reactive parts*)

open Retroknowledge

(* lifting of the "get" functions works also for "mem"*)
let retroknowledge f env =
  f env.retroknowledge

let registered env field =
    retroknowledge mem env field

let register_one env field entry =
  { env with retroknowledge = Retroknowledge.add_field env.retroknowledge field entry }

(* [register env field entry] may register several fields when needed *)
let register env field entry =
  match field with
    | KInt31 (grp, Int31Type) ->
        let i31c = match kind entry with
                     | Ind i31t -> mkConstructUi (i31t, 1)
		     | _ -> anomaly ~label:"Environ.register" (Pp.str "should be an inductive type.")
	in
        register_one (register_one env (KInt31 (grp,Int31Constructor)) i31c) field entry
    | field -> register_one env field entry