File: vars.mli

package info (click to toggle)
coq 8.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 30,604 kB
  • sloc: ml: 192,230; sh: 2,585; python: 2,206; ansic: 1,878; makefile: 818; lisp: 202; xml: 24; sed: 2
file content (141 lines) | stat: -rw-r--r-- 6,702 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Names
open Constr

(** {6 Occur checks } *)

(** [closedn n M] is true iff [M] is a (de Bruijn) closed term under n binders *)
val closedn : int -> constr -> bool

(** [closed0 M] is true iff [M] is a (de Bruijn) closed term *)
val closed0 : constr -> bool

(** [noccurn n M] returns true iff [Rel n] does NOT occur in term [M]  *)
val noccurn : int -> constr -> bool

(** [noccur_between n m M] returns true iff [Rel p] does NOT occur in term [M]
  for n <= p < n+m *)
val noccur_between : int -> int -> constr -> bool

(** Checking function for terms containing existential- or
   meta-variables.  The function [noccur_with_meta] does not consider
   meta-variables applied to some terms (intended to be its local
   context) (for existential variables, it is necessarily the case) *)
val noccur_with_meta : int -> int -> constr -> bool

(** {6 Relocation and substitution } *)

(** [exliftn el c] lifts [c] with lifting [el] *)
val exliftn : Esubst.lift -> constr -> constr

(** [liftn n k c] lifts by [n] indexes above or equal to [k] in [c] *)
val liftn : int -> int -> constr -> constr

(** [lift n c] lifts by [n] the positive indexes in [c] *)
val lift : int -> constr -> constr

(** The type [substl] is the type of substitutions [u₁..un] of type
    some context Δ and defined in some environment Γ. Typing of
    substitutions is defined by:
    - Γ ⊢ ∅ : ∅,
    - Γ ⊢ u₁..u{_n-1} : Δ and Γ ⊢ u{_n} : An\[u₁..u{_n-1}\] implies
      Γ ⊢ u₁..u{_n} : Δ,x{_n}:A{_n}
    - Γ ⊢ u₁..u{_n-1} : Δ and Γ ⊢ un : A{_n}\[u₁..u{_n-1}\] implies
      Γ ⊢ u₁..u{_n} : Δ,x{_n}:=c{_n}:A{_n} when Γ ⊢ u{_n} ≡ c{_n}\[u₁..u{_n-1}\]

    Note that [u₁..un] is represented as a list with [un] at the head of
    the list, i.e. as [[un;...;u₁]]. *)

type substl = constr list

(** Let [Γ] be a context interleaving declarations [x₁:T₁..xn:Tn]
   and definitions [y₁:=c₁..yp:=cp] in some context [Γ₀]. Let
   [u₁..un] be an {e instance} of [Γ], i.e. an instance in [Γ₀]
   of the [xi]. Then, [subst_of_rel_context_instance Γ u₁..un]
   returns the corresponding {e substitution} of [Γ], i.e. the
   appropriate interleaving [σ] of the [u₁..un] with the [c₁..cp],
   all of them in [Γ₀], so that a derivation [Γ₀, Γ, Γ₁|- t:T]
   can be instantiated into a derivation [Γ₀, Γ₁ |- t[σ]:T[σ]] using
   [substnl σ |Γ₁| t].
   Note that the instance [u₁..un] is represented starting with [u₁],
   as if usable in [applist] while the substitution is
   represented the other way round, i.e. ending with either [u₁] or
   [c₁], as if usable for [substl]. *)
val subst_of_rel_context_instance : Constr.rel_context -> constr list -> substl

(** For compatibility: returns the substitution reversed *)
val adjust_subst_to_rel_context : Constr.rel_context -> constr list -> constr list

(** Take an index in an instance of a context and returns its index wrt to
    the full context (e.g. 2 in [x:A;y:=b;z:C] is 3, i.e. a reference to z) *)
val adjust_rel_to_rel_context : ('a, 'b) Context.Rel.pt -> int -> int

(** [substnl [a₁;...;an] k c] substitutes in parallel [a₁],...,[an]
    for respectively [Rel(k+1)],...,[Rel(k+n)] in [c]; it relocates
    accordingly indexes in [an],...,[a1] and [c]. In terms of typing, if
    Γ ⊢ a{_n}..a₁ : Δ and Γ, Δ, Γ' ⊢ c : T with |Γ'|=k, then
    Γ, Γ' ⊢ [substnl [a₁;...;an] k c] : [substnl [a₁;...;an] k T]. *)
val substnl : substl -> int -> constr -> constr

(** [substl σ c] is a short-hand for [substnl σ 0 c] *)
val substl : substl -> constr -> constr

(** [substl a c] is a short-hand for [substnl [a] 0 c] *)
val subst1 : constr -> constr -> constr

(** [substnl_decl [a₁;...;an] k Ω] substitutes in parallel [a₁], ..., [an]
    for respectively [Rel(k+1)], ..., [Rel(k+n)] in [Ω]; it relocates
    accordingly indexes in [a₁],...,[an] and [c]. In terms of typing, if
    Γ ⊢ a{_n}..a₁ : Δ and Γ, Δ, Γ', Ω ⊢ with |Γ'|=[k], then
    Γ, Γ', [substnl_decl [a₁;...;an]] k Ω ⊢. *)
val substnl_decl : substl -> int -> Constr.rel_declaration -> Constr.rel_declaration

(** [substl_decl σ Ω] is a short-hand for [substnl_decl σ 0 Ω] *)
val substl_decl : substl -> Constr.rel_declaration -> Constr.rel_declaration

(** [subst1_decl a Ω] is a short-hand for [substnl_decl [a] 0 Ω] *)
val subst1_decl : constr -> Constr.rel_declaration -> Constr.rel_declaration

(** [replace_vars k [(id₁,c₁);...;(idn,cn)] t] substitutes [Var idj] by
    [cj] in [t]. *)
val replace_vars : (Id.t * constr) list -> constr -> constr

(** [substn_vars k [id₁;...;idn] t] substitutes [Var idj] by [Rel j+k-1] in [t].
   If two names are identical, the one of least index is kept. In terms of
   typing, if Γ,x{_n}:U{_n},...,x₁:U₁,Γ' ⊢ t:T, together with id{_j}:T{_j} and
   Γ,x{_n}:U{_n},...,x₁:U₁,Γ' ⊢ T{_j}\[id{_j+1}..id{_n}:=x{_j+1}..x{_n}\] ≡ Uj,
   then Γ\\{id₁,...,id{_n}\},x{_n}:U{_n},...,x₁:U₁,Γ' ⊢ [substn_vars
   (|Γ'|+1) [id₁;...;idn] t] : [substn_vars (|Γ'|+1) [id₁;...;idn]
   T]. *)
val substn_vars : int -> Id.t list -> constr -> constr

(** [subst_vars [id1;...;idn] t] is a short-hand for [substn_vars
   [id1;...;idn] 1 t]: it substitutes [Var idj] by [Rel j] in [t]. If
   two names are identical, the one of least index is kept. *)
val subst_vars : Id.t list -> constr -> constr

(** [subst_var id t] is a short-hand for [substn_vars [id] 1 t]: it
    substitutes [Var id] by [Rel 1] in [t]. *)
val subst_var : Id.t -> constr -> constr

(** {3 Substitution of universes} *)

open Univ

(** Level substitutions for polymorphism. *)

val subst_univs_level_constr : universe_level_subst -> constr -> constr
val subst_univs_level_context : Univ.universe_level_subst -> Constr.rel_context -> Constr.rel_context

(** Instance substitution for polymorphism. *)
val subst_instance_constr : Instance.t -> constr -> constr
val subst_instance_context : Instance.t -> Constr.rel_context -> Constr.rel_context