1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* Certified Haskell Prelude.
* Author: Matthieu Sozeau
* Institution: LRI, CNRS UMR 8623 - UniversitĂcopyright Paris Sud
* 91405 Orsay, France *)
Require Import Coq.Program.Program.
Set Implicit Arguments.
Unset Strict Implicit.
Require Import Coq.Classes.SetoidTactics.
Goal not True == not (not False) -> ((not True -> True)) \/ True.
intros.
clrewrite H.
clrewrite <- H.
right ; auto.
Defined.
Definition reduced_thm := Eval compute in Unnamed_thm.
(* Print reduced_thm. *)
Lemma foo [ Setoid a R ] : True. (* forall x y, R x y -> x -> y. *)
Proof.
intros.
Print respect2.
pose setoid_morphism.
pose (respect2 (b0:=b)).
simpl in b0.
unfold binary_respectful in b0.
pose (arrow_morphism R).
pose (respect2 (b0:=b1)).
unfold binary_respectful in b2.
pose (eq_morphism (A:=a)).
pose (respect2 (b0:=b3)).
unfold binary_respectful in b4.
exact I.
Qed.
Goal forall A B C (H : A <-> B) (H' : B <-> C), A /\ B <-> B /\ C.
intros.
Set Printing All.
Print iff_morphism.
clrewrite H.
clrewrite H'.
reflexivity.
Defined.
Goal forall A B C (H : A <-> B) (H' : B <-> C), A /\ B <-> B /\ C.
intros.
rewrite H.
rewrite H'.
reflexivity.
Defined.
Require Import Setoid_tac.
Require Import Setoid_Prop.
(* Print Unnamed_thm0. *)
(* Print Unnamed_thm1. *)
|