File: polynomial.mli

package info (click to toggle)
coq 9.1.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 35,964 kB
  • sloc: ml: 239,908; sh: 4,355; python: 2,985; ansic: 2,644; makefile: 874; lisp: 171; javascript: 63; xml: 24; sed: 2
file content (367 lines) | stat: -rw-r--r-- 10,954 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
(************************************************************************)
(*         *      The Rocq Prover / The Rocq Development Team           *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Mutils
open NumCompat
module Mc = Micromega

val max_nb_cstr : int ref

type var = int

module Monomial : sig
  (** A monomial is represented by a multiset of variables  *)
  type t

  (** [degree m] is the sum of the degrees of each variable *)
  val degree : t -> int

  (** [subset m1 m2] holds if the multi-set [m1] is included in [m2] *)
  val subset : t -> t -> bool

  (** [fold f m acc] folds f over the multiset m *)
  val fold : (var -> int -> 'a -> 'a) -> t -> 'a -> 'a

  (** [output o m] outputs a textual representation *)
  val output : out_channel -> t -> unit

end

module MonMap : sig
  include Map.S with type key = Monomial.t

  val union : (Monomial.t -> 'a -> 'a -> 'a option) -> 'a t -> 'a t -> 'a t
end

module Poly : sig
  (** Representation of polonomial with rational coefficient.
      a1.m1 + ... + c where
      - ai are rational constants (num type)
      - mi are monomials
      - c is a rational constant

   *)

  type t

  (** [constant c]
      @return the constant polynomial c *)
  val constant : Q.t -> t

  (** [variable x]
      @return the polynomial 1.x^1 *)
  val variable : var -> t

  (** [addition p1 p2]
      @return the polynomial p1+p2 *)
  val addition : t -> t -> t

  (** [product p1 p2]
      @return the polynomial p1*p2 *)
  val product : t -> t -> t

  (** [uminus p]
      @return the polynomial -p i.e product by -1 *)
  val uminus : t -> t

  (** [get mi p]
      @return the coefficient ai of the  monomial mi. *)
  val get : Monomial.t -> t -> Q.t

  (** [fold f p a] folds f over the monomials of p with non-zero coefficient *)
  val fold : (Monomial.t -> Q.t -> 'a -> 'a) -> t -> 'a -> 'a

  (** [add m n p]
      @return the polynomial n*m + p *)
  val add : Monomial.t -> Q.t -> t -> t
end

type cstr = {coeffs : Vect.t; op : op; cst : Q.t}

(* Representation of linear constraints *)
and op = Eq | Ge | Gt

val eval_op : op -> Q.t -> Q.t -> bool
val compare_op : op -> op -> int

val opAdd : op -> op -> op

(** [is_strict c]
    @return whether the constraint is strict i.e. c.op = Gt *)
val is_strict : cstr -> bool

exception Strict

module LinPoly : sig
  (** Linear(ised) polynomials represented as a [Vect.t]
      i.e a sorted association list.
      The constant is the coefficient of the variable 0

      Each linear polynomial can be interpreted as a multi-variate polynomial.
      There is a bijection mapping between a linear variable and a monomial
      (see module [MonT])
   *)

  type t = Vect.t

  (** Each variable of a linear polynomial is mapped to a monomial.
      This is done using the monomial tables of the module MonT. *)

  module MonT : sig
    (** [clear ()] clears the mapping. *)
    val clear : unit -> unit

    (** [reserve i] reserves the integer i *)
    val reserve : int -> unit

    (** [safe_reserve i] reserves the integer i *)
    val safe_reserve : int -> unit

    (** [get_fresh ()] return the first fresh variable *)
    val get_fresh : unit -> int

    (** [retrieve x]
        @return the monomial corresponding to the variable [x] *)
    val retrieve : int -> Monomial.t

    (** [register m]
        @return the variable index for the monomial m *)
    val register : Monomial.t -> int
  end

  (** [linpol_of_pol p] linearise the polynomial p *)
  val linpol_of_pol : Poly.t -> t

  (** [var x]
      @return 1.y where y is the variable index of the monomial x^1.
   *)
  val var : var -> t

  (** [of_monomial m]
      @returns 1.x where x is the variable (index) for monomial m *)
  val of_monomial : Monomial.t -> t

  (** [of_vect v]
        @returns a1.x1 + ... + an.xn
        This is not the identity because xi is the variable index of xi^1
     *)
  val of_vect : Vect.t -> t

  (** [variables p]
      @return the set of variables of the polynomial p
      interpreted as a multi-variate polynomial *)
  val variables : t -> ISet.t

  (** [is_variable p]
      @return Some x if p = a.x for a >= 0 *)
  val is_variable : t -> var option

  (** [is_linear p]
      @return whether the multi-variate polynomial is linear. *)
  val is_linear : t -> bool

  (** [is_linear_for x p]
      @return true if the polynomial is linear in x
      i.e can be written c*x+r where c is a constant and r is independent from x *)
  val is_linear_for : var -> t -> bool

  (** [constant c]
      @return the constant polynomial c
   *)
  val constant : Q.t -> t

  (** [search_all_linear pred p]
      @return all the variables x such p = a.x + b such that
      p is linear in x i.e x does not occur in b and
      a is a constant such that [pred a] *)
  val search_all_linear : (Q.t -> bool) -> t -> var list

  (** [product p q]
     @return the product of the polynomial [p*q] *)
  val product : t -> t -> t

  (** [collect_square p]
      @return a mapping m such that m[s] = s^2
      for every s^2 that is a monomial of [p] *)
  val collect_square : t -> Monomial.t MonMap.t

  (** [monomials p]
      @return the set of monomials. *)
  val monomials : t -> ISet.t

  (** [pp_var o v] pretty-prints a monomial indexed by v. *)
  val pp_var : out_channel -> var -> unit

  (** [pp o p] pretty-prints a polynomial. *)
  val pp : out_channel -> t -> unit

  (** [pp_goal typ o l] pretty-prints the list of constraints as a Rocq goal. *)
  val pp_goal : string -> out_channel -> (t * op) list -> unit
end

module ProofFormat : sig
  (** Proof format used by the proof-generating procedures.
      It is fairly close to Rocq format but a bit more liberal.

      It is used for proofs over Z, Q, R.
      However, certain constructions e.g. [CutPrf] are only relevant for Z.
   *)

  type prf_rule =
    | Annot of string * prf_rule
    | Hyp of int
    | Def of int
    | Ref of int
    | Cst of Q.t
    | Zero
    | Square of Vect.t
    | MulC of Vect.t * prf_rule
    | Gcd of Z.t * prf_rule
    | MulPrf of prf_rule * prf_rule
    | AddPrf of prf_rule * prf_rule
    | CutPrf of prf_rule
    | LetPrf of prf_rule * prf_rule

  type proof =
    | Done
    | Step of int * prf_rule * proof
    | Split of int * Vect.t * proof * proof
    | Enum of int * prf_rule * Vect.t * prf_rule * proof list
    | ExProof of int * int * int * var * var * var * proof

  (* x = z - t, z >= 0, t >= 0 *)

  val pr_size : prf_rule -> Q.t
  val normalise_proof : int -> proof -> int * proof
  val output_prf_rule : out_channel -> prf_rule -> unit
  val output_proof : out_channel -> proof -> unit
  val add_proof : prf_rule -> prf_rule -> prf_rule
  val mul_cst_proof : Q.t -> prf_rule -> prf_rule
  val mul_proof : prf_rule -> prf_rule -> prf_rule

  module Env: sig
    type t
    val make : int -> t
  end

  val compile_proof : Env.t -> proof -> Micromega.zArithProof

  val cmpl_prf_rule :
       ('a Micromega.pExpr -> 'a Micromega.pol)
    -> (Q.t -> 'a)
    -> Env.t
    -> prf_rule
    -> 'a Micromega.psatz

  val proof_of_farkas : prf_rule IMap.t -> Vect.t -> prf_rule
  val simplify_proof : proof -> proof * Mutils.ISet.t

end

val output_cstr : out_channel -> cstr -> unit

(** [module WithProof] constructs polynomials packed with the proof that their sign is correct. *)
module WithProof : sig
  type t

  (** [InvalidProof] is raised if the operation is invalid. *)
  exception InvalidProof

  val repr : t -> (LinPoly.t * op) * ProofFormat.prf_rule

  val proof : t -> ProofFormat.prf_rule

  val polynomial : t -> LinPoly.t

  val compare : t -> t -> int
  val annot : string -> t -> t
  val of_cstr : cstr * ProofFormat.prf_rule -> t

  (** [out_channel chan c] pretty-prints the constraint [c] over the channel [chan] *)
  val output : out_channel -> t -> unit

  val output_sys : out_channel -> t list -> unit

  (** [zero] represents the tautology (0=0) *)
  val zero : t

  (** [const n] represents the tautology (n>=0) *)
  val const : Q.t -> t

  (** [product p q]
      @return the polynomial p*q with its sign and proof *)
  val product : t -> t -> t

  (** [addition p q]
      @return the polynomial p+q with its sign and proof *)
  val addition : t -> t -> t

  (** [neg p]
      @return the polynomial -p with its sign and proof
      @raise an error if this not an equality
 *)
  val neg : t -> t

  (** [mul_cst c q]
      @return the polynomial c * q with its sign and proof. *)
  val mul_cst : Q.t -> t -> t

  (** [def p op i] creates an alias with the variable index [i] *)
  val def : LinPoly.t -> op -> int -> t

  (** [square p q] is q = p^2 >= 0 *)
  val square : LinPoly.t -> LinPoly.t -> t

  (** [mkhyp p op i] binds p to hypothesis [i] *)
  val mkhyp : LinPoly.t -> op -> int -> t

  (** [cutting_plane p] does integer reasoning and adjust the constant to be integral *)
  val cutting_plane : t -> t option

  (** [linear_pivot sys p x q]
      @return the polynomial [q] where [x] is eliminated using the polynomial [p]
      The pivoting operation is only defined if
      - p is linear in x i.e p = a.x+b and x neither occurs in a and b
      - The pivoting also requires some sign conditions for [a]
   *)
  val linear_pivot : t list -> t -> Vect.var -> t -> t option

  (** [simple_pivot (c,x) p q]  performs a pivoting over the variable [x] where
      p = c+a1.x1+....+c.x+...an.xn and c <> 0 *)
  val simple_pivot : Q.t * var -> t -> t -> t option

  (** [sort sys] sorts constraints according to the lexicographic order (number of variables, size of the smallest coefficient *)
  val sort : t list -> ((int * (Q.t * var)) * t) list

  (** [subst sys] performs the equivalent of the 'subst' tactic of Rocq.
    For every p=0 \in sys such that p is linear in x with coefficient +/- 1
                               i.e. p = 0 <-> x = e and x \notin e.
    Replace x by e in sys

    NB: performing this transformation may hinders the non-linear prover to find a proof.
    [elim_simple_linear_equality] is much more careful.
 *)

  val subst : t list -> t list

  (** [subst_constant b sys] performs the equivalent of the 'subst' tactic of Rocq
      only if there is an equation a.x = c for a,c a constant and a divides c if b= true*)
  val subst_constant : bool -> t list -> t list

  val saturate_subst : bool -> t list -> t list
end

module BoundWithProof : sig
  type t
  val make : WithProof.t -> t option
  val mul_bound : t -> t -> t option
  val bound : t -> Vect.Bound.t
  val proof : t -> WithProof.t
end