1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Mutils
open NumCompat
module Mc = Micromega
val max_nb_cstr : int ref
type var = int
module Monomial : sig
(** A monomial is represented by a multiset of variables *)
type t
(** [degree m] is the sum of the degrees of each variable *)
val degree : t -> int
(** [subset m1 m2] holds if the multi-set [m1] is included in [m2] *)
val subset : t -> t -> bool
(** [fold f m acc] folds f over the multiset m *)
val fold : (var -> int -> 'a -> 'a) -> t -> 'a -> 'a
(** [output o m] outputs a textual representation *)
val output : out_channel -> t -> unit
end
module MonMap : sig
include Map.S with type key = Monomial.t
val union : (Monomial.t -> 'a -> 'a -> 'a option) -> 'a t -> 'a t -> 'a t
end
module Poly : sig
(** Representation of polonomial with rational coefficient.
a1.m1 + ... + c where
- ai are rational constants (num type)
- mi are monomials
- c is a rational constant
*)
type t
(** [constant c]
@return the constant polynomial c *)
val constant : Q.t -> t
(** [variable x]
@return the polynomial 1.x^1 *)
val variable : var -> t
(** [addition p1 p2]
@return the polynomial p1+p2 *)
val addition : t -> t -> t
(** [product p1 p2]
@return the polynomial p1*p2 *)
val product : t -> t -> t
(** [uminus p]
@return the polynomial -p i.e product by -1 *)
val uminus : t -> t
(** [get mi p]
@return the coefficient ai of the monomial mi. *)
val get : Monomial.t -> t -> Q.t
(** [fold f p a] folds f over the monomials of p with non-zero coefficient *)
val fold : (Monomial.t -> Q.t -> 'a -> 'a) -> t -> 'a -> 'a
(** [add m n p]
@return the polynomial n*m + p *)
val add : Monomial.t -> Q.t -> t -> t
end
type cstr = {coeffs : Vect.t; op : op; cst : Q.t}
(* Representation of linear constraints *)
and op = Eq | Ge | Gt
val eval_op : op -> Q.t -> Q.t -> bool
val compare_op : op -> op -> int
val opAdd : op -> op -> op
(** [is_strict c]
@return whether the constraint is strict i.e. c.op = Gt *)
val is_strict : cstr -> bool
exception Strict
module LinPoly : sig
(** Linear(ised) polynomials represented as a [Vect.t]
i.e a sorted association list.
The constant is the coefficient of the variable 0
Each linear polynomial can be interpreted as a multi-variate polynomial.
There is a bijection mapping between a linear variable and a monomial
(see module [MonT])
*)
type t = Vect.t
(** Each variable of a linear polynomial is mapped to a monomial.
This is done using the monomial tables of the module MonT. *)
module MonT : sig
(** [clear ()] clears the mapping. *)
val clear : unit -> unit
(** [reserve i] reserves the integer i *)
val reserve : int -> unit
(** [safe_reserve i] reserves the integer i *)
val safe_reserve : int -> unit
(** [get_fresh ()] return the first fresh variable *)
val get_fresh : unit -> int
(** [retrieve x]
@return the monomial corresponding to the variable [x] *)
val retrieve : int -> Monomial.t
(** [register m]
@return the variable index for the monomial m *)
val register : Monomial.t -> int
end
(** [linpol_of_pol p] linearise the polynomial p *)
val linpol_of_pol : Poly.t -> t
(** [var x]
@return 1.y where y is the variable index of the monomial x^1.
*)
val var : var -> t
(** [of_monomial m]
@returns 1.x where x is the variable (index) for monomial m *)
val of_monomial : Monomial.t -> t
(** [of_vect v]
@returns a1.x1 + ... + an.xn
This is not the identity because xi is the variable index of xi^1
*)
val of_vect : Vect.t -> t
(** [variables p]
@return the set of variables of the polynomial p
interpreted as a multi-variate polynomial *)
val variables : t -> ISet.t
(** [is_variable p]
@return Some x if p = a.x for a >= 0 *)
val is_variable : t -> var option
(** [is_linear p]
@return whether the multi-variate polynomial is linear. *)
val is_linear : t -> bool
(** [is_linear_for x p]
@return true if the polynomial is linear in x
i.e can be written c*x+r where c is a constant and r is independent from x *)
val is_linear_for : var -> t -> bool
(** [constant c]
@return the constant polynomial c
*)
val constant : Q.t -> t
(** [search_all_linear pred p]
@return all the variables x such p = a.x + b such that
p is linear in x i.e x does not occur in b and
a is a constant such that [pred a] *)
val search_all_linear : (Q.t -> bool) -> t -> var list
(** [product p q]
@return the product of the polynomial [p*q] *)
val product : t -> t -> t
(** [collect_square p]
@return a mapping m such that m[s] = s^2
for every s^2 that is a monomial of [p] *)
val collect_square : t -> Monomial.t MonMap.t
(** [monomials p]
@return the set of monomials. *)
val monomials : t -> ISet.t
(** [pp_var o v] pretty-prints a monomial indexed by v. *)
val pp_var : out_channel -> var -> unit
(** [pp o p] pretty-prints a polynomial. *)
val pp : out_channel -> t -> unit
(** [pp_goal typ o l] pretty-prints the list of constraints as a Rocq goal. *)
val pp_goal : string -> out_channel -> (t * op) list -> unit
end
module ProofFormat : sig
(** Proof format used by the proof-generating procedures.
It is fairly close to Rocq format but a bit more liberal.
It is used for proofs over Z, Q, R.
However, certain constructions e.g. [CutPrf] are only relevant for Z.
*)
type prf_rule =
| Annot of string * prf_rule
| Hyp of int
| Def of int
| Ref of int
| Cst of Q.t
| Zero
| Square of Vect.t
| MulC of Vect.t * prf_rule
| Gcd of Z.t * prf_rule
| MulPrf of prf_rule * prf_rule
| AddPrf of prf_rule * prf_rule
| CutPrf of prf_rule
| LetPrf of prf_rule * prf_rule
type proof =
| Done
| Step of int * prf_rule * proof
| Split of int * Vect.t * proof * proof
| Enum of int * prf_rule * Vect.t * prf_rule * proof list
| ExProof of int * int * int * var * var * var * proof
(* x = z - t, z >= 0, t >= 0 *)
val pr_size : prf_rule -> Q.t
val normalise_proof : int -> proof -> int * proof
val output_prf_rule : out_channel -> prf_rule -> unit
val output_proof : out_channel -> proof -> unit
val add_proof : prf_rule -> prf_rule -> prf_rule
val mul_cst_proof : Q.t -> prf_rule -> prf_rule
val mul_proof : prf_rule -> prf_rule -> prf_rule
module Env: sig
type t
val make : int -> t
end
val compile_proof : Env.t -> proof -> Micromega.zArithProof
val cmpl_prf_rule :
('a Micromega.pExpr -> 'a Micromega.pol)
-> (Q.t -> 'a)
-> Env.t
-> prf_rule
-> 'a Micromega.psatz
val proof_of_farkas : prf_rule IMap.t -> Vect.t -> prf_rule
val simplify_proof : proof -> proof * Mutils.ISet.t
end
val output_cstr : out_channel -> cstr -> unit
(** [module WithProof] constructs polynomials packed with the proof that their sign is correct. *)
module WithProof : sig
type t
(** [InvalidProof] is raised if the operation is invalid. *)
exception InvalidProof
val repr : t -> (LinPoly.t * op) * ProofFormat.prf_rule
val proof : t -> ProofFormat.prf_rule
val polynomial : t -> LinPoly.t
val compare : t -> t -> int
val annot : string -> t -> t
val of_cstr : cstr * ProofFormat.prf_rule -> t
(** [out_channel chan c] pretty-prints the constraint [c] over the channel [chan] *)
val output : out_channel -> t -> unit
val output_sys : out_channel -> t list -> unit
(** [zero] represents the tautology (0=0) *)
val zero : t
(** [const n] represents the tautology (n>=0) *)
val const : Q.t -> t
(** [product p q]
@return the polynomial p*q with its sign and proof *)
val product : t -> t -> t
(** [addition p q]
@return the polynomial p+q with its sign and proof *)
val addition : t -> t -> t
(** [neg p]
@return the polynomial -p with its sign and proof
@raise an error if this not an equality
*)
val neg : t -> t
(** [mul_cst c q]
@return the polynomial c * q with its sign and proof. *)
val mul_cst : Q.t -> t -> t
(** [def p op i] creates an alias with the variable index [i] *)
val def : LinPoly.t -> op -> int -> t
(** [square p q] is q = p^2 >= 0 *)
val square : LinPoly.t -> LinPoly.t -> t
(** [mkhyp p op i] binds p to hypothesis [i] *)
val mkhyp : LinPoly.t -> op -> int -> t
(** [cutting_plane p] does integer reasoning and adjust the constant to be integral *)
val cutting_plane : t -> t option
(** [linear_pivot sys p x q]
@return the polynomial [q] where [x] is eliminated using the polynomial [p]
The pivoting operation is only defined if
- p is linear in x i.e p = a.x+b and x neither occurs in a and b
- The pivoting also requires some sign conditions for [a]
*)
val linear_pivot : t list -> t -> Vect.var -> t -> t option
(** [simple_pivot (c,x) p q] performs a pivoting over the variable [x] where
p = c+a1.x1+....+c.x+...an.xn and c <> 0 *)
val simple_pivot : Q.t * var -> t -> t -> t option
(** [sort sys] sorts constraints according to the lexicographic order (number of variables, size of the smallest coefficient *)
val sort : t list -> ((int * (Q.t * var)) * t) list
(** [subst sys] performs the equivalent of the 'subst' tactic of Rocq.
For every p=0 \in sys such that p is linear in x with coefficient +/- 1
i.e. p = 0 <-> x = e and x \notin e.
Replace x by e in sys
NB: performing this transformation may hinders the non-linear prover to find a proof.
[elim_simple_linear_equality] is much more careful.
*)
val subst : t list -> t list
(** [subst_constant b sys] performs the equivalent of the 'subst' tactic of Rocq
only if there is an equation a.x = c for a,c a constant and a divides c if b= true*)
val subst_constant : bool -> t list -> t list
val saturate_subst : bool -> t list -> t list
end
module BoundWithProof : sig
type t
val make : WithProof.t -> t option
val mul_bound : t -> t -> t option
val bound : t -> Vect.Bound.t
val proof : t -> WithProof.t
end
|