1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open CErrors
open Util
open Names
open EConstr
open Vars
open Context
open Declarations
open Declareops
open Environ
open Reductionops
open Context.Rel.Declaration
(* The following three functions are similar to the ones defined in
Inductive, but they expect an env *)
let type_of_inductive env (ind,u) =
let u = EConstr.Unsafe.to_instance u in
let (mib,_ as specif) = Inductive.lookup_mind_specif env ind in
Typeops.check_hyps_inclusion env (GlobRef.IndRef ind) mib.mind_hyps;
let t = Inductive.type_of_inductive (specif,u) in
EConstr.of_constr @@ Arguments_renaming.rename_type t (IndRef ind)
let e_type_of_inductive env sigma (ind,u) =
let (mib,_ as specif) = Inductive.lookup_mind_specif env ind in
Reductionops.check_hyps_inclusion env sigma (GlobRef.IndRef ind) mib.mind_hyps;
let t = Inductive.type_of_inductive (specif, EConstr.Unsafe.to_instance u) in
EConstr.of_constr (Arguments_renaming.rename_type t (IndRef ind))
(* Return type as quoted by the user *)
let type_of_constructor env (cstr,u) =
let u = EConstr.Unsafe.to_instance u in
let (mib,_ as specif) =
Inductive.lookup_mind_specif env (inductive_of_constructor cstr) in
Typeops.check_hyps_inclusion env (GlobRef.ConstructRef cstr) mib.mind_hyps;
let t = Inductive.type_of_constructor (cstr,u) specif in
EConstr.of_constr @@ Arguments_renaming.rename_type t (ConstructRef cstr)
let e_type_of_constructor env sigma (cstr,u) =
let (mib,_ as specif) =
Inductive.lookup_mind_specif env (inductive_of_constructor cstr) in
Reductionops.check_hyps_inclusion env sigma (GlobRef.ConstructRef cstr) mib.mind_hyps;
let t = Inductive.type_of_constructor (cstr,EConstr.Unsafe.to_instance u) specif in
EConstr.of_constr (Arguments_renaming.rename_type t (ConstructRef cstr))
(* Return constructor types in user form *)
let type_of_constructors env (ind,u as indu) =
let indu = on_snd EConstr.Unsafe.to_instance indu in
let specif = Inductive.lookup_mind_specif env ind in
Array.map EConstr.of_constr (Inductive.type_of_constructors indu specif)
(* Return constructor types in normal form *)
let arities_of_constructors env (ind,u as indu) =
let indu = on_snd EConstr.Unsafe.to_instance indu in
let specif = Inductive.lookup_mind_specif env ind in
Array.map EConstr.of_constr (Inductive.arities_of_constructors indu specif)
(* [inductive_family] = [inductive_instance] applied to global parameters *)
type inductive_family = inductive puniverses * constr list
let make_ind_family (mis, params) = (mis,params)
let dest_ind_family (mis,params) : inductive_family = (mis,params)
let map_ind_family f (mis,params) = (mis, List.map f params)
let liftn_inductive_family n d = map_ind_family (liftn n d)
let lift_inductive_family n = liftn_inductive_family n 1
let substnl_ind_family l n = map_ind_family (substnl l n)
let relevance_of_inductive env ind =
let ind = on_snd EConstr.Unsafe.to_instance ind in
ERelevance.make @@ Inductive.relevance_of_inductive env ind
let relevance_of_inductive_family env (ind,_ : inductive_family) =
relevance_of_inductive env ind
type inductive_type = IndType of inductive_family * EConstr.constr list
let ind_of_ind_type = function IndType (((ind,_),_),_) -> ind
let make_ind_type (indf, realargs) = IndType (indf,realargs)
let dest_ind_type (IndType (indf,realargs)) = (indf,realargs)
let map_inductive_type f (IndType (indf, realargs)) =
IndType (map_ind_family f indf, List.map f realargs)
let liftn_inductive_type n d = map_inductive_type (EConstr.Vars.liftn n d)
let lift_inductive_type n = liftn_inductive_type n 1
let substnl_ind_type l n = map_inductive_type (EConstr.Vars.substnl l n)
let relevance_of_inductive_type env (IndType (indf, _)) =
relevance_of_inductive_family env indf
let mkAppliedInd (IndType ((ind,params), realargs)) =
applist (mkIndU ind, params @ realargs)
let dest_recarg p = match Rtree.Kind.kind p with
| Rtree.Kind.Node (ra, _) -> ra
| Rtree.Kind.Var _ -> assert false
let dest_subterms p = match Rtree.Kind.kind p with
| Rtree.Kind.Node (ra, cstrs) ->
let () = assert (match ra with Norec -> false | _ -> true) in
cstrs
| Rtree.Kind.Var _ -> assert false
(* Does not consider imbricated or mutually recursive types *)
let mis_is_recursive_subset env listind rarg =
let one_is_rec rvec =
Array.exists
(fun ra ->
match dest_recarg ra with
| Mrec (RecArgInd ind) -> List.exists (fun ind' -> QInd.equal env ind ind') listind
| Mrec (RecArgPrim _) | Norec -> false) rvec
in
Array.exists one_is_rec (dest_subterms rarg)
let mis_is_recursive env ((ind,_),mib,mip) =
mis_is_recursive_subset env (List.init mib.mind_ntypes (fun i -> (ind,i)))
(Rtree.Kind.make mip.mind_recargs)
let mis_nf_constructor_type ((_,j),u) (mib,mip) =
let nconstr = Array.length mip.mind_consnames in
if j > nconstr then user_err Pp.(str "Not enough constructors in the type.");
let (ctx, cty) = mip.mind_nf_lc.(j - 1) in
subst_instance_constr u (EConstr.it_mkProd_or_LetIn (EConstr.of_constr cty) (EConstr.of_rel_context ctx))
(* Number of constructors *)
let nconstructors env ind =
let (_,mip) = Inductive.lookup_mind_specif env ind in
Array.length mip.mind_consnames
(* Arity of constructors excluding parameters, excluding local defs *)
let constructors_nrealargs env ind =
let (_,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_consnrealargs
(* Arity of constructors excluding parameters, including local defs *)
let constructors_nrealdecls env ind =
let (_,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_consnrealdecls
(* Arity of constructors including parameters, excluding local defs *)
let constructor_nallargs env (ind,j) =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_consnrealargs.(j-1) + mib.mind_nparams
(* Arity of constructors including params, including local defs *)
let constructor_nalldecls env (ind,j) = (* TOCHANGE en decls *)
let (mib,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_consnrealdecls.(j-1) + Context.Rel.length (mib.mind_params_ctxt)
(* Arity of constructors excluding params, excluding local defs *)
let constructor_nrealargs env (ind,j) =
let (_,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_consnrealargs.(j-1)
(* Arity of constructors excluding params, including local defs *)
let constructor_nrealdecls env (ind,j) = (* TOCHANGE en decls *)
let (_,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_consnrealdecls.(j-1)
(* Length of arity, excluding params, excluding local defs *)
let inductive_nrealargs env ind =
let (_,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_nrealargs
(* Length of arity, excluding params, including local defs *)
let inductive_nrealdecls env ind =
let (_,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_nrealdecls
(* Full length of arity (w/o local defs) *)
let inductive_nallargs env ind =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
mib.mind_nparams + mip.mind_nrealargs
(* Length of arity (w/o local defs) *)
let inductive_nparams env ind =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
mib.mind_nparams
(* Length of arity (with local defs) *)
let inductive_nparamdecls env ind =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
Context.Rel.length mib.mind_params_ctxt
(* Full length of arity (with local defs) *)
let inductive_nalldecls env ind =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
Context.Rel.length (mib.mind_params_ctxt) + mip.mind_nrealdecls
(* Others *)
let inductive_paramdecls env (ind,u) =
let u = EConstr.Unsafe.to_instance u in
let (mib,mip) = Inductive.lookup_mind_specif env ind in
EConstr.of_rel_context @@ Inductive.inductive_paramdecls (mib,u)
let inductive_alldecls env (ind,u) =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
Vars.subst_instance_context u (EConstr.of_rel_context mip.mind_arity_ctxt)
let inductive_alltags env ind =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
Context.Rel.to_tags mip.mind_arity_ctxt
let constructor_alltags env (ind,j) =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
Context.Rel.to_tags (fst mip.mind_nf_lc.(j-1))
let constructor_has_local_defs env (indsp,j) =
let (mib,mip) = Inductive.lookup_mind_specif env indsp in
let l1 = mip.mind_consnrealdecls.(j-1) + Context.Rel.length (mib.mind_params_ctxt) in
let l2 = recarg_length mip.mind_recargs j + mib.mind_nparams in
not (Int.equal l1 l2)
let inductive_has_local_defs env ind =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
let l1 = Context.Rel.length (mib.mind_params_ctxt) + mip.mind_nrealdecls in
let l2 = mib.mind_nparams + mip.mind_nrealargs in
not (Int.equal l1 l2)
let squash_elim_sort sigma squash rtnsort =
let open Inductive in
let add_unif_if_cannot_elim_into starget =
if Sorts.eliminates_to starget @@ ESorts.kind sigma rtnsort
then sigma
else Evd.set_eq_sort sigma rtnsort @@ ESorts.make starget in
match squash with
| SquashToSet -> add_unif_if_cannot_elim_into Sorts.set
(* Squashed inductive in Set, only happens with impredicative Set *)
| SquashToQuality (QConstant QProp) ->
add_unif_if_cannot_elim_into Sorts.prop
(* Squashed inductive in Prop, return sort must be Prop or SProp *)
| SquashToQuality (QConstant QSProp) ->
add_unif_if_cannot_elim_into Sorts.sprop
(* Squashed inductive in SProp, return sort must be SProp. *)
| SquashToQuality (QConstant QType) ->
Evd.set_leq_sort sigma ESorts.set rtnsort
(* Sort poly squash to type *)
| SquashToQuality (QVar q) ->
Evd.set_leq_sort sigma (ESorts.make (Sorts.qsort q Univ.Universe.type0)) rtnsort
(* [s] is the sort of an inductive definition. *)
let loc_indsort_to_quality sigma u s =
let u = (EConstr.Unsafe.to_instance u) in
Sorts.quality
(EConstr.ESorts.kind sigma
(EConstr.ESorts.make @@ UVars.subst_instance_sort u s))
(* [q] is a quality an inductive has to be squashed to. *)
let loc_squashed_to_quality sigma u q =
let u = EConstr.Unsafe.to_instance u in
UState.nf_quality (Evd.ustate sigma) (UVars.subst_instance_quality u q)
let is_squashed sigma specifu =
Inductive.is_squashed_gen
(loc_indsort_to_quality sigma)
(loc_squashed_to_quality sigma)
specifu
let is_allowed_elimination sigma (((mib,_),_) as specifu) s =
match mib.mind_record with
| PrimRecord _ -> true
| NotRecord | FakeRecord ->
let s = EConstr.ESorts.kind sigma s in
Inductive.allowed_elimination_gen
(loc_indsort_to_quality sigma)
(loc_squashed_to_quality sigma)
(Inductive.is_allowed_elimination_actions s)
specifu s
let make_allowed_elimination_actions sigma s =
Inductive.
{ not_squashed = Some sigma
; squashed_to_set_below = Some sigma
; squashed_to_set_above = (
try Some (Evd.set_leq_sort sigma s ESorts.set)
with UGraph.UniverseInconsistency _ -> None)
; squashed_to_quality =
fun indq -> let sq = EConstr.ESorts.quality sigma s in
if Inductive.eliminates_to indq sq
then Some sigma
else
let mk q = ESorts.make @@ Sorts.make q Univ.Universe.type0 in
try Some (Evd.set_leq_sort sigma (mk sq) (mk indq))
with UGraph.UniverseInconsistency _ -> None }
let make_allowed_elimination sigma ((mib,_),_ as specifu) s =
match mib.mind_record with
| PrimRecord _ -> Some sigma
| NotRecord | FakeRecord ->
Inductive.allowed_elimination_gen
(loc_indsort_to_quality sigma)
(loc_squashed_to_quality sigma)
(make_allowed_elimination_actions sigma s)
specifu
(EConstr.ESorts.kind sigma s)
(* XXX questionable for sort poly inductives *)
let elim_sort (mib,mip) =
let is_record =
match mib.mind_record with
| NotRecord | FakeRecord -> false
| PrimRecord _ -> true in
let has_args mip =
let rec types_prod t = match Constr.kind t with
| Prod(_,ct,t) -> ct::(types_prod t)
| _ -> []
in
let field_types =
List.skipn mib.mind_nparams (types_prod mip.mind_user_lc.(0)) in
List.exists (fun t -> List.length (types_prod t) > 1) field_types in
(* Allow large elimination on non-squashed inductives except when it's
a primitive record in SProp such that any of its "subconstructors" has
arguments. We'd wish for a more uniform management of this case in the
future. *)
if Option.is_empty mip.mind_squashed &&
not (is_record && has_args mip && Sorts.is_sprop mip.mind_sort)
then Sorts.Quality.qtype
else Sorts.quality mip.mind_sort
let top_allowed_sort env (kn,i as ind) =
let specif = Inductive.lookup_mind_specif env ind in
elim_sort specif
let constant_sorts_below top =
let top = UnivGen.QualityOrSet.of_quality top in
List.filter
(UnivGen.QualityOrSet.eliminates_to top)
(UnivGen.QualityOrSet.all_constants)
let sorts_for_schemes specif =
constant_sorts_below (elim_sort specif)
let has_dependent_elim (mib,mip) =
match mib.mind_record with
| PrimRecord _ -> mib.mind_finite == BiFinite || mip.mind_relevance == Irrelevant
| NotRecord | FakeRecord -> true
(* Annotation for cases *)
let make_case_info env ind style =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
let print_info = { Constr.style } in
{ Constr.ci_ind = ind;
ci_npar = mib.mind_nparams;
ci_cstr_ndecls = mip.mind_consnrealdecls;
ci_cstr_nargs = mip.mind_consnrealargs;
ci_pp_info = print_info }
(*s Useful functions *)
type constructor_summary = {
cs_cstr : constructor puniverses;
cs_params : constr list;
cs_nargs : int;
cs_args : EConstr.rel_context;
cs_concl_realargs : constr array
}
let lift_constructor n cs = {
cs_cstr = cs.cs_cstr;
cs_params = List.map (lift n) cs.cs_params;
cs_nargs = cs.cs_nargs;
cs_args = Vars.lift_rel_context n cs.cs_args;
cs_concl_realargs = Array.map (liftn n (cs.cs_nargs+1)) cs.cs_concl_realargs
}
(* Accept either all parameters or only recursively uniform ones *)
let instantiate_params t params sign =
let nnonrecpar = Context.Rel.nhyps sign - List.length params in
(* Adjust the signature if recursively non-uniform parameters are not here *)
let _,sign = Context.Rel.chop_nhyps nnonrecpar sign in
let _,t = Term.decompose_prod_n_decls (Context.Rel.length sign) t in
let subst = subst_of_rel_context_instance_list sign params in
substl subst (EConstr.of_constr t)
let instantiate_constructor_params (_,u as cstru) (mib,_ as mind_specif) params =
let typi = mis_nf_constructor_type cstru mind_specif in
let ctx = Vars.subst_instance_context u (EConstr.of_rel_context mib.mind_params_ctxt) in
instantiate_params (EConstr.Unsafe.to_constr typi) params ctx
let get_constructor ((ind,u),mib,mip,params) j =
assert (j <= Array.length mip.mind_consnames);
let typi = instantiate_constructor_params ((ind,j),u) (mib,mip) params in
let typi = EConstr.Unsafe.to_constr typi in
let (args,ccl) = Term.decompose_prod_decls typi in
let (_,allargs) = Constr.decompose_app_list ccl in
let vargs = List.skipn (List.length params) allargs in
{ cs_cstr = (ith_constructor_of_inductive ind j,u);
cs_params = params;
cs_nargs = Context.Rel.length args;
cs_args = EConstr.of_rel_context args;
cs_concl_realargs = Array.map_of_list EConstr.of_constr vargs }
let get_constructors env (ind,params) =
let (mib,mip) = Inductive.lookup_mind_specif env (fst ind) in
Array.init (Array.length mip.mind_consnames)
(fun j -> get_constructor (ind,mib,mip,params) (j+1))
let get_projections = Environ.get_projections
let make_case_invert env sigma (IndType (((ind,u),params),indices)) ~case_relevance:r ci =
let r = ERelevance.kind sigma r in
if Typeops.should_invert_case env r ci
then Constr.CaseInvert {indices=Array.of_list indices}
else Constr.NoInvert
let error_not_allowed_dependent_analysis env isrec i =
let open Pp in
str "Dependent " ++ str (if isrec then "induction" else "case analysis") ++
strbrk " is not allowed for " ++ Termops.pr_global_env env (IndRef i) ++ str "." ++
str "Primitive records must have eta conversion to allow dependent elimination."
let make_project env sigma ind pred c branches ps =
assert(Array.length branches == 1);
let na, ty, t = destLambda sigma pred in
let mib, mip as specif = Inductive.lookup_mind_specif env ind in
let () =
if (* dependent *) not (Vars.noccurn sigma 1 t) &&
not (has_dependent_elim specif) then
user_err (error_not_allowed_dependent_analysis env false ind)
in
let branch = branches.(0) in
let ctx, br = decompose_lambda_n_decls sigma mip.mind_consnrealdecls.(0) branch in
let _, u = destInd sigma (fst (decompose_app sigma ty)) in
let u = Unsafe.to_instance u in
let mkProj i c =
let p, r = ps.(i) in
let r = UVars.subst_instance_relevance u r in
mkProj (Projection.make p true, ERelevance.make r, c)
in
let proj = match EConstr.destRel sigma br with
| exception Constr.DestKO -> None
| i ->
begin match List.skipn (i-1) ctx with
| exception Failure _ -> None
| ctx -> match ctx with
| [] -> None
| LocalDef _ :: _ ->
(* XXX Maybe we should produce the applied constant for this letin pseudoprojection?
We would have to get the params etc*)
None
| LocalAssum _ :: ctx ->
(* This match is just a projection *)
Some (mkProj (Context.Rel.nhyps ctx) c)
end
in
match proj with
| Some proj -> proj
| None ->
let n, len, ctx =
List.fold_right
(fun decl (i, j, ctx) ->
match decl with
| LocalAssum (na, ty) ->
let t = mkProj i (mkRel j) in
(i + 1, j + 1, LocalDef (na, t, Vars.liftn 1 j ty) :: ctx)
| LocalDef (na, b, ty) ->
(i, j + 1, LocalDef (na, Vars.liftn 1 j b, Vars.liftn 1 j ty) :: ctx))
ctx (0, 1, [])
in
mkLetIn (na, c, ty, it_mkLambda_or_LetIn (Vars.liftn 1 (mip.mind_consnrealdecls.(0) + 1) br) ctx)
let simple_make_case_or_project env sigma ci pred invert c branches =
let ind = ci.Constr.ci_ind in
let projs = get_projections env ind in
match projs with
| None -> mkCase (EConstr.contract_case env sigma (ci, pred, invert, c, branches))
| Some ps -> make_project env sigma ind (fst pred) c branches ps
let make_case_or_project env sigma indt ci pred c branches =
let IndType (((ind,_),_),_) = indt in
let projs = get_projections env ind in
match projs with
| None ->
let invert = make_case_invert env sigma indt ~case_relevance:(snd pred) ci in
mkCase (EConstr.contract_case env sigma (ci, pred, invert, c, branches))
| Some ps -> make_project env sigma ind (fst pred) c branches ps
(* substitution in a signature *)
let substnl_rel_context subst n sign =
let rec aux n = function
| d::sign -> substnl_decl subst n d :: aux (n+1) sign
| [] -> []
in List.rev (aux n (List.rev sign))
let substl_rel_context subst = substnl_rel_context subst 0
let get_arity env ((ind,u),params) =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
let parsign =
(* Dynamically detect if called with an instance of recursively
uniform parameter only or also of recursively non-uniform
parameters *)
let u = EConstr.Unsafe.to_instance u in
let nparams = List.length params in
if Int.equal nparams mib.mind_nparams then
Inductive.inductive_paramdecls (mib,u)
else begin
assert (Int.equal nparams mib.mind_nparams_rec);
snd (Inductive.inductive_nonrec_rec_paramdecls (mib,u))
end in
let parsign = EConstr.of_rel_context parsign in
let arproperlength = List.length mip.mind_arity_ctxt - List.length parsign in
let arsign,_ = List.chop arproperlength mip.mind_arity_ctxt in
let arsign = EConstr.of_rel_context arsign in
let subst = subst_of_rel_context_instance_list parsign params in
let arsign = Vars.subst_instance_context u arsign in
substl_rel_context subst arsign
(* Functions to build standard types related to inductive *)
let build_dependent_constructor cs =
applist
(mkConstructU cs.cs_cstr,
(List.map (lift cs.cs_nargs) cs.cs_params)
@(Context.Rel.instance_list mkRel 0 cs.cs_args))
let build_dependent_inductive env ((ind, params) as indf) =
let arsign = get_arity env indf in
let nrealargs = List.length arsign in
applist
(mkIndU ind,
(List.map (lift nrealargs) params)@(Context.Rel.instance_list mkRel 0 arsign))
(* builds the arity of an elimination predicate in sort [s] *)
let make_arity_signature env sigma dep (ind, _ as indf) =
let arsign = get_arity env indf in
let r = relevance_of_inductive env ind in
let anon = make_annot Anonymous r in
if dep then
(* We need names everywhere *)
Namegen.name_context env sigma
((LocalAssum (anon, build_dependent_inductive env indf)) :: arsign)
(* Costly: would be better to name once for all at definition time *)
else
(* No need to enforce names *)
arsign
let make_arity env sigma dep indf s =
it_mkProd_or_LetIn (mkSort s) (make_arity_signature env sigma dep indf)
(**************************************************)
(** From a rel context describing the constructor arguments,
build an expansion function.
The term built is expecting to be substituted first by
a substitution of the form [params, x : ind params] *)
let compute_projections env (kn, i as ind) =
let mib = Environ.lookup_mind kn env in
let u = UVars.make_abstract_instance (Declareops.inductive_polymorphic_context mib) in
let u = EInstance.make u in
let x = match mib.mind_record with
| NotRecord | FakeRecord ->
anomaly Pp.(str "Trying to build primitive projections for a non-primitive record")
| PrimRecord info ->
let id, _, _, _ = info.(i) in
make_annot (Name id) (ERelevance.make mib.mind_packets.(i).mind_relevance)
in
let pkt = mib.mind_packets.(i) in
let { mind_nparams = nparamargs; mind_params_ctxt = params } = mib in
let params = EConstr.of_rel_context params in
let ctx, _ = pkt.mind_nf_lc.(0) in
let ctx, paramslet = List.chop pkt.mind_consnrealdecls.(0) ctx in
let ctx = EConstr.of_rel_context ctx in
(* We build a substitution smashing the lets in the record parameters so
that typechecking projections requires just a substitution and not
matching with a parameter context. *)
let indty =
(* [ty] = [Ind inst] is typed in context [params] *)
let inst = Context.Rel.instance mkRel 0 paramslet in
let indu = mkIndU (ind, u) in
let ty = mkApp (indu, inst) in
(* [Ind inst] is typed in context [params-wo-let] *)
ty
in
let projections decl (proj_arg, j, pbs, subst) =
match decl with
| LocalDef (na,c,t) ->
(* From [params, field1,..,fieldj |- c(params,field1,..,fieldj)]
to [params, x:I, field1,..,fieldj |- c(params,field1,..,fieldj)] *)
let c = liftn 1 j c in
(* From [params, x:I, field1,..,fieldj |- c(params,field1,..,fieldj)]
to [params, x:I |- c(params,proj1 x,..,projj x)] *)
let c1 = substl subst c in
(* From [params, x:I |- subst:field1,..,fieldj]
to [params, x:I |- subst:field1,..,fieldj+1] where [subst]
is represented with instance of field1 last *)
let subst = c1 :: subst in
(proj_arg, j+1, pbs, subst)
| LocalAssum (na,t) ->
match na.binder_name with
| Name id ->
let lab = Label.of_id id in
let proj_relevant = na.binder_relevance in
let kn = Projection.Repr.make ind ~proj_npars:mib.mind_nparams ~proj_arg lab in
(* from [params, field1,..,fieldj |- t(params,field1,..,fieldj)]
to [params, x:I, field1,..,fieldj |- t(params,field1,..,fieldj] *)
let t = liftn 1 j t in
(* from [params, x:I, field1,..,fieldj |- t(params,field1,..,fieldj)]
to [params-wo-let, x:I |- t(params,proj1 x,..,projj x)] *)
(* from [params, x:I, field1,..,fieldj |- t(field1,..,fieldj)]
to [params, x:I |- t(proj1 x,..,projj x)] *)
let ty = substl subst t in
let term = mkProj (Projection.make kn true, proj_relevant, mkRel 1) in
let fterm = mkProj (Projection.make kn false, proj_relevant, mkRel 1) in
let etab = it_mkLambda_or_LetIn (mkLambda (x, indty, term)) params in
let etat = it_mkProd_or_LetIn (mkProd (x, indty, ty)) params in
let body = (etab, etat) in
(proj_arg + 1, j + 1, body :: pbs, fterm :: subst)
| Anonymous ->
anomaly Pp.(str "Trying to build primitive projections for a non-primitive record")
in
let (_, _, pbs, subst) =
List.fold_right projections ctx (0, 1, [], [])
in
Array.rev_of_list pbs
(**************************************************)
let extract_mrectype sigma t =
let open EConstr in
let (t, l) = decompose_app_list sigma t in
match EConstr.kind sigma t with
| Ind ind -> (ind, l)
| _ -> raise Not_found
let find_mrectype_vect env sigma c =
let (t, l) = EConstr.decompose_app sigma (whd_all env sigma c) in
match EConstr.kind sigma t with
| Ind ind -> (ind, l)
| _ -> raise Not_found
let find_mrectype env sigma c =
let (ind, v) = find_mrectype_vect env sigma c in (ind, Array.to_list v)
let find_rectype env sigma c =
let open EConstr in
let (t, l) = decompose_app_list sigma (whd_all env sigma c) in
match EConstr.kind sigma t with
| Ind (ind,u) ->
let (mib,mip) = Inductive.lookup_mind_specif env ind in
if mib.mind_nparams > List.length l then raise Not_found;
let (par,rargs) = List.chop mib.mind_nparams l in
let indu = (ind, u) in
IndType ((indu, par), rargs)
| _ -> raise Not_found
let find_inductive env sigma c =
let open EConstr in
let (t, l) = decompose_app_list sigma (whd_all env sigma c) in
match EConstr.kind sigma t with
| Ind ind
when (fst (Inductive.lookup_mind_specif env (fst ind))).mind_finite <> CoFinite ->
(ind, l)
| _ -> raise Not_found
let find_coinductive env sigma c =
let open EConstr in
let (t, l) = decompose_app_list sigma (whd_all env sigma c) in
match EConstr.kind sigma t with
| Ind ind
when (fst (Inductive.lookup_mind_specif env (fst ind))).mind_finite == CoFinite ->
(ind, l)
| _ -> raise Not_found
(* Type of Case predicates *)
let arity_of_case_predicate env (ind,params) dep k =
let arsign = get_arity env (ind,params) in
let r = relevance_of_inductive env ind in
let mind = build_dependent_inductive env (ind,params) in
let concl = if dep then mkArrow mind r (mkSort k) else mkSort k in
it_mkProd_or_LetIn concl arsign
let type_of_projection_constant env (p,u) =
let _, pty = lookup_projection p env in
EConstr.Vars.subst_instance_constr u (EConstr.of_constr pty)
let type_of_projection_knowing_arg env sigma p c ty =
let open EConstr.Vars in
let IndType(pars,realargs) =
try find_rectype env sigma ty
with Not_found ->
raise (Invalid_argument "type_of_projection_knowing_arg_type: not an inductive type")
in
let (_,u), pars = dest_ind_family pars in
substl (c :: List.rev pars) (type_of_projection_constant env (p,u))
(***********************************************)
(* Guard condition *)
(* A function which checks that a term well typed verifies both
syntactic conditions *)
let control_only_guard env sigma c =
let evars = Evd.evar_handler sigma in
let c = Evarutil.nf_evar sigma c in
let check_fix_cofix e c =
(* [c] has already been normalized upfront *)
let c = EConstr.Unsafe.to_constr c in
match Constr.kind c with
| CoFix (_,(_,_,_) as cofix) ->
Inductive.check_cofix ~evars e cofix
| Fix fix ->
Inductive.check_fix ~evars e fix
| _ -> ()
in
let rec iter env c =
check_fix_cofix env c;
EConstr.iter_with_full_binders env sigma EConstr.push_rel iter env c
in
try iter env c
with Type_errors.TypeError (env, e) ->
raise (Pretype_errors.PretypeError
(env, sigma,
TypingError (Pretype_errors.of_type_error e)))
|