File: reductionops.mli

package info (click to toggle)
coq 9.1.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 35,964 kB
  • sloc: ml: 239,908; sh: 4,355; python: 2,985; ansic: 2,644; makefile: 874; lisp: 171; javascript: 63; xml: 24; sed: 2
file content (345 lines) | stat: -rw-r--r-- 15,873 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
(************************************************************************)
(*         *      The Rocq Prover / The Rocq Development Team           *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Names
open Constr
open EConstr
open Univ
open Evd
open Environ

(** Reduction Functions. *)

exception Elimconst

type meta_handler = { meta_value : metavariable -> EConstr.t option }

val debug_RAKAM : CDebug.t

module CredNative : Primred.RedNative with
  type elem = EConstr.t and type args = EConstr.t array and type evd = Evd.evar_map
  and type uinstance = EInstance.t

(** Machinery to customize the behavior of the reduction *)
module ReductionBehaviour : sig

  type t = NeverUnfold | UnfoldWhen of when_flags | UnfoldWhenNoMatch of when_flags
  and when_flags = { recargs : int list ; nargs : int option }

  module Db : sig
    type t
    val get : unit -> t
    val empty : t
    val print : t -> Constant.t -> Pp.t
    val all_never_unfold : t -> Cpred.t
  end

  val set : local:bool -> Constant.t -> t option -> unit
  val get_from_db : Db.t -> Constant.t -> t option
  val get : Constant.t -> t option
  val print : Constant.t -> Pp.t
end

(** {6 Support for reduction effects } *)

type effect_name = string

(* [declare_reduction_effect name f] declares [f] under key [name];
   [name] must be a unique in "world". *)
val declare_reduction_effect : effect_name ->
  (Environ.env -> Evd.evar_map -> Constr.constr -> unit) -> unit

(* [set_reduction_effect local cst name] declares effect [name] to be called when [cst] is found *)
val set_reduction_effect : Libobject.locality -> Constant.t -> effect_name -> unit

(* [effect_hook env sigma key term] apply effect associated to [key] on [term] *)
val reduction_effect_hook : Environ.env -> Evd.evar_map -> Constant.t ->
  Constr.constr Lazy.t -> unit

module Stack : sig
  type app_node

  val pr_app_node : (EConstr.t -> Pp.t) -> app_node -> Pp.t

  type case_stk

  val mkCaseStk : case_info * EInstance.t * EConstr.t array * EConstr.case_return * EConstr.t pcase_invert * EConstr.case_branch array -> case_stk

  type member =
  | App of app_node
  | Case of case_stk
  | Proj of Projection.t * ERelevance.t
  | Fix of EConstr.fixpoint * t
  | Primitive of CPrimitives.t * (Constant.t * EInstance.t) * t * CPrimitives.args_red
  and t = member list

  val pr : (EConstr.t -> Pp.t) -> t -> Pp.t

  val empty : t
  val is_empty : t -> bool

  val compare_shape : t -> t -> bool

  exception IncompatibleFold2

  (** [fold2 f x sk1 sk2] folds [f] on any pair of term in [(sk1,sk2)].
      @return the result and the lifts to apply on the terms
      @raise IncompatibleFold2 when [sk1] and [sk2] have incompatible shapes *)
  val fold2 : ('a -> constr -> constr -> 'a) -> 'a -> t -> t -> 'a

  (** [append_app args sk] pushes array of arguments [args] on [sk] *)
  val append_app : EConstr.t array -> t -> t

  (** [append_app_list args sk] pushes list of arguments [args] on [sk] *)
  val append_app_list : EConstr.t list -> t -> t

  (** if [strip_app sk] = [(sk1,sk2)], then [sk = sk1 @ sk2] with
      [sk1] purely applicative and [sk2] does not start with an argument *)
  val strip_app : t -> t * t

  (** @return (the nth first elements, the (n+1)th element, the remaining stack)
      if there enough of those *)
  val strip_n_app : int -> t -> (t * EConstr.t * t) option

  (** [decomp sk] extracts the first argument of reversed stack [sk] is there is some *)
  val decomp_rev : t -> (EConstr.t * t) option

  (** [not_purely_applicative sk] *)
  val not_purely_applicative : t -> bool

  (** [list_of_app_stack sk] either returns [Some sk] turned into a list of
      arguments if [sk] is purely applicative and [None] otherwise *)
  val list_of_app_stack : t -> constr list option

  (** [args_size sk] returns the number of arguments available at the
      head of [sk] *)
  val args_size : t -> int

  (** [zip sigma t sk] *)
  val zip : evar_map -> constr * t -> constr

  val expand_case : env -> evar_map -> case_stk ->
    case_info * EInstance.t * constr array * ((rel_context * constr) * ERelevance.t) * (rel_context * constr) array
end

(************************************************************************)

type reduction_function = env -> evar_map -> constr -> constr

type e_reduction_function = env -> evar_map -> constr -> evar_map * constr

type stack_reduction_function =
    env -> evar_map -> constr -> constr * constr list

(** {6 Generic Optimized Reduction Function using Closures } *)

val clos_norm_flags : RedFlags.reds -> reduction_function
val clos_whd_flags : RedFlags.reds -> reduction_function

(** Same as [(strong whd_beta[delta][iota])], but much faster on big terms *)
val nf_beta : reduction_function
val nf_betaiota : reduction_function
val nf_betaiotazeta : reduction_function
val nf_zeta : reduction_function
val nf_all : reduction_function
val nf_evar : evar_map -> constr -> constr

(** Lazy strategy, weak head reduction *)

val whd_evar :  evar_map -> constr -> constr
val whd_nored : ?metas:meta_handler -> reduction_function
val whd_beta : reduction_function
val whd_betaiota : ?metas:meta_handler -> reduction_function
val whd_betaiotazeta : ?metas:meta_handler -> reduction_function
val whd_all : ?metas:meta_handler -> reduction_function
val whd_allnolet :  reduction_function
val whd_betalet : reduction_function

(** Removes cast and put into applicative form *)
val whd_nored_stack : ?metas:meta_handler -> stack_reduction_function
val whd_beta_stack : ?metas:meta_handler -> stack_reduction_function
val whd_betaiota_stack : ?metas:meta_handler -> stack_reduction_function
val whd_betaiotazeta_stack : ?metas:meta_handler -> stack_reduction_function
val whd_all_stack : ?metas:meta_handler -> stack_reduction_function
val whd_allnolet_stack : ?metas:meta_handler -> stack_reduction_function
val whd_betalet_stack : ?metas:meta_handler -> stack_reduction_function

(** {6 Head normal forms } *)

val whd_const : Constant.t -> reduction_function
val whd_delta_stack : ?metas:meta_handler -> stack_reduction_function
val whd_delta :  reduction_function
val whd_betadeltazeta_stack : ?metas:meta_handler -> stack_reduction_function
val whd_betadeltazeta :  reduction_function
val whd_zeta_stack : ?metas:meta_handler -> stack_reduction_function
val whd_zeta : reduction_function

val shrink_eta : evar_map -> constr -> constr

val whd_stack_gen : RedFlags.reds -> ?metas:meta_handler -> stack_reduction_function

(** Various reduction functions *)

val beta_applist : evar_map -> constr * constr list -> constr

val hnf_prod_app     : env -> evar_map -> constr -> constr -> constr
val hnf_prod_appvect : env -> evar_map -> constr -> constr array -> constr
val hnf_prod_applist : env -> evar_map -> constr -> constr list -> constr
val hnf_lam_app      : env -> evar_map -> constr -> constr -> constr
val hnf_lam_appvect  : env -> evar_map -> constr -> constr array -> constr
val hnf_lam_applist  : env -> evar_map -> constr -> constr list -> constr

val whd_decompose_prod : env -> evar_map -> types -> (Name.t EConstr.binder_annot * constr) list * types
(** Decompose a type into a sequence of products and a non-product conclusion
    in head normal form, using head-reduction to expose the products *)

val whd_decompose_lambda : env -> evar_map -> constr -> (Name.t EConstr.binder_annot * constr) list * constr
(** Decompose a term into a sequence of lambdas and a non-lambda conclusion
    in head normal form, using head-reduction to expose the lambdas *)

val whd_decompose_prod_decls : env -> evar_map -> types -> rel_context * types
(** Decompose a type into a context and a conclusion not starting with a product or let-in,
    using head-reduction without zeta to expose the products and let-ins *)

val whd_decompose_prod_n : env -> evar_map -> int -> types -> (Name.t EConstr.binder_annot * constr) list * types
(** Like [whd_decompose_prod] but limited at [n] products; raises [Invalid_argument] if not enough products *)

val whd_decompose_lambda_n : env -> evar_map -> int -> constr -> (Name.t EConstr.binder_annot * constr) list * constr
(** Like [whd_decompose_lambda] but limited at [n] lambdas; raises [Invalid_argument] if not enough lambdas *)

val splay_arity : env -> evar_map -> constr -> (Name.t EConstr.binder_annot * constr) list * ESorts.t
(** Decompose an arity reducing let-ins; Raises [Reduction.NotArity] *)

val dest_arity : env -> evar_map -> constr -> rel_context * ESorts.t
(** Decompose an arity preserving let-ins; Raises [Reduction.NotArity] *)

val sort_of_arity : env -> evar_map -> constr -> ESorts.t
(** Raises [Reduction.NotArity] *)

val whd_decompose_prod_n_assum : env -> evar_map -> int -> types -> rel_context * types
(** Extract the n first products of a type, preserving let-ins (but not counting them);
    Raises [Invalid_argument] if not enough products *)

val whd_decompose_prod_n_decls : env -> evar_map -> int -> types -> rel_context * types
(** Extract the n first products of a type, counting and preserving let-ins;
    Raises [Invalid_argument] if not enough products or let-ins *)

val whd_decompose_lambda_n_assum : env -> evar_map -> int -> constr -> rel_context * constr
(** Extract the n first lambdas of a term, preserving let-ins (but not counting them);
    Raises [Invalid_argument] if not enough lambdas *)

val reducible_mind_case : evar_map -> constr -> bool

val find_conclusion : env -> evar_map -> constr -> (constr, constr, ESorts.t, EInstance.t, ERelevance.t) kind_of_term
val is_arity : env -> evar_map -> constr -> bool
val is_sort : env -> evar_map -> types -> bool

val contract_fix : evar_map -> fixpoint -> constr
val contract_cofix : evar_map -> cofixpoint -> constr

(** {6 Querying the kernel conversion oracle: opaque/transparent constants } *)
val is_transparent : Environ.env -> Evaluable.t -> bool

(** {6 Conversion Functions (uses closures, lazy strategy) } *)

type conversion_test = Constraints.t -> Constraints.t

val is_conv : ?reds:TransparentState.t -> env -> evar_map -> constr -> constr -> bool
val is_conv_leq : ?reds:TransparentState.t -> env -> evar_map -> constr -> constr -> bool
val is_fconv : ?reds:TransparentState.t -> conv_pb -> env -> evar_map -> constr -> constr -> bool

(** [check_conv] Checks universe constraints only.
    pb defaults to CUMUL and ts to a full transparent state.
 *)
val check_conv : ?pb:conv_pb -> ?ts:TransparentState.t -> env -> evar_map -> constr -> constr -> bool
[@@ocaml.deprecated "(8.18) Use Reductionops.is_fconv instead"]

(** [infer_conv] Adds necessary universe constraints to the evar map.
    pb defaults to CUMUL and ts to a full transparent state.
    @raise UniverseInconsistency iff catch_incon is set to false,
    otherwise returns false in that case.
 *)
val infer_conv : ?catch_incon:bool -> ?pb:conv_pb -> ?ts:TransparentState.t ->
  env -> evar_map -> constr -> constr -> evar_map option

val infer_conv_ustate : ?catch_incon:bool -> ?pb:conv_pb -> ?ts:TransparentState.t ->
  env -> evar_map -> constr -> constr -> UnivProblem.Set.t option

(** Conversion with inference of universe constraints *)
val vm_infer_conv : ?pb:conv_pb -> env -> evar_map -> constr -> constr ->
  evar_map option

val native_infer_conv : ?pb:conv_pb -> env -> evar_map -> constr -> constr ->
  evar_map option

type genconv = {
  genconv : 'a 'err. conv_pb -> l2r:bool -> Evd.evar_map -> TransparentState.t ->
    Environ.env -> ('a, 'err) Conversion.generic_conversion_function
}

(** [infer_conv_gen] behaves like [infer_conv] but is parametrized by a
conversion function. Used to pretype vm and native casts. *)
val infer_conv_gen : genconv ->
  ?catch_incon:bool -> ?pb:conv_pb -> ?ts:TransparentState.t -> env ->
  evar_map -> constr -> constr -> evar_map option

val check_hyps_inclusion : env -> evar_map -> GlobRef.t -> Constr.named_context -> unit
(** [Typeops.check_hyps_inclusion] but handles evars in the environment. *)

(** {6 Heuristic for Conversion with Evar } *)

type state = constr * Stack.t

type state_reduction_function =
    env -> evar_map -> state -> state

val pr_state : env -> evar_map -> state -> Pp.t

val whd_nored_state : ?metas:meta_handler -> state_reduction_function

val whd_betaiota_deltazeta_for_iota_state :
  TransparentState.t -> ?metas:meta_handler -> state_reduction_function

exception PatternFailure
val apply_rules : (state -> state) -> env -> evar_map -> EInstance.t ->
  Declarations.rewrite_rule list -> Stack.t -> econstr * Stack.t

val is_head_evar : env -> evar_map -> constr -> bool

exception AnomalyInConversion of exn

(* inferred_universes just gathers the constraints. *)
val inferred_universes : (UGraph.t * Univ.Constraints.t, UGraph.univ_inconsistency) Conversion.universe_compare

(** Deprecated *)

val splay_prod : env -> evar_map -> constr -> (Name.t EConstr.binder_annot * constr) list * constr
[@@ocaml.deprecated "(8.18) Use [whd_decompose_prod] instead."]
val splay_lam : env -> evar_map -> constr -> (Name.t EConstr.binder_annot * constr) list * constr
[@@ocaml.deprecated "(8.18) Use [whd_decompose_lambda] instead."]
val splay_prod_assum : env -> evar_map -> constr -> rel_context * constr
[@@ocaml.deprecated "(8.18) Use [whd_decompose_prod_decls] instead."]
val splay_prod_n : env -> evar_map -> int -> constr -> rel_context * constr
[@@ocaml.deprecated "(8.18) This function contracts let-ins. Replace either with whd_decompose_prod_n (if only products are expected, then returning only a list of assumptions), whd_decompose_prod_n_assum (if let-ins are expected to be preserved, returning a rel_context), or whd_decompose_prod_n_decls (if let-ins are expected to be preserved and counted, returning also a rel_context)"]
val splay_lam_n : env -> evar_map -> int -> constr -> rel_context * constr
[@@ocaml.deprecated "(8.18) This function contracts let-ins. Replace either with whd_decompose_lambda_n (if only lambdas are expected, then returning only a list of assumptions) or whd_decompose_lambda_n_assum (if let-ins are expected to be preserved, returning a rel_context)"]

(** Re-deprecated in 8.19 *)

val hnf_decompose_prod : env -> evar_map -> types -> (Name.t EConstr.binder_annot * constr) list * types
[@@ocaml.deprecated "(8.19) Use [whd_decompose_prod] instead."]
val hnf_decompose_lambda : env -> evar_map -> constr -> (Name.t EConstr.binder_annot * constr) list * constr
[@@ocaml.deprecated "(8.19) Use [whd_decompose_lambda] instead."]
val hnf_decompose_prod_decls : env -> evar_map -> types -> rel_context * types
[@@ocaml.deprecated "(8.19) Use [whd_decompose_prod_decls] instead."]
val hnf_decompose_prod_n_decls : env -> evar_map -> int -> types -> rel_context * types
[@@ocaml.deprecated "(8.19) This function contracts let-ins. Replace either with whd_decompose_prod_n (if only products are expected, then returning only a list of assumptions), whd_decompose_prod_n_assum (if let-ins are expected to be preserved, returning a rel_context), or whd_decompose_prod_n_decls (if let-ins are expected to be preserved and counted, returning also a rel_context)"]
val hnf_decompose_lambda_n_assum : env -> evar_map -> int -> constr -> rel_context * constr
[@@ocaml.deprecated "(8.19) This function contracts let-ins. Replace either with whd_decompose_lambda_n (if only lambdas are expected, then returning only a list of assumptions) or whd_decompose_lambda_n_assum (if let-ins are expected to be preserved, returning a rel_context)"]