1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
|
Lemma test (X : nat -> Prop) (H : forall n, X n) (H' : forall n, X n -> X (S n)) : True.
Proof.
specialize (H 5) as J%H'.
Check (J : X 6).
Fail Check H.
Undo.
specialize (H 5) as ?%H'.
Check (H0 : X 6).
Fail Check H.
Abort.
Lemma test2 (b : bool) (f : bool -> nat) : True.
Proof.
specialize b as [|n]%f.
Fail Check b.
2:Check (n : nat).
Abort.
Lemma test3 (b : bool) (f : bool -> nat) : True.
Proof.
specialize (f b) as f'.
Check (f : bool -> nat).
Undo.
specialize (f b) as ?f.
Check (f : bool -> nat).
Check (f0 : nat).
Undo.
specialize (f b) as f.
Check (f : nat).
Abort.
|