1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
|
Module Export Datatypes.
Set Implicit Arguments.
Local Set Primitive Projections.
Record prod (A B : Type) := pair { fst : A ; snd : B }.
Notation "x * y" := (prod x y) : type_scope.
Notation "( x , y , .. , z )" := (pair .. (pair x y) .. z) : core_scope.
End Datatypes.
Delimit Scope morphism_scope with morphism.
Delimit Scope category_scope with category.
Delimit Scope object_scope with object.
Record PreCategory :=
Build_PreCategory {
object :> Type;
morphism : object -> object -> Type;
identity : forall x, morphism x x;
}.
Bind Scope category_scope with PreCategory.
Arguments identity {!C%_category} / x%_object : rename.
Local Open Scope morphism_scope.
Section prod.
Variables C D : PreCategory.
Definition prod : PreCategory := (@Build_PreCategory
(C * D)%type
(fun s d => (morphism C (fst s) (fst d)
* morphism D (snd s) (snd d))%type)
(fun x => (identity (fst x), identity (snd x)))).
End prod.
Local Infix "*" := prod : category_scope.
Delimit Scope functor_scope with functor.
Section Functor.
Variables C D : PreCategory.
Record Functor :=
{
object_of :> C -> D;
morphism_of : forall s d, morphism C s d
-> morphism D (object_of s) (object_of d);
identity_of : forall x, morphism_of _ _ (identity x)
= identity (object_of x)
}.
End Functor.
Arguments morphism_of [C%_category] [D%_category] F%_functor [s%_object d%_object] m%_morphism : rename, simpl nomatch.
Parameter C1 C2 D : PreCategory.
Parameter F : Functor (C1 * C2) D.
Lemma foo (c1:C1) (x : object C2)
: @morphism_of _ _ F
(@pair (object C1) (object C2) c1 x)
(@pair (object C1) (object C2) c1 x)
(identity c1, identity x)
= identity (F (c1, x)).
Proof.
rewrite identity_of.
reflexivity.
Qed.
|