1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
Axiom pl : (nat -> Prop) -> (nat -> Prop) -> (nat -> Prop).
Axiom plImp : forall k P Q,
pl P Q k -> forall (P':nat -> Prop),
(forall k', P k' -> P' k') -> forall (Q':nat -> Prop),
(forall k', Q k' -> Q' k') ->
pl P' Q' k.
Definition nexists (P:nat -> nat -> Prop) : nat -> Prop :=
fun k' => exists k, P k k'.
Goal forall k (A:nat -> nat -> Prop) (B:nat -> Prop),
pl (nexists A) B k.
intros.
eapply plImp.
2:intros m' M'; econstructor; apply M'.
2:intros m' M'; apply M'.
simpl.
Admitted.
|