1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
|
Require Import TestSuite.admit.
(* test with Coq 8.3rc1 *)
From Corelib.Program Require Import Basics Tactics.
Inductive Unit: Set := unit: Unit.
Definition eq_dec T := forall x y:T, {x=y}+{x<>y}.
Section TTS_TASM.
Variable Time: Set.
Variable Zero: Time.
Variable tle: Time -> Time -> Prop.
Variable tlt: Time -> Time -> Prop.
Variable tadd: Time -> Time -> Time.
Variable tsub: Time -> Time -> Time.
Variable tmin: Time -> Time -> Time.
Notation "t1 @<= t2" := (tle t1 t2) (at level 70, no associativity).
Notation "t1 @< t2" := (tlt t1 t2) (at level 70, no associativity).
Notation "t1 @+ t2" := (tadd t1 t2) (at level 50, left associativity).
Notation "t1 @- t2" := (tsub t1 t2) (at level 50, left associativity).
Notation "t1 @<= t2 @<= t3" := ((tle t1 t2) /\ (tle t2 t3)) (at level 70, t2 at next level).
Notation "t1 @<= t2 @< t3" := ((tle t1 t2) /\ (tlt t2 t3)) (at level 70, t2 at next level).
Variable tzerop: forall n, (n = Zero) + {Zero @< n}.
Variable tlt_eq_gt_dec: forall x y, {x @< y} + {x=y} + {y @< x}.
Variable tle_plus_l: forall n m, n @<= n @+ m.
Variable tle_lt_eq_dec: forall n m, n @<= m -> {n @< m} + {n = m}.
Variable tzerop_zero: tzerop Zero = inleft (Zero @< Zero) (@eq_refl _ Zero).
Variable tplus_n_O: forall n, n @+ Zero = n.
Variable tlt_le_weak: forall n m, n @< m -> n @<= m.
Variable tlt_irrefl: forall n, ~ n @< n.
Variable tplus_nlt: forall n m, ~n @+ m @< n.
Variable tle_n: forall n, n @<= n.
Variable tplus_lt_compat_l: forall n m p, n @< m -> p @+ n @< p @+ m.
Variable tlt_trans: forall n m p, n @< m -> m @< p -> n @< p.
Variable tle_lt_trans: forall n m p, n @<= m -> m @< p -> n @< p.
Variable tlt_le_trans: forall n m p, n @< m -> m @<= p -> n @< p.
Variable tle_refl: forall n, n @<= n.
Variable tplus_le_0: forall n m, n @+ m @<= n -> m = Zero.
Variable Time_eq_dec: eq_dec Time.
(*************************************************************)
Section PropLogic.
Variable Predicate: Type.
Inductive LP: Type :=
LPPred: Predicate -> LP
| LPAnd: LP -> LP -> LP
| LPNot: LP -> LP.
Variable State: Type.
Variable Sat: State -> Predicate -> Prop.
Fixpoint lpSat st f: Prop :=
match f with
LPPred p => Sat st p
| LPAnd f1 f2 => lpSat st f1 /\ lpSat st f2
| LPNot f1 => ~lpSat st f1
end.
End PropLogic.
Arguments lpSat : default implicits.
Fixpoint LPTransfo Pred1 Pred2 p2lp (f: LP Pred1): LP Pred2 :=
match f with
LPPred _ p => p2lp p
| LPAnd _ f1 f2 => LPAnd _ (LPTransfo Pred1 Pred2 p2lp f1) (LPTransfo Pred1 Pred2 p2lp f2)
| LPNot _ f1 => LPNot _ (LPTransfo Pred1 Pred2 p2lp f1)
end.
Arguments LPTransfo : default implicits.
Definition addIndex (Ind:Type) (Pred: Ind -> Type) (i: Ind) f :=
LPTransfo (fun p => LPPred _ (existT (fun i => Pred i) i p)) f.
Section TTS.
Variable State: Type.
Record TTS: Type := mkTTS {
Init: State -> Prop;
Delay: State -> Time -> State -> Prop;
Next: State -> State -> Prop;
Predicate: Type;
Satisfy: State -> Predicate -> Prop
}.
Definition TTSIndexedProduct Ind (tts: Ind -> TTS): TTS := mkTTS
(fun st => forall i, Init (tts i) st)
(fun st d st' => forall i, Delay (tts i) st d st')
(fun st st' => forall i, Next (tts i) st st')
{ i: Ind & Predicate (tts i) }
(fun st p => Satisfy (tts (projT1 p)) st (projT2 p)).
End TTS.
Section SIMU_F.
Variables StateA StateC: Type.
Record mapping: Type := mkMapping {
mState: Type;
mInit: StateC -> mState;
mNext: mState -> StateC -> mState;
mDelay: mState -> StateC -> Time -> mState;
mabs: mState -> StateC -> StateA
}.
Variable m: mapping.
Record simu (Pred: Type) (a: TTS StateA) (c: TTS StateC) (tra: Pred -> LP (Predicate _ a)) (trc: Pred -> LP (Predicate _ c)): Type := simuPrf {
inv: (mState m) -> StateC -> Prop;
invInit: forall st, Init _ c st -> inv (mInit m st) st;
invDelay: forall ex1 st1 st2 d, Delay _ c st1 d st2 -> inv ex1 st1 -> inv (mDelay m ex1 st1 d) st2;
invNext: forall ex1 st1 st2, Next _ c st1 st2 -> inv ex1 st1 -> inv (mNext m ex1 st1) st2;
simuInit: forall st, Init _ c st -> Init _ a (mabs m (mInit m st) st);
simuDelay: forall ex1 st1 st2 d, Delay _ c st1 d st2 -> inv ex1 st1 ->
Delay _ a (mabs m ex1 st1) d (mabs m (mDelay m ex1 st1 d) st2);
simuNext: forall ex1 st1 st2, Next _ c st1 st2 -> inv ex1 st1 ->
Next _ a (mabs m ex1 st1) (mabs m (mNext m ex1 st1) st2);
simuPred: forall ext st, inv ext st ->
(forall p, lpSat (Satisfy _ c) st (trc p) <-> lpSat (Satisfy _ a) (mabs m ext st) (tra p))
}.
Theorem satProd: forall State Ind Pred (Sat: forall i, State -> Pred i -> Prop) (st:State) i (f: LP (Pred i)),
lpSat (Sat i) st f
<->
lpSat
(fun (st : State) (p : {i : Ind & Pred i}) => Sat (projT1 p) st (projT2 p)) st
(addIndex Ind _ i f).
Proof.
induction f; simpl; intros; split; intros; intuition.
Qed.
Definition trProd (State: Type) Ind (Pred: Ind -> Type) (tts: Ind -> TTS State) (tr: forall i, (Pred i) -> LP (Predicate _ (tts i))):
{i:Ind & Pred i} -> LP (Predicate _ (TTSIndexedProduct _ Ind tts)) :=
fun p => addIndex Ind _ (projT1 p) (tr (projT1 p) (projT2 p)).
Arguments trProd : default implicits.
Require Import Setoid.
Theorem satTrProd:
forall State Ind Pred (tts: Ind -> TTS State)
(tr: forall i, (Pred i) -> LP (Predicate _ (tts i))) (st:State) (p: {i:Ind & (Pred i)}),
lpSat (Satisfy _ (tts (projT1 p))) st (tr (projT1 p) (projT2 p))
<->
lpSat (Satisfy _ (TTSIndexedProduct _ _ tts)) st (trProd _ tts tr p).
Proof.
unfold trProd, TTSIndexedProduct; simpl; intros.
rewrite (satProd State Ind (fun i => Predicate State (tts i))
(fun i => Satisfy _ (tts i))); tauto.
Qed.
Theorem simuProd:
forall Ind (Pred: Ind -> Type) (tta: Ind -> TTS StateA) (ttc: Ind -> TTS StateC)
(tra: forall i, (Pred i) -> LP (Predicate _ (tta i)))
(trc: forall i, (Pred i) -> LP (Predicate _ (ttc i))),
(forall i, simu _ (tta i) (ttc i) (tra i) (trc i)) ->
simu _ (TTSIndexedProduct _ Ind tta) (TTSIndexedProduct _ Ind ttc)
(trProd Pred tta tra) (trProd Pred ttc trc).
Proof.
intros.
apply simuPrf with (fun ex st => forall i, inv _ _ (ttc i) (tra i) (trc i) (X i) ex st); simpl; intros; auto.
eapply invInit; eauto.
eapply invDelay; eauto.
eapply invNext; eauto.
eapply simuInit; eauto.
eapply simuDelay; eauto.
eapply simuNext; eauto.
split; simpl; intros.
generalize (proj1 (simuPred _ _ _ _ _ (X (projT1 p)) ext st (H (projT1 p)) (projT2 p))); simpl; intro.
rewrite <- (satTrProd StateA Ind Pred tta tra); apply H1.
rewrite (satTrProd StateC Ind Pred ttc trc); apply H0.
generalize (proj2 (simuPred _ _ _ _ _ (X (projT1 p)) ext st (H (projT1 p)) (projT2 p))); simpl; intro.
rewrite <- (satTrProd StateC Ind Pred ttc trc); apply H1.
rewrite (satTrProd StateA Ind Pred tta tra); apply H0.
Qed.
End SIMU_F.
Section TRANSFO.
Record simu_equiv StateA StateC m1 m2 Pred (a: TTS StateA) (c: TTS StateC) (tra: Pred -> LP (Predicate _ a)) (trc: Pred -> LP (Predicate _ c)): Type := simuEquivPrf {
simuLR: simu StateA StateC m1 Pred a c tra trc;
simuRL: simu StateC StateA m2 Pred c a trc tra
}.
Theorem simu_equivProd:
forall StateA StateC m1 m2 Ind (Pred: Ind -> Type) (tta: Ind -> TTS StateA) (ttc: Ind -> TTS StateC)
(tra: forall i, (Pred i) -> LP (Predicate _ (tta i)))
(trc: forall i, (Pred i) -> LP (Predicate _ (ttc i))),
(forall i, simu_equiv StateA StateC m1 m2 _ (tta i) (ttc i) (tra i) (trc i)) ->
simu_equiv StateA StateC m1 m2 _ (TTSIndexedProduct _ Ind tta) (TTSIndexedProduct _ Ind ttc)
(trProd _ _ Pred tta tra) (trProd _ _ Pred ttc trc).
Proof.
intros; split; intros.
apply simuProd; intro.
elim (X i); auto.
apply simuProd; intro.
elim (X i); auto.
Qed.
Record RTLanguage: Type := mkRTLanguage {
Syntax: Type;
DynamicState: Syntax -> Type;
Semantic: forall (mdl:Syntax), TTS (DynamicState mdl);
MdlPredicate: Syntax -> Type;
MdlPredicateDefinition: forall mdl, MdlPredicate mdl -> LP (Predicate _ (Semantic mdl))
}.
Record Transformation (l1 l2: RTLanguage): Type := mkTransformation {
Tmodel: Syntax l1 -> Syntax l2;
Tl1l2: forall mdl, mapping (DynamicState l1 mdl) (DynamicState l2 (Tmodel mdl));
Tl2l1: forall mdl, mapping (DynamicState l2 (Tmodel mdl)) (DynamicState l1 mdl);
Tpred: forall mdl, MdlPredicate l1 mdl -> LP (MdlPredicate l2 (Tmodel mdl));
Tsim: forall mdl, simu_equiv (DynamicState l1 mdl) (DynamicState l2 (Tmodel mdl)) (Tl1l2 mdl) (Tl2l1 mdl)
(MdlPredicate l1 mdl) (Semantic l1 mdl) (Semantic l2 (Tmodel mdl))
(MdlPredicateDefinition l1 mdl)
(fun p => LPTransfo (MdlPredicateDefinition l2 (Tmodel mdl)) (Tpred mdl p))
}.
Section Product.
Record PSyntax (L: RTLanguage): Type := mkPSyntax {
pIndex: Type;
pIsEmpty: pIndex + {pIndex -> False};
pState: Type;
pComponents: pIndex -> Syntax L;
pIsShared: forall i, DynamicState L (pComponents i) = pState
}.
Definition pPredicate (L: RTLanguage) (sys: PSyntax L) := { i : pIndex L sys & MdlPredicate L (pComponents L sys i)}.
(* product with shared state *)
Definition PLanguage (L: RTLanguage): RTLanguage :=
mkRTLanguage
(PSyntax L)
(pState L)
(fun mdl => TTSIndexedProduct (pState L mdl) (pIndex L mdl)
(fun i => match pIsShared L mdl i in (_ = y) return TTS y with
eq_refl => Semantic L (pComponents L mdl i)
end))
(pPredicate L)
(fun mdl => trProd _ _ _ _
(fun i pi => match pIsShared L mdl i as e in (_ = y) return
(LP (Predicate y
match e in (_ = y0) return (TTS y0) with
| eq_refl => Semantic L (pComponents L mdl i)
end))
with
| eq_refl => MdlPredicateDefinition L (pComponents L mdl i) pi
end)).
Inductive Empty: Type :=.
Record isSharedTransfo l1 l2 tr: Prop := isSharedTransfoPrf {
sameState: forall mdl i j,
DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl i)) =
DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl j));
sameMState: forall mdl i j,
mState _ _ (Tl1l2 _ _ tr (pComponents l1 mdl i)) =
mState _ _ (Tl1l2 _ _ tr (pComponents l1 mdl j));
sameM12: forall mdl i j,
Tl1l2 _ _ tr (pComponents l1 mdl i) =
match sym_eq (sameState mdl i j) in _=y return mapping _ y with
eq_refl => match sym_eq (pIsShared l1 mdl i) in _=x return mapping x _ with
eq_refl => match pIsShared l1 mdl j in _=x return mapping x _ with
eq_refl => Tl1l2 _ _ tr (pComponents l1 mdl j)
end
end
end;
sameM21: forall mdl i j,
Tl2l1 l1 l2 tr (pComponents l1 mdl i) =
match
sym_eq (sameState mdl i j) in (_ = y)
return (mapping y (DynamicState l1 (pComponents l1 mdl i)))
with eq_refl =>
match
sym_eq (pIsShared l1 mdl i) in (_ = y)
return
(mapping (DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl j))) y)
with
| eq_refl =>
match
pIsShared l1 mdl j in (_ = y)
return
(mapping
(DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl j))) y)
with
| eq_refl => Tl2l1 l1 l2 tr (pComponents l1 mdl j)
end
end
end
}.
Definition PTransfoSyntax l1 l2 tr (h: isSharedTransfo l1 l2 tr) mdl :=
mkPSyntax l2 (pIndex l1 mdl)
(pIsEmpty l1 mdl)
(match pIsEmpty l1 mdl return Type with
inleft i => DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl i))
|inright h => pState l1 mdl
end)
(fun i => Tmodel l1 l2 tr (pComponents l1 mdl i))
(fun i => match pIsEmpty l1 mdl as y return
(DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl i)) =
match y with
| inleft i0 =>
DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl i0))
| inright _ => pState l1 mdl
end)
with
inleft j => sameState l1 l2 tr h mdl i j
| inright h => match h i with end
end).
Definition compSemantic l mdl i :=
match pIsShared l mdl i in (_=y) return TTS y with
eq_refl => Semantic l (pComponents l mdl i)
end.
Definition compSemanticEq l mdl i s (e: DynamicState l (pComponents l mdl i) = s) :=
match e in (_=y) return TTS y with
eq_refl => Semantic l (pComponents l mdl i)
end.
Definition Pmap12 l1 l2 tr (h: isSharedTransfo l1 l2 tr) (mdl : PSyntax l1) :=
match
pIsEmpty l1 mdl as s
return
(mapping (pState l1 mdl)
match s with
| inleft i => DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl i))
| inright _ => pState l1 mdl
end)
with
| inleft p =>
match
pIsShared l1 mdl p in (_ = y)
return
(mapping y (DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl p))))
with
| eq_refl => Tl1l2 l1 l2 tr (pComponents l1 mdl p)
end
| inright _ =>
mkMapping (pState l1 mdl) (pState l1 mdl) Unit
(fun _ : pState l1 mdl => unit)
(fun (_ : Unit) (_ : pState l1 mdl) => unit)
(fun (_ : Unit) (_ : pState l1 mdl) (_ : Time) => unit)
(fun (_ : Unit) (X : pState l1 mdl) => X)
end.
Definition Pmap21 l1 l2 tr (h : isSharedTransfo l1 l2 tr) mdl :=
match
pIsEmpty l1 mdl as s
return
(mapping
match s with
| inleft i => DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl i))
| inright _ => pState l1 mdl
end (pState l1 mdl))
with
| inleft p =>
match
pIsShared l1 mdl p in (_ = y)
return
(mapping (DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl p))) y)
with
| eq_refl => Tl2l1 l1 l2 tr (pComponents l1 mdl p)
end
| inright _ =>
mkMapping (pState l1 mdl) (pState l1 mdl) Unit
(fun _ : pState l1 mdl => unit)
(fun (_ : Unit) (_ : pState l1 mdl) => unit)
(fun (_ : Unit) (_ : pState l1 mdl) (_ : Time) => unit)
(fun (_ : Unit) (X : pState l1 mdl) => X)
end.
Definition PTpred l1 l2 tr (h : isSharedTransfo l1 l2 tr) mdl (pp : pPredicate l1 mdl):
LP (MdlPredicate (PLanguage l2) (PTransfoSyntax l1 l2 tr h mdl)) :=
match pIsEmpty l1 mdl with
| inleft _ =>
let (x, p) := pp in
addIndex (pIndex l1 mdl) (fun i => MdlPredicate l2 (Tmodel l1 l2 tr (pComponents l1 mdl i))) x
(LPTransfo (Tpred l1 l2 tr (pComponents l1 mdl x))
(LPPred (MdlPredicate l1 (pComponents l1 mdl x)) p))
| inright f => match f (projT1 pp) with end
end.
Lemma simu_eqA:
forall A1 A2 C m P sa sc tta ttc (h: A2=A1),
simu A1 C (match h in (_=y) return mapping _ C with eq_refl => m end)
P (match h in (_=y) return TTS y with eq_refl => sa end)
sc (fun p => match h in (_=y) return LP (Predicate y _) with eq_refl => tta p end)
ttc ->
simu A2 C m P sa sc tta ttc.
admit.
Qed.
Lemma simu_eqC:
forall A C1 C2 m P sa sc tta ttc (h: C2=C1),
simu A C1 (match h in (_=y) return mapping A _ with eq_refl => m end)
P sa (match h in (_=y) return TTS y with eq_refl => sc end)
tta (fun p => match h in (_=y) return LP (Predicate y _) with eq_refl => ttc p end)
->
simu A C2 m P sa sc tta ttc.
admit.
Qed.
Lemma simu_eqA1:
forall A1 A2 C m P sa sc tta ttc (h: A1=A2),
simu A1 C m
P
(match (sym_eq h) in (_=y) return TTS y with eq_refl => sa end) sc
(fun p => match (sym_eq h) as e in (_=y) return LP (Predicate y (match e in (_=z) return TTS z with eq_refl => sa end)) with eq_refl => tta p end) ttc
->
simu A2 C (match h in (_=y) return mapping _ C with eq_refl => m end) P sa sc tta ttc.
admit.
Qed.
Lemma simu_eqA2:
forall A1 A2 C m P sa sc tta ttc (h: A1=A2),
simu A1 C (match (sym_eq h) in (_=y) return mapping _ C with eq_refl => m end)
P
sa sc tta ttc
->
simu A2 C m P
(match h in (_=y) return TTS y with eq_refl => sa end) sc
(fun p => match h as e in (_=y) return LP (Predicate y match e in (_=y0) return TTS y0 with eq_refl => sa end) with eq_refl => tta p end)
ttc.
admit.
Qed.
Lemma simu_eqC2:
forall A C1 C2 m P sa sc tta ttc (h: C1=C2),
simu A C1 (match (sym_eq h) in (_=y) return mapping A _ with eq_refl => m end)
P
sa sc tta ttc
->
simu A C2 m P
sa (match h in (_=y) return TTS y with eq_refl => sc end)
tta (fun p => match h as e in (_=y) return LP (Predicate y match e in (_=y0) return TTS y0 with eq_refl => sc end) with eq_refl => ttc p end).
admit.
Qed.
Lemma simu_eqM:
forall A C m1 m2 P sa sc tta ttc (h: m1=m2),
simu A C m1 P sa sc tta ttc
->
simu A C m2 P sa sc tta ttc.
admit.
Qed.
Lemma LPTransfo_trans:
forall Pred1 Pred2 Pred3 (tr1: Pred1 -> LP Pred2) (tr2: Pred2 -> LP Pred3) f,
LPTransfo tr2 (LPTransfo tr1 f) = LPTransfo (fun x => LPTransfo tr2 (tr1 x)) f.
Proof.
admit.
Qed.
Lemma LPTransfo_addIndex:
forall Ind Pred tr1 x (tr2: forall i, Pred i -> LP (tr1 i)) (p: LP (Pred x)),
addIndex Ind tr1 x (LPTransfo (tr2 x) p) =
LPTransfo
(fun p0 : {i : Ind & Pred i} =>
addIndex Ind tr1 (projT1 p0) (tr2 (projT1 p0) (projT2 p0)))
(addIndex Ind Pred x p).
Proof.
unfold addIndex; intros.
rewrite LPTransfo_trans.
rewrite LPTransfo_trans.
simpl.
auto.
Qed.
Record tr_compat I0 I1 tr := compatPrf {
and_compat: forall p1 p2, tr (LPAnd I0 p1 p2) = LPAnd I1 (tr p1) (tr p2);
not_compat: forall p, tr (LPNot I0 p) = LPNot I1 (tr p)
}.
Lemma LPTransfo_addIndex_tr:
forall Ind Pred tr0 tr1 x (tr2: forall i, Pred i -> LP (tr0 i)) (tr3: forall i, LP (tr0 i) -> LP (tr1 i)) (p: LP (Pred x)),
(forall x, tr_compat (tr0 x) (tr1 x) (tr3 x)) ->
addIndex Ind tr1 x (tr3 x (LPTransfo (tr2 x) p)) =
LPTransfo
(fun p0 : {i : Ind & Pred i} =>
addIndex Ind tr1 (projT1 p0) (tr3 (projT1 p0) (tr2 (projT1 p0) (projT2 p0))))
(addIndex Ind Pred x p).
Proof.
unfold addIndex; simpl; intros.
rewrite LPTransfo_trans; simpl.
rewrite <- LPTransfo_trans.
f_equal.
induction p; simpl; intros; auto.
rewrite (and_compat _ _ _ (H x)).
rewrite <- IHp1, <- IHp2; auto.
rewrite <- IHp.
rewrite (not_compat _ _ _ (H x)); auto.
Qed.
Require Export TestSuite.funext.
Print PLanguage.
Program Definition PTransfo l1 l2 (tr: Transformation l1 l2) (h: isSharedTransfo l1 l2 tr):
Transformation (PLanguage l1) (PLanguage l2) :=
mkTransformation (PLanguage l1) (PLanguage l2)
(PTransfoSyntax l1 l2 tr h)
(Pmap12 l1 l2 tr h)
(Pmap21 l1 l2 tr h)
(PTpred l1 l2 tr h)
(fun mdl => simu_equivProd
(pState l1 mdl)
(pState l2 (PTransfoSyntax l1 l2 tr h mdl))
(Pmap12 l1 l2 tr h mdl)
(Pmap21 l1 l2 tr h mdl)
(pIndex l1 mdl)
(fun i => MdlPredicate l1 (pComponents l1 mdl i))
(compSemantic l1 mdl)
(compSemantic l2 (PTransfoSyntax l1 l2 tr h mdl))
_
_
_
).
Next Obligation.
unfold compSemantic, PTransfoSyntax; simpl.
case (pIsEmpty l1 mdl); simpl; intros.
unfold pPredicate; simpl.
unfold pPredicate in X; simpl in X.
case (sameState l1 l2 tr h mdl i p).
apply (LPTransfo (MdlPredicateDefinition l2 (Tmodel l1 l2 tr (pComponents l1 mdl i)))).
apply (LPTransfo (Tpred l1 l2 tr (pComponents l1 mdl i))).
apply (LPPred _ X).
apply False_rect; apply (f i).
Defined.
Next Obligation.
split; intros.
unfold Pmap12; simpl.
unfold PTransfo_obligation_1; simpl.
unfold compSemantic; simpl.
unfold eq_ind, eq_rect, f_equal; simpl.
case (pIsEmpty l1 mdl); intros.
apply simu_eqA2.
apply simu_eqC2.
apply simu_eqM with (Tl1l2 l1 l2 tr (pComponents l1 mdl i)).
apply sameM12.
apply (simuLR _ _ _ _ _ _ _ _ _ (Tsim l1 l2 tr (pComponents l1 mdl i))); intro.
apply False_rect; apply (f i).
unfold Pmap21; simpl.
unfold PTransfo_obligation_1; simpl.
unfold compSemantic; simpl.
unfold eq_ind, eq_rect, f_equal; simpl.
case (pIsEmpty l1 mdl); intros.
apply simu_eqC2.
apply simu_eqA2.
apply simu_eqM with (Tl2l1 l1 l2 tr (pComponents l1 mdl i)).
apply sameM21.
apply (simuRL _ _ _ _ _ _ _ _ _ (Tsim l1 l2 tr (pComponents l1 mdl i))); intro.
apply False_rect; apply (f i).
Qed.
Next Obligation.
unfold trProd; simpl.
unfold PTransfo_obligation_1; simpl.
unfold compSemantic; simpl.
unfold eq_ind, eq_rect, f_equal; simpl.
apply functional_extensionality; intro.
case x; clear x; intros.
unfold PTpred; simpl.
case (pIsEmpty l1 mdl); simpl; intros.
set (tr0 i :=
Predicate (DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl i)))
(Semantic l2 (Tmodel l1 l2 tr (pComponents l1 mdl i)))).
set (tr1 i :=
Predicate (DynamicState l2 (Tmodel l1 l2 tr (pComponents l1 mdl p)))
match sameState l1 l2 tr h mdl i p in (_ = y) return (TTS y) with
| eq_refl => Semantic l2 (Tmodel l1 l2 tr (pComponents l1 mdl i))
end).
set (tr2 x := MdlPredicateDefinition l2 (Tmodel l1 l2 tr (pComponents l1 mdl x))).
set (Pred x := MdlPredicate l2 (Tmodel l1 l2 tr (pComponents l1 mdl x))).
set (tr3 x f := match
sameState l1 l2 tr h mdl x p as e in (_ = y)
return
(LP
(Predicate y
match e in (_ = y0) return (TTS y0) with
| eq_refl => Semantic l2 (Tmodel l1 l2 tr (pComponents l1 mdl x))
end))
with
| eq_refl => f
end).
apply (LPTransfo_addIndex_tr _ Pred tr0 tr1 x tr2 tr3
(Tpred l1 l2 tr (pComponents l1 mdl x) m)).
unfold tr0, tr1, tr3; intros; split; simpl; intros; auto.
case (sameState l1 l2 tr h mdl x0 p); auto.
case (sameState l1 l2 tr h mdl x0 p); auto.
apply False_rect; apply (f x).
Qed.
End Product.
End TRANSFO.
End TTS_TASM.
|