1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
Require Import TestSuite.admit.
(* -*- mode: coq; coq-prog-args: ("-indices-matter") -*- *)
(* File reduced by coq-bug-finder from original input, then from 0 lines to 7171 lines, then from 7184 lines to 558 lines, then from 556 lines to 209 lines *)
Generalizable All Variables.
Set Universe Polymorphism.
Notation Type0 := Set.
Notation idmap := (fun x => x).
Definition compose {A B C : Type} (g : B -> C) (f : A -> B) := fun x => g (f x).
Notation "g 'o' f" := (compose g f) (at level 40, left associativity) : function_scope.
Open Scope function_scope.
Inductive paths {A : Type} (a : A) : A -> Type := idpath : paths a a where "x = y" := (@paths _ x y) : type_scope.
Arguments idpath {A a} , [A] a.
Delimit Scope path_scope with path.
Local Open Scope path_scope.
Definition concat {A : Type} {x y z : A} (p : x = y) (q : y = z) : x = z := match p, q with idpath, idpath => idpath end.
Definition inverse {A : Type} {x y : A} (p : x = y) : y = x := match p with idpath => idpath end.
Notation "1" := idpath : path_scope.
Notation "p @ q" := (concat p q) (at level 20) : path_scope.
Notation "p ^" := (inverse p) (at level 3) : path_scope.
Definition transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : P y := match p with idpath => u end.
Notation "p # x" := (transport _ p x) (right associativity, at level 65, only parsing) : path_scope.
Definition ap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y := match p with idpath => idpath end.
Definition pointwise_paths {A} {P:A->Type} (f g:forall x:A, P x) := forall x:A, f x = g x.
Notation "f == g" := (pointwise_paths f g) (at level 70, no associativity) : type_scope.
Definition apD10 {A} {B:A->Type} {f g : forall x, B x} (h:f=g) : forall x, f x = g x := fun x => match h with idpath => idpath end.
Definition Sect {A B : Type} (s : A -> B) (r : B -> A) := forall x : A, r (s x) = x.
Class IsEquiv {A B : Type} (f : A -> B) := BuildIsEquiv {
equiv_inv : B -> A ;
eisretr : Sect equiv_inv f;
eissect : Sect f equiv_inv;
eisadj : forall x : A, eisretr (f x) = ap f (eissect x)
}.
Record Equiv A B := BuildEquiv {
equiv_fun :> A -> B ;
equiv_isequiv :> IsEquiv equiv_fun
}.
Delimit Scope equiv_scope with equiv.
Notation "A <~> B" := (Equiv A B) (at level 85) : equiv_scope.
Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3) : equiv_scope.
Class Contr_internal (A : Type) := BuildContr {
center : A ;
contr : (forall y : A, center = y)
}.
Inductive trunc_index : Type :=
| minus_two : trunc_index
| trunc_S : trunc_index -> trunc_index.
Fixpoint nat_to_trunc_index (n : nat) : trunc_index
:= match n with
| 0 => trunc_S (trunc_S minus_two)
| S n' => trunc_S (nat_to_trunc_index n')
end.
Coercion nat_to_trunc_index : nat >-> trunc_index.
Fixpoint IsTrunc_internal (n : trunc_index) (A : Type) : Type :=
match n with
| minus_two => Contr_internal A
| trunc_S n' => forall (x y : A), IsTrunc_internal n' (x = y)
end.
Notation minus_one:=(trunc_S minus_two).
Class IsTrunc (n : trunc_index) (A : Type) : Type :=
Trunc_is_trunc : IsTrunc_internal n A.
Notation Contr := (IsTrunc minus_two).
Notation IsHProp := (IsTrunc minus_one).
Notation IsHSet := (IsTrunc 0).
Class Funext :=
{ isequiv_apD10 :: forall (A : Type) (P : A -> Type) f g, IsEquiv (@apD10 A P f g) }.
Definition concat_pV {A : Type} {x y : A} (p : x = y) :
p @ p^ = 1
:=
match p with idpath => 1 end.
Definition concat_Vp {A : Type} {x y : A} (p : x = y) :
p^ @ p = 1
:=
match p with idpath => 1 end.
Definition transport_pp {A : Type} (P : A -> Type) {x y z : A} (p : x = y) (q : y = z) (u : P x) :
p @ q # u = q # p # u :=
match q with idpath =>
match p with idpath => 1 end
end.
Definition transport2 {A : Type} (P : A -> Type) {x y : A} {p q : x = y}
(r : p = q) (z : P x)
: p # z = q # z
:= ap (fun p' => p' # z) r.
Inductive Unit : Type0 :=
tt : Unit.
#[export] Instance contr_unit : Contr Unit | 0 := let x := {|
center := tt;
contr := fun t : Unit => match t with tt => 1 end
|} in x.
#[export] Instance trunc_succ `{IsTrunc n A} : IsTrunc (trunc_S n) A | 1000.
admit.
Defined.
Record hProp := hp { hproptype :> Type ; isp : IsHProp hproptype}.
Definition Unit_hp:hProp:=(hp Unit _).
Global Instance isequiv_ap_hproptype `{Funext} X Y : IsEquiv (@ap _ _ hproptype X Y).
admit.
Defined.
Definition path_hprop `{Funext} X Y := (@ap _ _ hproptype X Y)^-1%equiv.
Record hSet := BuildhSet {setT:> Type; iss :> IsHSet setT}.
Local Open Scope equiv_scope.
#[export] Instance isequiv_path {A B : Type} (p : A = B)
: IsEquiv (transport (fun X:Type => X) p) | 0
:= BuildIsEquiv _ _ _ (transport (fun X:Type => X) p^)
(fun b => ((transport_pp idmap p^ p b)^ @ transport2 idmap (concat_Vp p) b))
(fun a => ((transport_pp idmap p p^ a)^ @ transport2 idmap (concat_pV p) a))
(fun a => match p in _ = C return
(transport_pp idmap p^ p (transport idmap p a))^ @
transport2 idmap (concat_Vp p) (transport idmap p a) =
ap (transport idmap p) ((transport_pp idmap p p^ a) ^ @
transport2 idmap (concat_pV p) a) with idpath => 1 end).
Definition equiv_path (A B : Type) (p : A = B) : A <~> B
:= BuildEquiv _ _ (transport (fun X:Type => X) p) _.
Class Univalence := {
isequiv_equiv_path :: forall (A B : Type), IsEquiv (equiv_path A B)
}.
Section Univalence.
Context `{Univalence}.
Definition path_universe_uncurried {A B : Type} (f : A <~> B) : A = B
:= (equiv_path A B)^-1 f.
End Univalence.
Inductive minus1Trunc (A :Type) : Type :=
min1 : A -> minus1Trunc A.
#[export] Instance minus1Trunc_is_prop {A : Type} : IsHProp (minus1Trunc A) | 0.
admit.
Defined.
Definition hexists {X} (P:X->Type):Type:= minus1Trunc (sigT P).
Section AssumingUA.
Definition isepi {X Y} `(f:X->Y) := forall Z: hSet,
forall g h: Y -> Z, g o f = h o f -> g = h.
Context {X Y : hSet} (f : X -> Y) (Hisepi : isepi f).
Goal forall (X Y : hSet) (f : forall _ : setT X, setT Y),
let fib :=
fun y : setT Y =>
hp (@hexists (setT X) (fun x : setT X => @paths (setT Y) (f x) y))
(@minus1Trunc_is_prop
(@sigT (setT X) (fun x : setT X => @paths (setT Y) (f x) y))) in
forall (x : setT X) (_ : Univalence) (_ : Funext),
@paths hProp (fib (f x)) Unit_hp.
intros.
apply path_hprop.
simpl.
Set Printing Universes.
Set Printing All.
refine (path_universe_uncurried _).
Undo.
apply path_universe_uncurried. (* Toplevel input, characters 21-44:
Error: Refiner was given an argument
"@path_universe_uncurried (* Top.425 Top.426 Top.427 Top.428 Top.429 *) X1
(@hexists (* Top.405 Top.404 Set Set *) (setT (* Top.405 *) X0)
(fun x0 : setT (* Top.405 *) X0 =>
@paths (* Top.404 *) (setT (* Top.404 *) Y0) (f0 x0) (f0 x))) Unit
?63" of type
"@paths (* Top.428 *) Type (* Top.425 *)
(@hexists (* Top.405 Top.404 Set Set *) (setT (* Top.405 *) X0)
(fun x0 : setT (* Top.405 *) X0 =>
@paths (* Top.404 *) (setT (* Top.404 *) Y0) (f0 x0) (f0 x))) Unit"
instead of
"@paths (* Top.413 *) Type (* Set *)
(@hexists (* Top.405 Top.404 Set Set *) (setT (* Top.405 *) X0)
(fun x0 : setT (* Top.405 *) X0 =>
@paths (* Top.404 *) (setT (* Top.404 *) Y0) (f0 x0) (f0 x))) Unit".
*)
Abort.
End AssumingUA.
|