1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
|
Module A.
Set Primitive Projections.
Record hSet : Type := BuildhSet { setT : Type; iss : True }.
Ltac head_hnf_under_binders x :=
match eval hnf in x with
| ?f _ => head_hnf_under_binders f
| (fun y => ?f y) => head_hnf_under_binders f
| ?y => y
end.
Goal forall s : hSet, True.
intros.
let x := head_hnf_under_binders setT in pose x.
set (foo := eq_refl (@setT )). generalize foo. simpl. cbn.
Abort.
End A.
Module A'.
Set Universe Polymorphism.
Set Primitive Projections.
Record hSet (A : Type) : Type := BuildhSet { setT : Type; iss : True }.
Ltac head_hnf_under_binders x :=
match eval compute in x with
| ?f _ => head_hnf_under_binders f
| (fun y => ?f y) => head_hnf_under_binders f
| ?y => y
end.
Goal forall s : @hSet nat, True.
intros.
let x := head_hnf_under_binders setT in pose x.
set (foo := eq_refl (@setT nat)). generalize foo. simpl. cbn.
Abort.
End A'.
|