1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
Unset Strict Universe Declaration.
Require Import TestSuite.admit.
(* File reduced by coq-bug-finder from original input, then from 9113 lines to 279 lines *)
(* coqc version trunk (October 2014) compiled on Oct 19 2014 18:56:9 with OCaml 3.12.1
coqtop version trunk (October 2014) *)
Notation Type0 := Set.
Notation idmap := (fun x => x).
Notation "( x ; y )" := (existT _ x y) : fibration_scope.
Open Scope fibration_scope.
Notation pr1 := projT1.
Notation "x .1" := (pr1 x) : fibration_scope.
Definition compose {A B C : Type} (g : B -> C) (f : A -> B) :=
fun x => g (f x).
Notation "g 'o' f" := (compose g f) (at level 40, left associativity) : function_scope.
Open Scope function_scope.
Inductive paths {A : Type} (a : A) : A -> Type :=
idpath : paths a a.
Arguments idpath {A a} , [A] a.
Notation "x = y :> A" := (@paths A x y) : type_scope.
Notation "x = y" := (x = y :>_) : type_scope.
Definition inverse {A : Type} {x y : A} (p : x = y) : y = x.
admit.
Defined.
Definition concat {A : Type} {x y z : A} (p : x = y) (q : y = z) : x = z :=
match p, q with idpath, idpath => idpath end.
Notation "1" := idpath : path_scope.
Notation "p @ q" := (concat p q) (at level 20) : path_scope.
Notation "p ^" := (inverse p) (at level 3, format "p '^'") : path_scope.
Notation "p @' q" := (concat p q) (at level 21, left associativity,
format "'[v' p '/' '@'' q ']'") : long_path_scope.
Definition transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : P y.
exact (match p with idpath => u end).
Defined.
Notation "p # x" := (transport _ p x) (right associativity, at level 65, only parsing) : path_scope.
Definition ap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y.
exact (match p with idpath => idpath end).
Defined.
Definition pointwise_paths {A} {P:A->Type} (f g:forall x:A, P x)
:= forall x:A, f x = g x.
Notation "f == g" := (pointwise_paths f g) (at level 70, no associativity) : type_scope.
Definition Sect {A B : Type} (s : A -> B) (r : B -> A) :=
forall x : A, r (s x) = x.
Class IsEquiv {A B : Type} (f : A -> B) := BuildIsEquiv {
equiv_inv : B -> A ;
eisretr : Sect equiv_inv f;
eissect : Sect f equiv_inv;
eisadj : forall x : A, eisretr (f x) = ap f (eissect x)
}.
Arguments eisretr {A B} f {_} _.
Record Equiv A B := BuildEquiv {
equiv_fun : A -> B ;
equiv_isequiv : IsEquiv equiv_fun
}.
Coercion equiv_fun : Equiv >-> Funclass.
Global Existing Instance equiv_isequiv.
Notation "A <~> B" := (Equiv A B) (at level 85) : equiv_scope.
Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3, format "f '^-1'") : equiv_scope.
Class Contr_internal (A : Type) := BuildContr {
center : A ;
contr : (forall y : A, center = y)
}.
Inductive trunc_index : Type :=
| minus_two : trunc_index
| trunc_S : trunc_index -> trunc_index.
Notation "n .+1" := (trunc_S n) (at level 2, left associativity, format "n .+1") : trunc_scope.
Local Open Scope trunc_scope.
Notation "-2" := minus_two (at level 0) : trunc_scope.
Notation "-1" := (-2.+1) (at level 0) : trunc_scope.
Fixpoint IsTrunc_internal (n : trunc_index) (A : Type) : Type :=
match n with
| -2 => Contr_internal A
| n'.+1 => forall (x y : A), IsTrunc_internal n' (x = y)
end.
Class IsTrunc (n : trunc_index) (A : Type) : Type :=
Trunc_is_trunc : IsTrunc_internal n A.
Notation IsHProp := (IsTrunc -1).
Monomorphic Axiom dummy_funext_type : Type0.
Monomorphic Class Funext := { dummy_funext_value : dummy_funext_type }.
Local Open Scope path_scope.
Definition concat_p1 {A : Type} {x y : A} (p : x = y) :
p @ 1 = p
:=
match p with idpath => 1 end.
Definition concat_1p {A : Type} {x y : A} (p : x = y) :
1 @ p = p
:=
match p with idpath => 1 end.
Definition concat_p_pp {A : Type} {x y z t : A} (p : x = y) (q : y = z) (r : z = t) :
p @ (q @ r) = (p @ q) @ r :=
match r with idpath =>
match q with idpath =>
match p with idpath => 1
end end end.
Definition concat_pp_p {A : Type} {x y z t : A} (p : x = y) (q : y = z) (r : z = t) :
(p @ q) @ r = p @ (q @ r) :=
match r with idpath =>
match q with idpath =>
match p with idpath => 1
end end end.
Definition moveL_Mp {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : y = x) :
r^ @ q = p -> q = r @ p.
admit.
Defined.
Ltac with_rassoc tac :=
repeat rewrite concat_pp_p;
tac;
repeat rewrite concat_p_pp.
Ltac rewrite_moveL_Mp_p := with_rassoc ltac:(apply moveL_Mp).
Definition ap_p_pp {A B : Type} (f : A -> B) {w : B} {x y z : A}
(r : w = f x) (p : x = y) (q : y = z) :
r @ (ap f (p @ q)) = (r @ ap f p) @ (ap f q).
admit.
Defined.
Definition ap_compose {A B C : Type} (f : A -> B) (g : B -> C) {x y : A} (p : x = y) :
ap (g o f) p = ap g (ap f p)
:=
match p with idpath => 1 end.
Definition concat_Ap {A B : Type} {f g : A -> B} (p : forall x, f x = g x) {x y : A} (q : x = y) :
(ap f q) @ (p y) = (p x) @ (ap g q)
:=
match q with
| idpath => concat_1p _ @ ((concat_p1 _) ^)
end.
Definition transportD2 {A : Type} (B C : A -> Type) (D : forall a:A, B a -> C a -> Type)
{x1 x2 : A} (p : x1 = x2) (y : B x1) (z : C x1) (w : D x1 y z)
: D x2 (p # y) (p # z)
:=
match p with idpath => w end.
Local Open Scope equiv_scope.
Definition transport_arrow_toconst {A : Type} {B : A -> Type} {C : Type}
{x1 x2 : A} (p : x1 = x2) (f : B x1 -> C) (y : B x2)
: (transport (fun x => B x -> C) p f) y = f (p^ # y).
admit.
Defined.
Definition transport_arrow_fromconst {A B : Type} {C : A -> Type}
{x1 x2 : A} (p : x1 = x2) (f : B -> C x1) (y : B)
: (transport (fun x => B -> C x) p f) y = p # (f y).
admit.
Defined.
Definition ap_transport_arrow_toconst {A : Type} {B : A -> Type} {C : Type}
{x1 x2 : A} (p : x1 = x2) (f : B x1 -> C) {y1 y2 : B x2} (q : y1 = y2)
: ap (transport (fun x => B x -> C) p f) q
@ transport_arrow_toconst p f y2
= transport_arrow_toconst p f y1
@ ap (fun y => f (p^ # y)) q.
admit.
Defined.
Class Univalence.
Definition path_universe {A B : Type} (f : A -> B) {feq : IsEquiv f} : (A = B).
admit.
Defined.
Definition transport_path_universe
{A B : Type} (f : A -> B) {feq : IsEquiv f} (z : A)
: transport (fun X:Type => X) (path_universe f) z = f z.
admit.
Defined.
Definition transport_path_universe_V `{Funext}
{A B : Type} (f : A -> B) {feq : IsEquiv f} (z : B)
: transport (fun X:Type => X) (path_universe f)^ z = f^-1 z.
admit.
Defined.
Ltac simpl_do_clear tac term :=
let H := fresh in
assert (H := term);
simpl in H |- *;
tac H;
clear H.
Tactic Notation "simpl" "rewrite" constr(term) := simpl_do_clear ltac:(fun H => rewrite H) term.
Global Instance Univalence_implies_Funext `{Univalence} : Funext.
Admitted.
Section Factorization.
Context {class1 class2 : forall (X Y : Type@{i}), (X -> Y) -> Type@{i}}
`{forall (X Y : Type@{i}) (g:X->Y), IsHProp (class1 _ _ g)}
`{forall (X Y : Type@{i}) (g:X->Y), IsHProp (class2 _ _ g)}
{A B : Type@{i}} {f : A -> B}.
Record Factorization :=
{ intermediate : Type ;
factor1 : A -> intermediate ;
factor2 : intermediate -> B ;
fact_factors : factor2 o factor1 == f ;
inclass1 : class1 _ _ factor1 ;
inclass2 : class2 _ _ factor2
}.
Record PathFactorization {fact fact' : Factorization} :=
{ path_intermediate : intermediate fact <~> intermediate fact' ;
path_factor1 : path_intermediate o factor1 fact == factor1 fact' ;
path_factor2 : factor2 fact == factor2 fact' o path_intermediate ;
path_fact_factors : forall a, path_factor2 (factor1 fact a)
@ ap (factor2 fact') (path_factor1 a)
@ fact_factors fact' a
= fact_factors fact a
}.
Context `{Univalence} {fact fact' : Factorization}
(pf : @PathFactorization fact fact').
Let II := path_intermediate pf.
Let ff1 := path_factor1 pf.
Let ff2 := path_factor2 pf.
Local Definition II' : intermediate fact = intermediate fact'.
admit.
Defined.
Local Definition fff' (a : A)
: (transportD2 (fun X => A -> X) (fun X => X -> B)
(fun X g h => {_ : forall a : A, h (g a) = f a &
{_ : class1 A X g & class2 X B h}})
II' (factor1 fact) (factor2 fact)
(fact_factors fact; (inclass1 fact; inclass2 fact))).1 a =
ap (transport (fun X => X -> B) II' (factor2 fact))
(transport_arrow_fromconst II' (factor1 fact) a
@ transport_path_universe II (factor1 fact a)
@ ff1 a)
@ transport_arrow_toconst II' (factor2 fact) (factor1 fact' a)
@ ap (factor2 fact) (transport_path_universe_V II (factor1 fact' a))
@ ff2 (II^-1 (factor1 fact' a))
@ ap (factor2 fact') (eisretr II (factor1 fact' a))
@ fact_factors fact' a.
Proof.
Open Scope long_path_scope.
rewrite (ap_transport_arrow_toconst (B := idmap) (C := B)).
simpl rewrite (@ap_compose _ _ _ (transport idmap (path_universe II)^)
(factor2 fact)).
rewrite <- ap_p_pp; rewrite_moveL_Mp_p.
Set Debug Tactic Unification.
rewrite (concat_Ap ff2).
Abort.
End Factorization.
|