1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
Set Implicit Arguments.
Open Scope type_scope.
Inductive One : Set := inOne: One.
Definition maybe: forall A B:Set,(A -> B) -> One + A -> One + B.
Proof.
intros A B f c.
case c.
left; assumption.
right; apply f; assumption.
Defined.
Definition id (A:Set)(a:A):=a.
Definition LamF (X: Set -> Set)(A:Set) :Set :=
A + (X A)*(X A) + X(One + A).
Definition LamF' (X: Set -> Set)(A:Set) :Set :=
LamF X A.
Definition index := list bool.
Inductive L (A:Set) : index -> Set :=
initL: A -> L A nil
| pluslL: forall l:index, One -> L A (cons false l)
| plusrL: forall l:index, L A l -> L A (cons false l)
| varL: forall l:index, L A l -> L A (cons true l)
| appL: forall l:index, L A (cons true l) -> L A (cons true l) -> L A (cons true l)
| absL: forall l:index, L A (cons true (cons false l)) -> L A (cons true l).
Scheme L_rec_simp := Minimality for L Sort Set.
Definition Lam' (A:Set) := L A (cons true nil).
Definition aczelapp: forall (l1 l2: index)(A:Set), L (L A l2) l1 -> L A
(app l1 l2).
Proof.
intros l1 l2 A.
generalize l1.
clear l1.
(* Check (fun i:index => L A (i++l2)). *)
apply (L_rec_simp (A:=L A l2) (fun i:index => L A (app i l2))).
trivial.
intros l o.
simpl app.
apply pluslL; assumption.
intros l _ t.
simpl app.
apply plusrL; assumption.
intros l _ t.
simpl app.
apply varL; assumption.
intros l _ t1 _ t2.
simpl app in *|-*.
Check 0.
apply appL; [exact t1| exact t2].
intros l _ t.
simpl app in *|-*.
Check 0.
apply absL; assumption.
Defined.
Definition monL: forall (l:index)(A:Set)(B:Set), (A->B) -> L A l -> L B l.
Proof.
intros l A B f.
intro t.
elim t.
intro a.
exact (initL (f a)).
intros i u.
exact (pluslL _ _ u).
intros i _ r.
exact (plusrL r).
intros i _ r.
exact (varL r).
intros i _ r1 _ r2.
exact (appL r1 r2).
intros i _ r.
exact (absL r).
Defined.
Definition lam': forall (A B:Set), (A -> B) -> Lam' A -> Lam' B.
Proof.
intros A B f t.
unfold Lam' in *|-*.
Check 0.
exact (monL f t).
Defined.
Definition inLam': forall A:Set, LamF' Lam' A -> Lam' A.
Proof.
intros A [[a|[t1 t2]]|r].
unfold Lam'.
exact (varL (initL a)).
exact (appL t1 t2).
unfold Lam' in * |- *.
Check 0.
apply absL.
change (L A (app (cons true nil) (cons false nil))).
apply aczelapp.
(* Check (fun x:One + A => (match (maybe (fun a:A => initL a) x) with
| inl u => pluslL _ _ u
| inr t' => plusrL t' end)). *)
exact (monL (fun x:One + A =>
(match (maybe (fun a:A => initL a) x) with
| inl u => pluslL _ _ u
| inr t' => plusrL t' end)) r).
Defined.
Section minimal.
Definition sub1 (F G: Set -> Set):= forall A:Set, F A->G A.
Hypothesis G: Set -> Set.
Hypothesis step: sub1 (LamF' G) G.
Fixpoint L'(A:Set)(i:index){struct i} : Set :=
match i with
nil => A
| cons false l => One + L' A l
| cons true l => G (L' A l)
end.
Definition LinL': forall (A:Set)(i:index), L A i -> L' A i.
Proof.
intros A i t.
elim t.
intro a.
unfold L'.
assumption.
intros l u.
left; assumption.
intros l _ r.
right; assumption.
intros l _ r.
apply (step (A:=L' A l)).
exact (inl _ (inl _ r)).
intros l _ r1 _ r2.
apply (step (A:=L' A l)).
(* unfold L' in * |- *.
Check 0. *)
exact (inl _ (inr _ (pair r1 r2))).
intros l _ r.
apply (step (A:=L' A l)).
exact (inr _ r).
Defined.
Definition L'inG: forall A: Set, L' A (cons true nil) -> G A.
Proof.
intros A t.
unfold L' in t.
assumption.
Defined.
Definition Itbasic: sub1 Lam' G.
Proof.
intros A t.
apply L'inG.
unfold Lam' in t.
exact (LinL' t).
Defined.
End minimal.
Definition recid := Itbasic inLam'.
Definition L'Lam'inL: forall (i:index)(A:Set), L' Lam' A i -> L A i.
Proof.
intros i A t.
induction i.
unfold L' in t.
apply initL.
assumption.
induction a.
simpl L' in t.
apply (aczelapp (l1:=cons true nil) (l2:=i)).
exact (lam' IHi t).
simpl L' in t.
induction t.
exact (pluslL _ _ a).
exact (plusrL (IHi b)).
Defined.
Lemma recidgen: forall(A:Set)(i:index)(t:L A i), L'Lam'inL i A (LinL' inLam' t)
= t.
Proof.
intros A i t.
induction t.
trivial.
trivial.
simpl.
rewrite IHt.
trivial.
simpl L'Lam'inL.
rewrite IHt.
trivial.
simpl L'Lam'inL.
simpl L'Lam'inL in IHt1.
unfold lam' in IHt1.
simpl L'Lam'inL in IHt2.
unfold lam' in IHt2.
(* going on. This fails for the original solution. *)
rewrite IHt1.
rewrite IHt2.
trivial.
Abort. (* one goal still left *)
|