1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Pp
open CErrors
open Util
open Names
open Declarations
open Mod_declarations
open Entries
open Libnames
open Libobject
open Mod_subst
(** {6 Inlining levels} *)
(** Rigid / flexible module signature *)
type 'a module_signature =
| Enforce of 'a (** ... : T *)
| Check of 'a list (** ... <: T1 <: T2, possibly empty *)
(** Which module inline annotations should we honor,
either None or the ones whose level is less or equal
to the given integer *)
type inline =
| NoInline
| DefaultInline
| InlineAt of int
let default_inline () = Some (Flags.get_inline_level ())
let inl2intopt = function
| NoInline -> None
| InlineAt i -> Some i
| DefaultInline -> default_inline ()
(** These functions register the visibility of the module and iterates
through its components. They are called by plenty of module functions *)
let consistency_checks exists dir =
if exists then
let _ =
try Nametab.locate_module (qualid_of_path dir)
with Not_found ->
user_err
(pr_path dir ++ str " should already exist!")
in
()
else
if Nametab.exists_module dir then
user_err
(pr_path dir ++ str " already exists.")
let rec get_module_path = function
| MEident mp -> mp
| MEwith (me,_) -> get_module_path me
| MEapply (me,_) -> get_module_path me
let type_of_mod mp env = function
| true -> mod_type (Environ.lookup_module mp env)
| false -> mod_type (Environ.lookup_modtype mp env)
(** {6 Name management}
Auxiliary functions to transform full_path and kernel_name given
by Lib into ModPath.t and DirPath.t needed for modules
*)
let mp_of_kn kn =
let mp,l = KerName.repr kn in
MPdot (mp,l)
let pop_path sp =
path_pop_suffix sp, basename sp
let path_of_file dp =
match DirPath.repr dp with
| x :: dp -> make_path (DirPath.make dp) x
| [] -> CErrors.anomaly Pp.(str "Cannot start library with empty dirpath")
(* Avoid generating a KeepObject for nothing *)
let keep_objects id keep = match keep.keep_objects with
| [] -> []
| _ :: _ -> [KeepObject (id, keep)]
let escape_objects id escape = match escape.escape_objects with
| [] -> []
| _ :: _ -> [EscapeObject (id, escape)]
(** The [ModActions] abstraction represent operations on modules
that are specific to a given stage. Two instances are defined below,
for Synterp and Interp. *)
module type ModActions = sig
type typexpr
type env
val stage : Summary.Stage.t
val substobjs_table_name : string
val modobjs_table_name : string
val enter_module : ModPath.t -> full_path -> int -> unit
val enter_modtype : ModPath.t -> full_path -> int -> unit
val open_module : open_filter -> ModPath.t -> full_path -> int -> unit
module Lib : Lib.StagedLibS
(** Create the substitution corresponding to some functor applications *)
val compute_subst : is_mod:bool -> env -> MBId.t list -> ModPath.t -> ModPath.t list -> Entries.inline -> MBId.t list * substitution
end
module SynterpActions : ModActions with
type env = unit with
type typexpr = Constrexpr.universe_decl_expr option * Constrexpr.constr_expr =
struct
type typexpr = Constrexpr.universe_decl_expr option * Constrexpr.constr_expr
type env = unit
let stage = Summary.Stage.Synterp
let substobjs_table_name = "MODULE-SYNTAX-SUBSTOBJS"
let modobjs_table_name = "MODULE-SYNTAX-OBJS"
let enter_module obj_mp obj_path i =
consistency_checks false obj_path;
Nametab.push_module (Until i) obj_path obj_mp
let enter_modtype mp sp i =
if Nametab.exists_modtype sp then
anomaly (pr_path sp ++ str " already exists.");
Nametab.push_modtype (Nametab.Until i) sp mp
let open_module f obj_mp obj_path i =
consistency_checks true obj_path;
if in_filter ~cat:None f then Nametab.push_module (Nametab.Exactly i) obj_path obj_mp
module Lib = Lib.Synterp
let rec compute_subst () mbids mp_l inl =
match mbids,mp_l with
| _,[] -> mbids,empty_subst
| [],r -> user_err Pp.(str "Application of a functor with too few arguments.")
| mbid::mbids,mp::mp_l ->
let mbid_left,subst = compute_subst () mbids mp_l inl in
mbid_left, join (map_mbid mbid mp (empty_delta_resolver mp)) subst
let compute_subst ~is_mod () mbids mp1 mp_l inl =
compute_subst () mbids mp_l inl
end
module InterpActions : ModActions
with type env = Environ.env
with type typexpr = Constr.t * UVars.AbstractContext.t option =
struct
type typexpr = Constr.t * UVars.AbstractContext.t option
type env = Environ.env
let stage = Summary.Stage.Interp
let substobjs_table_name = "MODULE-SUBSTOBJS"
let modobjs_table_name = "MODULE-OBJS"
(** {6 Current module type information}
This information is stored by each [start_modtype] for use
in a later [end_modtype]. *)
let enter_module obj_mp obj_path i = ()
let enter_modtype mp sp i = ()
let open_module f obj_mp obj_path i = ()
module Lib = Lib.Interp
let rec compute_subst env mbids sign mp_l inl =
match mbids,mp_l with
| _,[] -> mbids,empty_subst
| [],r -> user_err Pp.(str "Application of a functor with too few arguments.")
| mbid::mbids,mp::mp_l ->
let farg_id, farg_b, fbody_b = Modops.destr_functor sign in
let mb = Environ.lookup_module mp env in
let mbid_left,subst = compute_subst env mbids fbody_b mp_l inl in
let resolver = match mod_global_delta mb with
| None -> empty_delta_resolver mp
| Some delta ->
Modops.inline_delta_resolver env inl mp farg_id farg_b delta
in
mbid_left,join (map_mbid mbid mp resolver) subst
let compute_subst ~is_mod env mbids mp1 mp_l inl =
let typ = type_of_mod mp1 env is_mod in
compute_subst env mbids typ mp_l inl
end
type exp_substituted_object = (substitutive_objects, exp_algebraic_objects, Empty.t, Empty.t) object_view
and exp_algebraic_objects = { exp_algebraic_objects : exp_substituted_object list }
(* and exp_substitutive_objects = Names.MBId.t list * exp_algebraic_objects *)
type module_objects =
{ module_prefix : object_prefix;
module_substituted_objects : exp_substituted_object list;
module_keep_objects : keep_objects;
module_escape_objects : escape_objects;
}
(** The [StagedModS] abstraction describes module operations at a given stage. *)
module type StagedModS = sig
type typexpr
type env
val get_module_sobjs : bool -> env -> Entries.inline -> typexpr module_alg_expr -> substitutive_objects
val load_keep : int -> full_path -> ModPath.t -> keep_objects -> unit
val load_escape : int -> full_path -> ModPath.t -> escape_objects -> unit
val load_module : int -> full_path -> ModPath.t -> substitutive_objects -> unit
val import_modules : export:Lib.export_flag -> (open_filter * ModPath.t) list -> unit
val add_leaf : Libobject.t -> unit
val add_leaves : Libobject.t list -> unit
val expand_aobjs : Libobject.algebraic_objects -> Libobject.t list
val get_applications : typexpr module_alg_expr -> ModPath.t * ModPath.t list
val debug_print_modtab : unit -> Pp.t
module ModObjs : sig val all : unit -> module_objects MPmap.t end
val close_section : unit -> unit
end
(** Some utilities about substitutive objects :
substitution, expansion *)
let sobjs_no_functor (mbids,_) = List.is_empty mbids
let subst_filtered sub (f,mp as x) =
let mp' = subst_mp sub mp in
if mp == mp' then x
else f, mp'
let rec subst_aobjs sub = function
| Objs o as objs ->
let o' = subst_objects sub o in
if o == o' then objs else Objs o'
| Ref (mp, sub0) as r ->
let sub0' = join sub0 sub in
if sub0' == sub0 then r else Ref (mp, sub0')
and subst_sobjs sub (mbids,aobjs as sobjs) =
let aobjs' = subst_aobjs sub aobjs in
if aobjs' == aobjs then sobjs else (mbids, aobjs')
and subst_objects subst seg =
let subst_one node =
match node with
| AtomicObject obj ->
let obj' = Libobject.subst_object (subst,obj) in
if obj' == obj then node else AtomicObject obj'
| ModuleObject (id, sobjs) ->
let sobjs' = subst_sobjs subst sobjs in
if sobjs' == sobjs then node else ModuleObject (id, sobjs')
| ModuleTypeObject (id, sobjs) ->
let sobjs' = subst_sobjs subst sobjs in
if sobjs' == sobjs then node else ModuleTypeObject (id, sobjs')
| IncludeObject aobjs ->
let aobjs' = subst_aobjs subst aobjs in
if aobjs' == aobjs then node else IncludeObject aobjs'
| ExportObject { mpl } ->
let mpl' = List.Smart.map (subst_filtered subst) mpl in
if mpl'==mpl then node else ExportObject { mpl = mpl' }
| KeepObject _ | EscapeObject _ -> assert false
in
List.Smart.map subst_one seg
(** The [StagedMod] abstraction factors out the code dealing with modules
that is common to all stages. *)
module StagedMod(Actions : ModActions) = struct
type typexpr = Actions.typexpr
type env = Actions.env
(** ModSubstObjs : a cache of module substitutive objects
This table is common to modules and module types.
- For a Module M:=N, the objects of N will be reloaded
with M after substitution.
- For a Module M:SIG:=..., the module M gets its objects from SIG
Invariants:
- A alias (i.e. a module path inside a Ref constructor) should
never lead to another alias, but rather to a concrete Objs
constructor.
We will plug later a handler dealing with missing entries in the
cache. Such missing entries may come from inner parts of module
types, which aren't registered by the standard libobject machinery.
*)
module ModSubstObjs :
sig
val set : ModPath.t -> substitutive_objects -> unit
val get : ModPath.t -> substitutive_objects
val set_missing_handler : (ModPath.t -> substitutive_objects) -> unit
end =
struct
let table =
Summary.ref ~stage:Actions.stage (MPmap.empty : substitutive_objects MPmap.t)
~name:Actions.substobjs_table_name
let missing_handler = ref (fun mp -> assert false)
let set_missing_handler f = (missing_handler := f)
let set mp objs = (table := MPmap.add mp objs !table)
let get mp =
try MPmap.find mp !table with Not_found -> !missing_handler mp
end
let expand_aobjs = function
| Objs o -> o
| Ref (mp, sub) ->
match ModSubstObjs.get mp with
| (_,Objs o) -> subst_objects sub o
| _ -> assert false (* Invariant : any alias points to concrete objs *)
let expand_sobjs (_,aobjs) = expand_aobjs aobjs
module Expand =
struct
type exp_object = (substitutive_objects, exp_algebraic_objects, keep_objects, escape_objects) object_view
let exp_substituted_view (obj : exp_substituted_object) : exp_object = match obj with
| (AtomicObject _ | ModuleObject _ | ModuleTypeObject _ | IncludeObject _ | ExportObject _) as o -> o
| EscapeObject (_, o) | KeepObject (_, o) -> Empty.abort o
let keep_view (obj : Libobject.t) : exp_object = match obj with
| (AtomicObject _ | KeepObject _) as o -> o
| ModuleObject _ | ModuleTypeObject _ | IncludeObject _ | ExportObject _ | EscapeObject _ ->
assert false (** keep objects only contain atomic / keep *)
let escape_view (obj : Libobject.t) : exp_object = match obj with
| (AtomicObject _ | EscapeObject _) as o -> o
| ModuleObject _ | ModuleTypeObject _ | IncludeObject _ | ExportObject _ | KeepObject _ ->
assert false (** escape objects only contain atomic / escape *)
let rec substituted_object_view (obj : Libobject.t) : exp_substituted_object = match obj with
| (AtomicObject _ | ModuleObject _ | ModuleTypeObject _ | ExportObject _) as o -> o
| IncludeObject aobjs ->
let aobjs = expand_aobjs aobjs in
IncludeObject { exp_algebraic_objects = List.map substituted_object_view aobjs }
| EscapeObject _ | KeepObject _ ->
(* forbidden in substitutive objects *)
assert false
let object_view (obj : Libobject.t) : exp_object = match obj with
| (AtomicObject _ | EscapeObject _ | ModuleObject _ | ModuleTypeObject _ | ExportObject _ | KeepObject _) as o -> o
| IncludeObject aobjs ->
let aobjs = expand_aobjs aobjs in
IncludeObject { exp_algebraic_objects = List.map substituted_object_view aobjs }
end
(** {6 ModObjs : a cache of module objects}
For each module, we also store a cache of
"prefix", "substituted objects", "keep objects".
This is used for instance to implement the "Import" command.
substituted objects :
roughly the objects above after the substitution - we need to
keep them to call open_object when the module is opened (imported)
keep objects :
The list of non-substitutive objects - as above, for each of
them we will call open_object when the module is opened
(Some) Invariants:
* If the module is a functor, it won't appear in this cache.
* Module objects in substitutive_objects part have empty substituted
objects.
* Modules which where created with Module M:=mexpr or with
Module M:SIG. ... End M. have the keep list empty.
*)
module ModObjs :
sig
val set : ModPath.t -> module_objects -> unit
val get : ModPath.t -> module_objects (* may raise Not_found *)
val all : unit -> module_objects MPmap.t
end =
struct
let table =
Summary.ref ~stage:Actions.stage (MPmap.empty : module_objects MPmap.t)
~name:Actions.modobjs_table_name
let set mp objs = (table := MPmap.add mp objs !table)
let get mp = MPmap.find mp !table
let all () = !table
end
open Expand
(** {6 Declaration of module substitutive objects} *)
(** Nota: Interactive modules and module types cannot be recached!
This used to be checked here via a flag along the substobjs. *)
(** {6 Declaration of module type substitutive objects} *)
(** Nota: Interactive modules and module types cannot be recached!
This used to be checked more properly here. *)
let load_modtype i sp mp sobjs =
Actions.enter_modtype mp sp i;
ModSubstObjs.set mp sobjs
(** {6 Declaration of substitutive objects for Include} *)
let rec load_object : type a. (a -> exp_object) -> int -> object_prefix * a -> unit = fun view i (prefix, obj) ->
match view obj with
| AtomicObject o -> Libobject.load_object i (prefix, o)
| ModuleObject (id,sobjs) ->
let sp, kn = Lib.make_oname prefix id in
load_module i sp (mp_of_kn kn) sobjs
| ModuleTypeObject (id,sobjs) ->
let name = Lib.make_oname prefix id in
let (sp,kn) = name in
load_modtype i sp (mp_of_kn kn) sobjs
| IncludeObject aobjs ->
load_include i (prefix, aobjs)
| ExportObject _ -> ()
| KeepObject (id,objs) ->
let sp, kn = Lib.make_oname prefix id in
load_keep i sp (mp_of_kn kn) objs
| EscapeObject (id,objs) ->
let sp, kn = Lib.make_oname prefix id in
load_escape i sp (mp_of_kn kn) objs
and load_objects : type a. (a -> exp_object) -> int -> object_prefix -> a list -> unit = fun view i prefix objs ->
List.iter (fun obj -> load_object view i (prefix, obj)) objs
and load_include i (prefix, aobjs) =
load_objects exp_substituted_view i prefix aobjs.exp_algebraic_objects
and load_keep i obj_path obj_mp kobjs =
(* Invariant : seg isn't empty *)
let prefix = { obj_path ; obj_mp; } in
let modobjs =
try ModObjs.get obj_mp
with Not_found -> assert false (* a substobjs should already be loaded *)
in
assert (eq_object_prefix modobjs.module_prefix prefix);
assert (List.is_empty modobjs.module_keep_objects.keep_objects);
ModObjs.set obj_mp { modobjs with module_keep_objects = kobjs };
load_objects keep_view (i+1) prefix kobjs.keep_objects
and load_escape i obj_path obj_mp eobjs =
(* Invariant : seg isn't empty *)
let prefix = { obj_path ; obj_mp; } in
let modobjs =
try ModObjs.get obj_mp
with Not_found ->
(* escape objects can exist even if there is no corresponding real module *)
{ module_prefix = prefix;
module_substituted_objects = [];
module_keep_objects = { keep_objects = [] };
module_escape_objects = { escape_objects = [] };
}
in
assert (eq_object_prefix modobjs.module_prefix prefix);
assert (List.is_empty modobjs.module_escape_objects.escape_objects);
ModObjs.set obj_mp { modobjs with module_escape_objects = eobjs };
load_objects escape_view (i+1) prefix eobjs.escape_objects
and load_module i obj_path obj_mp sobjs =
let prefix = { obj_path ; obj_mp; } in
Actions.enter_module obj_mp obj_path i;
ModSubstObjs.set obj_mp sobjs;
(* If we're not a functor, let's iter on the internal components *)
if sobjs_no_functor sobjs then begin
let objs = expand_sobjs sobjs in
let objs = List.map substituted_object_view objs in
let module_objects =
{ module_prefix = prefix;
module_substituted_objects = objs;
module_keep_objects = { keep_objects = [] };
module_escape_objects = { escape_objects = [] };
}
in
ModObjs.set obj_mp module_objects;
load_objects exp_substituted_view (i+1) prefix objs
end
(** {6 Implementation of Import and Export commands} *)
let mark_object f obj (exports,acc) =
(exports, (f,obj)::acc)
let rec collect_module (f,mp) acc =
try
(* May raise Not_found for unknown module and for functors *)
let modobjs = ModObjs.get mp in
let prefix = modobjs.module_prefix in
let acc = collect_objects escape_view f 1 prefix modobjs.module_escape_objects.escape_objects acc in
let acc = collect_objects keep_view f 1 prefix modobjs.module_keep_objects.keep_objects acc in
collect_objects exp_substituted_view f 1 prefix modobjs.module_substituted_objects acc
with Not_found when Actions.stage = Summary.Stage.Synterp ->
acc
and collect_object : type a. (a -> exp_object) -> _ -> _ -> _ -> a -> _ -> _ = fun view f i prefix obj acc ->
match view obj with
| ExportObject { mpl } -> collect_exports f i mpl acc
| (AtomicObject _ | IncludeObject _ | KeepObject _ | EscapeObject _
| ModuleObject _ | ModuleTypeObject _) as obj -> mark_object f (prefix,obj) acc
and collect_objects : type a. (a -> exp_object) -> _ -> _ -> _ -> a list -> _ = fun view f i prefix objs acc ->
List.fold_left (fun acc obj -> collect_object view f i prefix obj acc)
acc
(List.rev objs)
and collect_export f (f',mp) (exports,objs as acc) =
match filter_and f f' with
| None -> acc
| Some f ->
let exports' = MPmap.update mp (function
| None -> Some f
| Some f0 ->
let f' = filter_or f f0 in
if filter_eq f' f0 then Some f0 else Some f')
exports
in
(* If the map doesn't change there is nothing new to export. *)
if exports == exports' then acc
else
collect_module (f,mp) (exports', objs)
and collect_exports f i mpl acc =
if Int.equal i 1 then
List.fold_left (fun acc fmp -> collect_export f fmp acc) acc (List.rev mpl)
else acc
let collect_modules mpl =
List.fold_left (fun acc fmp -> collect_module fmp acc) (MPmap.empty, []) (List.rev mpl)
let open_modtype i ((sp,kn),_) =
let mp = mp_of_kn kn in
let mp' =
try Nametab.locate_modtype (qualid_of_path sp)
with Not_found ->
anomaly (pr_path sp ++ str " should already exist!");
in
assert (ModPath.equal mp mp');
Nametab.push_modtype (Nametab.Exactly i) sp mp
let rec open_object : type a. (a -> exp_object) -> _ -> _ -> _ * a -> _ = fun view f i (prefix, obj) ->
match view obj with
| AtomicObject o -> Libobject.open_object f i (prefix, o)
| ModuleObject (id,sobjs) ->
let sp, kn = Lib.make_oname prefix id in
let mp = mp_of_kn kn in
open_module f i sp mp sobjs
| ModuleTypeObject (id,sobjs) ->
let name = Lib.make_oname prefix id in
open_modtype i (name, sobjs)
| IncludeObject aobjs ->
open_include f i (prefix, aobjs)
| ExportObject { mpl } -> open_export f i mpl
| KeepObject (id,objs) ->
let name = Lib.make_oname prefix id in
open_keep f i (name, objs)
| EscapeObject (id,objs) ->
let name = Lib.make_oname prefix id in
open_escape f i (name, objs)
and open_module f i obj_path obj_mp sobjs =
Actions.open_module f obj_mp obj_path i;
(* If we're not a functor, let's iter on the internal components *)
if sobjs_no_functor sobjs then begin
let modobjs = ModObjs.get obj_mp in
open_objects exp_substituted_view f (i+1) modobjs.module_prefix modobjs.module_substituted_objects
end
and open_objects : type a. (a -> exp_object) -> _ -> _ -> _ -> a list -> _ = fun view f i prefix objs ->
List.iter (fun obj -> open_object view f i (prefix, obj)) objs
and open_include f i (prefix, aobjs) =
open_objects exp_substituted_view f i prefix aobjs.exp_algebraic_objects
and open_export f i mpl =
let _,objs = collect_exports f i mpl (MPmap.empty, []) in
List.iter (fun (f,o) -> open_object (fun x -> x) f 1 o) objs
and open_keep f i ((sp,kn),kobjs) =
let obj_mp = mp_of_kn kn in
let prefix = { obj_path=sp; obj_mp; } in
open_objects keep_view f (i+1) prefix kobjs.keep_objects
and open_escape f i ((sp,kn),kobjs) =
let obj_mp = mp_of_kn kn in
let prefix = { obj_path=sp; obj_mp; } in
open_objects escape_view f (i+1) prefix kobjs.escape_objects
let cache_include (prefix, aobjs) =
let o = expand_aobjs aobjs in
let o = List.map substituted_object_view o in
load_objects exp_substituted_view 1 prefix o;
open_objects exp_substituted_view unfiltered 1 prefix o
let cache_object (prefix, obj) =
match obj with
| AtomicObject o -> Libobject.cache_object (prefix, o)
| ModuleObject _ -> load_object object_view 1 (prefix,obj)
| ModuleTypeObject _ -> load_object object_view 0 (prefix,obj)
| IncludeObject aobjs -> cache_include (prefix, aobjs)
| ExportObject { mpl } -> anomaly Pp.(str "Export should not be cached")
| KeepObject _ | EscapeObject _ -> anomaly (Pp.str "This module should not be cached!")
(* Adding operations with containers *)
let add_leaf_entry =
match Actions.stage with
| Summary.Stage.Synterp -> Lib.Synterp.add_leaf_entry
| Summary.Stage.Interp -> Lib.Interp.add_leaf_entry
let add_leaf obj =
cache_object (Lib.prefix (),obj);
add_leaf_entry obj
let add_leaves objs =
let add_obj obj =
add_leaf_entry obj;
load_object object_view 1 (Lib.prefix (),obj)
in
List.iter add_obj objs
let import_modules ~export mpl =
let _,objs = collect_modules mpl in
List.iter (fun (f,o) -> open_object (fun x -> x) f 1 o) objs;
match export with
| Lib.Import -> ()
| Lib.Export ->
let entry = ExportObject { mpl } in
add_leaf_entry entry
(** {6 Handler for missing entries in ModSubstObjs} *)
(** Since the inner of Module Types are not added by default to
the ModSubstObjs table, we compensate this by explicit traversal
of Module Types inner objects when needed. Quite a hack... *)
let mp_id mp id = MPdot (mp, Label.of_id id)
let rec register_mod_objs mp obj = match obj with
| ModuleObject (id,sobjs) -> ModSubstObjs.set (mp_id mp id) sobjs
| ModuleTypeObject (id,sobjs) -> ModSubstObjs.set (mp_id mp id) sobjs
| IncludeObject aobjs ->
List.iter (register_mod_objs mp) (expand_aobjs aobjs)
| _ -> ()
let handle_missing_substobjs mp = match mp with
| MPdot (mp',l) ->
let objs = expand_sobjs (ModSubstObjs.get mp') in
List.iter (register_mod_objs mp') objs;
ModSubstObjs.get mp
| _ ->
assert false (* Only inner parts of module types should be missing *)
let () = ModSubstObjs.set_missing_handler handle_missing_substobjs
(** {6 From module expression to substitutive objects} *)
(** Turn a chain of [MSEapply] into the head ModPath.t and the
list of ModPath.t parameters (deepest param coming first).
The left part of a [MSEapply] must be either [MSEident] or
another [MSEapply]. *)
let get_applications mexpr =
let rec get params = function
| MEident mp -> mp, params
| MEapply (fexpr, mp) -> get (mp::params) fexpr
| MEwith _ -> user_err Pp.(str "Non-atomic functor application.")
in get [] mexpr
(** Create the objects of a "with Module" structure. *)
let rec replace_module_object idl mp0 objs0 mp1 objs1 =
match idl, objs0 with
| _,[] -> []
| id::idl,(ModuleObject (id', sobjs))::tail when Id.equal id id' ->
begin
let mp_id = MPdot(mp0, Label.of_id id) in
let objs = match idl with
| [] -> subst_objects (map_mp mp1 mp_id (empty_delta_resolver mp_id)) objs1
| _ ->
let objs_id = expand_sobjs sobjs in
replace_module_object idl mp_id objs_id mp1 objs1
in
(ModuleObject (id, ([], Objs objs)))::tail
end
| idl,lobj::tail -> lobj::replace_module_object idl mp0 tail mp1 objs1
(** Substitutive objects of a module expression (or module type) *)
let rec get_module_sobjs is_mod env inl = function
| MEident mp ->
begin match ModSubstObjs.get mp with
| (mbids,Objs _) when not (ModPath.is_bound mp) ->
(mbids,Ref (mp, empty_subst)) (* we create an alias *)
| sobjs -> sobjs
end
| MEwith (mty, WithDef _) -> get_module_sobjs is_mod env inl mty
| MEwith (mty, WithMod (idl,mp1)) ->
assert (not is_mod);
let sobjs0 = get_module_sobjs is_mod env inl mty in
if not (sobjs_no_functor sobjs0) then
user_err Pp.(str "Illegal use of a functor.");
(* For now, we expand everything, to be safe *)
let mp0 = get_module_path mty in
let objs0 = expand_sobjs sobjs0 in
let objs1 = expand_sobjs (ModSubstObjs.get mp1) in
([], Objs (replace_module_object idl mp0 objs0 mp1 objs1))
| MEapply _ as me ->
let mp1, mp_l = get_applications me in
let mbids, aobjs = get_module_sobjs is_mod env inl (MEident mp1) in
let mbids_left,subst = Actions.compute_subst ~is_mod env mbids mp1 mp_l inl in
(mbids_left, subst_aobjs subst aobjs)
let debug_print_modtab () =
let pr_seg = function
| 0 -> str "[]"
| l -> str "[." ++ int l ++ str ".]"
in
let pr_modinfo mp modobjs s =
let objs = List.length modobjs.module_substituted_objects + List.length modobjs.module_keep_objects.keep_objects in
s ++ str (ModPath.to_string mp) ++ spc () ++ pr_seg objs
in
let modules = MPmap.fold pr_modinfo (ModObjs.all ()) (mt ()) in
hov 0 modules
let add_discharged_item : Lib.discharged_item -> unit = function
| DischargedExport { mpl } -> import_modules ~export:Export mpl
| DischargedLeaf o -> Lib.add_discharged_leaf o
let close_section () =
let objs = Actions.Lib.close_section () in
List.iter add_discharged_item objs
end
module SynterpVisitor : StagedModS
with type env = SynterpActions.env
with type typexpr = Constrexpr.universe_decl_expr option * Constrexpr.constr_expr
= StagedMod(SynterpActions)
module InterpVisitor : StagedModS
with type env = InterpActions.env
with type typexpr = Constr.t * UVars.AbstractContext.t option
= StagedMod(InterpActions)
(** {6 Modules : start, end, declare} *)
type current_module_syntax_info = {
cur_mp : ModPath.t;
cur_typ : ((Constrexpr.universe_decl_expr option * Constrexpr.constr_expr) module_alg_expr * int option) option;
cur_mbids : MBId.t list;
}
let default_module_syntax_info mp = { cur_mp = mp; cur_typ = None; cur_mbids = [] }
let openmod_syntax_info =
Summary.ref None ~stage:Summary.Stage.Synterp ~name:"MODULE-SYNTAX-INFO"
(** {6 Current module information}
This information is stored by each [start_module] for use
in a later [end_module]. *)
type current_module_info = {
cur_typ : (module_struct_entry * int option) option; (** type via ":" *)
cur_typs : module_type_body list (** types via "<:" *)
}
let default_module_info = { cur_typ = None; cur_typs = [] }
let openmod_info = Summary.ref default_module_info ~name:"MODULE-INFO"
let start_library dir =
let mp = Global.start_library dir in
openmod_info := default_module_info;
openmod_syntax_info := Some (default_module_syntax_info mp);
Lib.start_compilation dir mp
let set_openmod_syntax_info info = match !openmod_syntax_info with
| None -> anomaly Pp.(str "bad init of openmod_syntax_info")
| Some _ -> openmod_syntax_info := Some info
let openmod_syntax_info () = match !openmod_syntax_info with
| None -> anomaly Pp.(str "missing init of openmod_syntax_info")
| Some v -> v
let vm_state =
(* VM bytecode is not needed here *)
let vm_handler _ _ _ () = (), None in
((), { Mod_typing.vm_handler })
module RawModOps = struct
module Synterp = struct
let build_subtypes mtys =
List.map
(fun (m,ann) ->
let inl = inl2intopt ann in
let mte, base, kind = Modintern.intern_module_ast Modintern.ModType m in
(mte, base, kind, inl))
mtys
let intern_arg (idl,(typ,ann)) =
let inl = inl2intopt ann in
let lib_dir = Lib.library_dp() in
let (mty, base, kind) = Modintern.intern_module_ast Modintern.ModType typ in
let sobjs = SynterpVisitor.get_module_sobjs false () inl mty in
let mp0 = get_module_path mty in
let map {CAst.v=id} =
let sp = Libnames.make_path DirPath.empty id in
let mbid = MBId.make lib_dir id in
let mp = MPbound mbid in
(* We can use an empty delta resolver because we load only syntax objects *)
let sobjs = subst_sobjs (map_mp mp0 mp (empty_delta_resolver mp)) sobjs in
SynterpVisitor.load_module 1 sp mp sobjs;
mbid
in
List.map map idl, (mty, base, kind, inl)
let intern_args params =
List.map intern_arg params
let start_module_core id args res =
(* Loads the parsing objects in arguments *)
let args = intern_args args in
let mbids = List.flatten @@ List.map (fun (mbidl,_) -> mbidl) args in
let res_entry_o, sign = match res with
| Enforce (res,ann) ->
let inl = inl2intopt ann in
let (mte, base, kind) = Modintern.intern_module_ast Modintern.ModType res in
Some (mte, inl), Enforce (mte, base, kind, inl)
| Check resl -> None, Check (build_subtypes resl)
in
let mp = ModPath.MPdot((openmod_syntax_info ()).cur_mp, Label.of_id id) in
mp, res_entry_o, mbids, sign, args
let start_module export id args res =
let () = if Option.has_some export && not (CList.is_empty args)
then user_err Pp.(str "Cannot import functors.")
in
let fs = Summary.Synterp.freeze_summaries () in
let mp, res_entry_o, mbids, sign, args = start_module_core id args res in
set_openmod_syntax_info { cur_mp = mp; cur_typ = res_entry_o; cur_mbids = mbids };
let prefix = Lib.Synterp.start_module export id mp fs in
Nametab.(push_dir (Until 1) (prefix.obj_path) (GlobDirRef.DirOpenModule prefix.obj_mp));
mp, args, sign
let end_module_core id (m_info : current_module_syntax_info) objects fs =
let {Lib.substobjs = substitute; keepobjs = keep; escapeobjs = escape; anticipateobjs = special; } = objects in
(* For sealed modules, we use the substitutive objects of their signatures *)
let sobjs0, keep = match m_info.cur_typ with
| None -> ([], Objs substitute), keep
| Some (mty, inline) ->
SynterpVisitor.get_module_sobjs false () inline mty, { keep_objects = [] }
in
Summary.Synterp.unfreeze_summaries fs;
let sobjs = let (ms,objs) = sobjs0 in (m_info.cur_mbids@ms,objs) in
(* We substitute objects if the module is sealed by a signature *)
let sobjs =
match m_info.cur_typ with
| None -> sobjs
| Some (mty, _) ->
subst_sobjs (map_mp (get_module_path mty) m_info.cur_mp (empty_delta_resolver m_info.cur_mp)) sobjs
in
let node = ModuleObject (id,sobjs) in
(* We add the keep objects, if any, and if this isn't a functor *)
let keep = if not (CList.is_empty m_info.cur_mbids) then [] else keep_objects id keep in
let escape = escape_objects id escape in
let objects = special@[node]@keep@escape in
m_info.cur_mp, objects
let end_module () =
let oldprefix,fs,objects = Lib.Synterp.end_module () in
let m_info = openmod_syntax_info () in
let olddp, id = pop_path oldprefix.obj_path in
let mp,objects = end_module_core id m_info objects fs in
let () = SynterpVisitor.add_leaves objects in
assert (eq_full_path (Lib.prefix()).obj_path olddp);
mp
let get_functor_sobjs is_mod inl (mbids,mexpr) =
let (mbids0, aobjs) = SynterpVisitor.get_module_sobjs is_mod () inl mexpr in
(mbids @ mbids0, aobjs)
let declare_module id args res mexpr_o =
let fs = Summary.Synterp.freeze_summaries () in
(* We simulate the beginning of an interactive module,
then we adds the module parameters to the global env. *)
let mp = ModPath.MPdot((openmod_syntax_info ()).cur_mp, Label.of_id id) in
let args = intern_args args in
let mbids = List.flatten @@ List.map fst args in
let mty_entry_o = match res with
| Enforce (mty,ann) ->
let inl = inl2intopt ann in
let (mte, base, kind) = Modintern.intern_module_ast Modintern.ModType mty in
Enforce (mte, base, kind, inl)
| Check mtys ->
Check (build_subtypes mtys)
in
let mexpr_entry_o = match mexpr_o with
| None -> None
| Some (mexpr,ann) ->
let (mte, base, kind) = Modintern.intern_module_ast Modintern.Module mexpr in
Some (mte, base, kind, inl2intopt ann)
in
let sobjs, mp0 = match mexpr_entry_o, mty_entry_o with
| None, Check _ -> assert false (* No body, no type ... *)
| _, Enforce (typ,_,_,inl_res) -> get_functor_sobjs false inl_res (mbids,typ), get_module_path typ
| Some (body, _, _, inl_expr), Check _ ->
get_functor_sobjs true inl_expr (mbids,body), get_module_path body
in
(* Undo the simulated interactive building of the module
and declare the module as a whole *)
Summary.Synterp.unfreeze_summaries fs;
(* We can use an empty delta resolver on syntax objects *)
let sobjs = subst_sobjs (map_mp mp0 mp (empty_delta_resolver mp)) sobjs in
ignore (SynterpVisitor.add_leaf (ModuleObject (id,sobjs)));
mp, args, mexpr_entry_o, mty_entry_o
end
module Interp = struct
(** {6 Auxiliary functions concerning subtyping checks} *)
let check_sub mp mtb sub_mtb_l =
let fold sub_mtb (cst, env) =
let state = ((Environ.universes env, cst), Reductionops.inferred_universes) in
let graph, cst = Subtyping.check_subtypes state env mp mtb mp sub_mtb in
(cst, Environ.set_universes graph env)
in
let cst, _ = List.fold_right fold sub_mtb_l (Univ.Constraints.empty, Global.env ()) in
Global.add_constraints cst
(** This function checks if the type calculated for the module [mp] is
a "<:"-like subtype of all signatures in [sub_mtb_l]. Uses only
the global environment. *)
let check_subtypes mp sub_mtb_l =
let mb =
try Global.lookup_module mp with Not_found -> assert false
in
let mtb = Modops.module_type_of_module mb in
check_sub mp mtb sub_mtb_l
(** Same for module type [mp] *)
let check_subtypes_mt mp sub_mtb_l =
let mtb =
try Global.lookup_modtype mp with Not_found -> assert false
in
check_sub mp mtb sub_mtb_l
let current_modresolver () =
Safe_typing.delta_of_senv @@ Global.safe_env ()
let current_struct () =
let struc = Safe_typing.structure_body_of_safe_env @@ Global.safe_env () in
NoFunctor (List.rev struc)
(** Prepare the module type list for check of subtypes *)
let build_subtypes env mp args mtys =
let (ctx, ans) = List.fold_left_map
(fun ctx (mte,base,kind,inl) ->
let mte, ctx' = Modintern.interp_module_ast env Modintern.ModType base mte in
let env = Environ.push_context_set ~strict:true ctx' env in
let ctx = Univ.ContextSet.union ctx ctx' in
let state = ((Environ.universes env, Univ.Constraints.empty), Reductionops.inferred_universes) in
let mtb, (_, cst), _ = Mod_typing.translate_modtype state vm_state env mp inl (args,mte) in
let ctx = Univ.ContextSet.add_constraints cst ctx in
ctx, mtb)
Univ.ContextSet.empty mtys
in
(ans, ctx)
(** Process a declaration of functor parameter(s) (Id1 .. Idn : Typ)
i.e. possibly multiple names with the same module type.
Global environment is updated on the fly.
Objects in these parameters are also loaded.
Output is accumulated on top of [acc] (in reverse order). *)
let intern_arg (acc, cst) (mbidl,(mty, base, kind, inl)) =
let env = Global.env() in
let (mty, cst') = Modintern.interp_module_ast env kind base mty in
let () = Global.push_context_set cst' in
let () =
let state = ((Global.universes (), Univ.Constraints.empty), Reductionops.inferred_universes) in
let _, (_, cst), _ = Mod_typing.translate_modtype state vm_state (Global.env ()) base inl ([], mty) in
Global.add_constraints cst
in
let env = Global.env () in
let sobjs = InterpVisitor.get_module_sobjs false env inl mty in
let mp0 = get_module_path mty in
let fold acc mbid =
let id = MBId.to_id mbid in
let sp = Libnames.make_path DirPath.empty id in
let mp = MPbound mbid in
let resolver = Global.add_module_parameter mbid mty inl in
let sobjs = subst_sobjs (map_mp mp0 mp resolver) sobjs in
InterpVisitor.load_module 1 sp mp sobjs;
(mbid,mty,inl)::acc
in
let acc = List.fold_left fold acc mbidl in
(acc, Univ.ContextSet.union cst cst')
(** Process a list of declarations of functor parameters
(Id11 .. Id1n : Typ1)..(Idk1 .. Idkm : Typk)
Global environment is updated on the fly.
The calls to [interp_modast] should be interleaved with these
env updates, otherwise some "with Definition" could be rejected.
Returns a list of mbids and entries (in reversed order).
This used to be a [List.concat (List.map ...)], but this should
be more efficient and independent of [List.map] eval order.
*)
let intern_args params =
let args, ctx = List.fold_left intern_arg ([], Univ.ContextSet.empty) params in
List.rev args, ctx
let start_module_core id args res =
let mp = Global.start_module id in
let params, ctx = intern_args args in
let () = Global.push_context_set ctx in
let env = Global.env () in
let res_entry_o, subtyps, ctx' = match res with
| Enforce (mte, base, kind, inl) ->
let (mte, ctx) = Modintern.interp_module_ast env kind base mte in
let env = Environ.push_context_set ctx env in
(* We check immediately that mte is well-formed *)
let state = ((Environ.universes env, Univ.Constraints.empty), Reductionops.inferred_universes) in
let _, (_, cst), _ = Mod_typing.translate_modtype state vm_state env mp inl ([], mte) in
let ctx = Univ.ContextSet.add_constraints cst ctx in
Some (mte, inl), [], ctx
| Check resl ->
let typs, ctx = build_subtypes env mp params resl in
None, typs, ctx
in
let () = Global.push_context_set ctx' in
mp, res_entry_o, subtyps, params, Univ.ContextSet.union ctx ctx'
let start_module export id args res =
let fs = Summary.Interp.freeze_summaries () in
let mp, res_entry_o, subtyps, _, _ = start_module_core id args res in
openmod_info := { cur_typ = res_entry_o; cur_typs = subtyps };
let _ : object_prefix = Lib.Interp.start_module export id mp fs in
mp
let end_module_core id m_info objects fs =
let {Lib.substobjs = substitute; keepobjs = keep; escapeobjs = escape; anticipateobjs = special; } = objects in
(* For sealed modules, we use the substitutive objects of their signatures *)
let sobjs0, keep = match m_info.cur_typ with
| None -> ([], Objs substitute), keep
| Some (mty, inline) ->
InterpVisitor.get_module_sobjs false (Global.env()) inline mty, { keep_objects = [] }
in
let struc = current_struct () in
let restype' = Option.map (fun (ty,inl) -> (([],ty),inl)) m_info.cur_typ in
let state = ((Global.universes (), Univ.Constraints.empty), Reductionops.inferred_universes) in
let _, (_, cst), _ =
Mod_typing.finalize_module state vm_state (Global.env ()) (Global.current_modpath ())
(struc, current_modresolver ()) restype'
in
let () = Global.add_constraints cst in
let mp,mbids,resolver = Global.end_module fs id m_info.cur_typ in
let sobjs = let (ms,objs) = sobjs0 in (mbids@ms,objs) in
let () = check_subtypes mp m_info.cur_typs in
(* We substitute objects if the module is sealed by a signature *)
let sobjs =
match m_info.cur_typ with
| None -> sobjs
| Some (mty, _) ->
subst_sobjs (map_mp (get_module_path mty) mp resolver) sobjs
in
let node = ModuleObject (id,sobjs) in
(* We add the keep objects, if any, and if this isn't a functor *)
let keep = if not (CList.is_empty mbids) then [] else keep_objects id keep in
(* NB: escape objects are added even for sealed modules, not sure if want *)
let escape = escape_objects id escape in
let objects = special@[node]@keep@escape in
mp, objects
let end_module () =
let oldprefix,fs,objects = Lib.Interp.end_module () in
let m_info = !openmod_info in
let _olddp, id = pop_path oldprefix.obj_path in
let mp,objects = end_module_core id m_info objects fs in
let () = InterpVisitor.add_leaves objects in
(* Name consistency check : kernel vs. library *)
assert (ModPath.equal oldprefix.obj_mp mp);
mp
let get_functor_sobjs is_mod env inl (params,mexpr) =
let (mbids, aobjs) = InterpVisitor.get_module_sobjs is_mod env inl mexpr in
(List.map pi1 params @ mbids, aobjs)
(* TODO cleanup push universes directly to global env *)
let declare_module id args res mexpr_o =
let fs = Summary.Interp.freeze_summaries () in
(* We simulate the beginning of an interactive module,
then we adds the module parameters to the global env. *)
let mp, mty_entry_o, subs, params, ctx = start_module_core id args res in
let env = Global.env () in
let mexpr_entry_o, inl_expr, ctx' = match mexpr_o with
| None -> None, default_inline (), Univ.ContextSet.empty
| Some (mte, base, kind, inl) ->
let (mte, ctx) = Modintern.interp_module_ast env kind base mte in
Some mte, inl, ctx
in
let env = Environ.push_context_set ctx' env in
let ctx = Univ.ContextSet.union ctx ctx' in
let entry, inl_res = match mexpr_entry_o, mty_entry_o with
| None, None -> assert false (* No body, no type ... *)
| None, Some (typ, inl) -> MType (params, typ), inl
| Some body, otyp -> MExpr (params, body, Option.map fst otyp), Option.cata snd (default_inline ()) otyp
in
let sobjs, mp0 = match entry with
| MType (_,mte) | MExpr (_,_,Some mte) ->
get_functor_sobjs false env inl_res (params,mte), get_module_path mte
| MExpr (_,me,None) ->
get_functor_sobjs true env inl_expr (params,me), get_module_path me
in
(* Undo the simulated interactive building of the module
and declare the module as a whole *)
Summary.Interp.unfreeze_summaries fs;
let inl = match inl_expr with
| None -> None
| _ -> inl_res
in
let () = Global.push_context_set ctx in
let state = ((Global.universes (), Univ.Constraints.empty), Reductionops.inferred_universes) in
let _, (_, cst), _ = Mod_typing.translate_module state vm_state (Global.env ()) mp inl entry in
let () = Global.add_constraints cst in
let mp_env,resolver = Global.add_module id entry inl in
(* Name consistency check : kernel vs. library *)
assert (ModPath.equal mp (mp_of_kn (Lib.make_kn id)));
assert (ModPath.equal mp mp_env);
let () = check_subtypes mp subs in
let sobjs = subst_sobjs (map_mp mp0 mp resolver) sobjs in
InterpVisitor.add_leaf (ModuleObject (id,sobjs));
mp
end
end
(** {6 Module types : start, end, declare} *)
module RawModTypeOps = struct
module Synterp = struct
let start_modtype_core id cur_mp args mtys =
let mp = ModPath.MPdot(cur_mp, Label.of_id id) in
let args = RawModOps.Synterp.intern_args args in
let mbids = List.flatten @@ List.map (fun (mbidl,_) -> mbidl) args in
let sub_mty_l = RawModOps.Synterp.build_subtypes mtys in
mp, mbids, args, sub_mty_l
let start_modtype id args mtys =
let fs = Summary.Synterp.freeze_summaries () in
let mp, mbids, args, sub_mty_l = start_modtype_core id (openmod_syntax_info ()).cur_mp args mtys in
set_openmod_syntax_info { cur_mp = mp; cur_typ = None; cur_mbids = mbids };
let prefix = Lib.Synterp.start_modtype id mp fs in
Nametab.(push_dir (Until 1) (prefix.obj_path) (GlobDirRef.DirOpenModtype prefix.obj_mp));
mp, args, sub_mty_l
let end_modtype_core id mbids objects fs =
let {Lib.substobjs = substitute; keepobjs = _; escapeobjs = escape; anticipateobjs = special; } = objects in
Summary.Synterp.unfreeze_summaries fs;
let modtypeobjs = (mbids, Objs substitute) in
special@[ModuleTypeObject (id,modtypeobjs)]@(escape_objects id escape)
let end_modtype () =
let oldprefix,fs,objects = Lib.Synterp.end_modtype () in
let _olddp, id = pop_path oldprefix.obj_path in
let objects = end_modtype_core id (openmod_syntax_info ()).cur_mbids objects fs in
SynterpVisitor.add_leaves objects;
(openmod_syntax_info ()).cur_mp
let declare_modtype id args mtys (mty,ann) =
let fs = Summary.Synterp.freeze_summaries () in
let inl = inl2intopt ann in
(* We simulate the beginning of an interactive module,
then we adds the module parameters to the global env. *)
let mp, mbids, args, sub_mty_l = start_modtype_core id (openmod_syntax_info ()).cur_mp args mtys in
let mte, base, kind = Modintern.intern_module_ast Modintern.ModType mty in
let entry = mbids, mte in
let sobjs = RawModOps.Synterp.get_functor_sobjs false inl entry in
let subst = map_mp (get_module_path (snd entry)) mp (empty_delta_resolver mp) in
let sobjs = subst_sobjs subst sobjs in
(* Undo the simulated interactive building of the module type
and declare the module type as a whole *)
Summary.Synterp.unfreeze_summaries fs;
ignore (SynterpVisitor.add_leaf (ModuleTypeObject (id,sobjs)));
mp, args, (mte, base, kind, inl), sub_mty_l
end
module Interp = struct
let openmodtype_info =
Summary.ref ([] : module_type_body list) ~name:"MODTYPE-INFO"
let start_modtype_core id args mtys =
let mp = Global.start_modtype id in
let params, params_ctx = RawModOps.Interp.intern_args args in
let () = Global.push_context_set params_ctx in
let env = Global.env () in
let sub_mty_l, sub_mty_ctx = RawModOps.Interp.build_subtypes env mp params mtys in
let () = Global.push_context_set sub_mty_ctx in
mp, params, sub_mty_l, Univ.ContextSet.union params_ctx sub_mty_ctx
let start_modtype id args mtys =
let fs = Summary.Interp.freeze_summaries () in
let mp, _, sub_mty_l, _ = start_modtype_core id args mtys in
openmodtype_info := sub_mty_l;
let prefix = Lib.Interp.start_modtype id mp fs in
Nametab.(push_dir (Until 1) (prefix.obj_path) (GlobDirRef.DirOpenModtype mp));
mp
let end_modtype_core id sub_mty_l objects fs =
let {Lib.substobjs = substitute; keepobjs = _; escapeobjs = escape; anticipateobjs = special; } = objects in
let mp, mbids = Global.end_modtype fs id in
let () = RawModOps.Interp.check_subtypes_mt mp sub_mty_l in
let modtypeobjs = (mbids, Objs substitute) in
let objects = special@[ModuleTypeObject (id,modtypeobjs)]@(escape_objects id escape) in
mp, objects
let end_modtype () =
let oldprefix,fs,objects = Lib.Interp.end_modtype () in
let olddp, id = pop_path oldprefix.obj_path in
let sub_mty_l = !openmodtype_info in
let mp, objects = end_modtype_core id sub_mty_l objects fs in
let () = InterpVisitor.add_leaves objects in
(* Check name consistence : start_ vs. end_modtype, kernel vs. library *)
assert (eq_full_path (Lib.prefix()).obj_path olddp);
assert (ModPath.equal oldprefix.obj_mp mp);
mp
let declare_modtype id args mtys (mte,base,kind,inl) =
let fs = Summary.Interp.freeze_summaries () in
(* We simulate the beginning of an interactive module,
then we adds the module parameters to the global env. *)
let mp, params, sub_mty_l, ctx = start_modtype_core id args mtys in
let env = Global.env () in
let mte, mte_ctx = Modintern.interp_module_ast env kind base mte in
let () = Global.push_context_set mte_ctx in
let env = Global.env () in
(* We check immediately that mte is well-formed *)
let state = ((Global.universes (), Univ.Constraints.empty), Reductionops.inferred_universes) in
let _, (_, mte_cst), _ = Mod_typing.translate_modtype state vm_state env mp inl ([], mte) in
let () = Global.push_context_set (Univ.Level.Set.empty,mte_cst) in
let entry = params, mte in
let env = Global.env () in
let sobjs = RawModOps.Interp.get_functor_sobjs false env inl entry in
let subst = map_mp (get_module_path (snd entry)) mp (empty_delta_resolver mp) in
let sobjs = subst_sobjs subst sobjs in
(* Undo the simulated interactive building of the module type
and declare the module type as a whole *)
Summary.Interp.unfreeze_summaries fs;
(* We enrich the global environment *)
let () = Global.push_context_set ctx in
let () = Global.push_context_set mte_ctx in
let () = Global.push_context_set (Univ.Level.Set.empty,mte_cst) in
let mp_env = Global.add_modtype id entry inl in
(* Name consistency check : kernel vs. library *)
assert (ModPath.equal mp_env mp);
(* Subtyping checks *)
let () = RawModOps.Interp.check_subtypes_mt mp sub_mty_l in
InterpVisitor.add_leaf (ModuleTypeObject (id, sobjs));
mp
end
end
(** {6 Include} *)
module RawIncludeOps = struct
exception NoIncludeSelf
module Synterp = struct
let rec include_subst mp mbids = match mbids with
| [] -> empty_subst
| mbid::mbids ->
let subst = include_subst mp mbids in
join (map_mbid mbid mp (empty_delta_resolver mp)) subst
let declare_one_include_core cur_mp (me_ast,annot) =
let me, base, kind = Modintern.intern_module_ast Modintern.ModAny me_ast in
let is_mod = (kind == Modintern.Module) in
let inl = inl2intopt annot in
let mbids,aobjs = SynterpVisitor.get_module_sobjs is_mod () inl me in
let subst_self =
try
if List.is_empty mbids then raise NoIncludeSelf;
include_subst cur_mp mbids
with NoIncludeSelf -> empty_subst
in
let base_mp = get_module_path me in
(* We can use an empty delta resolver on syntax objects *)
let subst = join subst_self (map_mp base_mp cur_mp (empty_delta_resolver cur_mp)) in
let aobjs = subst_aobjs subst aobjs in
(me, base, kind, inl), aobjs
let declare_one_include (me_ast,annot) =
let res, aobjs = declare_one_include_core (openmod_syntax_info ()).cur_mp (me_ast,annot) in
SynterpVisitor.add_leaf (IncludeObject aobjs);
res
let declare_include me_asts = List.map declare_one_include me_asts
end
module Interp = struct
let rec include_subst env mp reso mbids sign inline = match mbids with
| [] -> empty_subst
| mbid::mbids ->
let farg_id, farg_b, fbody_b = Modops.destr_functor sign in
let subst = include_subst env mp reso mbids fbody_b inline in
let mp_delta =
Modops.inline_delta_resolver env inline mp farg_id farg_b reso
in
join (map_mbid mbid mp mp_delta) subst
let rec decompose_functor mpl typ =
match mpl, typ with
| [], _ -> typ
| _::mpl, MoreFunctor(_,_,str) -> decompose_functor mpl str
| _ -> user_err Pp.(str "Application of a functor with too much arguments.")
let type_of_incl env is_mod = function
| MEident mp -> type_of_mod mp env is_mod
| MEapply _ as me ->
let mp0, mp_l = InterpVisitor.get_applications me in
decompose_functor mp_l (type_of_mod mp0 env is_mod)
| MEwith _ -> raise NoIncludeSelf
(** Implements [Include F] where [F] has parameters [mbids] to be
instantiated by fields of the current "self" module, i.e. using
subtyping, by the current module itself. *)
let declare_one_include_core (me,base,kind,inl) =
let env = Global.env() in
let me, cst = Modintern.interp_module_ast env kind base me in
let () = Global.push_context_set cst in
let env = Global.env () in
let is_mod = (kind == Modintern.Module) in
let cur_mp = Global.current_modpath () in
let mbids,aobjs = InterpVisitor.get_module_sobjs is_mod env inl me in
let subst_self =
try
if List.is_empty mbids then raise NoIncludeSelf;
let typ = type_of_incl env is_mod me in
let reso = RawModOps.Interp.current_modresolver () in
include_subst env cur_mp reso mbids typ inl
with NoIncludeSelf -> empty_subst
in
let base_mp = get_module_path me in
let state = ((Global.universes (), Univ.Constraints.empty), Reductionops.inferred_universes) in
let sign, (), resolver, (_, cst), _ =
Mod_typing.translate_mse_include is_mod state vm_state (Global.env ()) (Global.current_modpath ()) inl me
in
let () = Global.add_constraints cst in
let () = assert (ModPath.equal cur_mp (Global.current_modpath ())) in
(* Include Self support *)
let mb = make_module_type (RawModOps.Interp.current_struct ()) (RawModOps.Interp.current_modresolver ()) in
let rec compute_sign sign =
match sign with
| MoreFunctor(mbid,mtb,str) ->
let state = ((Global.universes (), Univ.Constraints.empty), Reductionops.inferred_universes) in
let (_, cst) = Subtyping.check_subtypes state (Global.env ()) cur_mp mb (MPbound mbid) mtb in
let () = Global.add_constraints cst in
let mpsup_delta = match mod_global_delta mb with
| None -> assert false (* mb is guaranteed not to be a functor here *)
| Some delta ->
Modops.inline_delta_resolver (Global.env ()) inl cur_mp mbid mtb delta
in
let subst = Mod_subst.map_mbid mbid cur_mp mpsup_delta in
compute_sign (Modops.subst_signature subst cur_mp str)
| NoFunctor str -> ()
in
let () = compute_sign sign in
let resolver = Global.add_include me is_mod inl in
let subst = join subst_self (map_mp base_mp cur_mp resolver) in
subst_aobjs subst aobjs
let declare_one_include (me,base,kind,inl) =
let aobjs = declare_one_include_core (me,base,kind,inl) in
InterpVisitor.add_leaf (IncludeObject aobjs)
let declare_include me_asts = List.iter declare_one_include me_asts
end
end
(** {6 Libraries} *)
type library_name = DirPath.t
(** A library object is made of some substitutive objects
and some "keep" and "escape" objects. *)
type library_objects = Libobject.t list * keep_objects * escape_objects
module Synterp = struct
let start_module export id args res =
RawModOps.Synterp.start_module export id args res
let end_module = RawModOps.Synterp.end_module
(** Declare a module in terms of a list of module bodies, by including them.
Typically used for `Module M := N <+ P`.
*)
let declare_module_includes id args res mexpr_l =
let fs = Summary.Synterp.freeze_summaries () in
let mp, res_entry_o, mbids, sign, args = RawModOps.Synterp.start_module_core id args res in
let mod_info = { cur_mp = mp; cur_typ = res_entry_o; cur_mbids = mbids } in
let includes = List.map_left (RawIncludeOps.Synterp.declare_one_include_core mp) mexpr_l in
let bodies, incl_objs = List.split includes in
let incl_objs = List.map (fun x -> IncludeObject x) incl_objs in
let objects = {
Lib.substobjs = incl_objs;
keepobjs = { keep_objects = [] };
escapeobjs = { escape_objects = [] };
anticipateobjs = [];
} in
let mp, objects = RawModOps.Synterp.end_module_core id mod_info objects fs in
SynterpVisitor.add_leaves objects;
mp, args, bodies, sign
(** Declare a module type in terms of a list of module bodies, by including them.
Typically used for `Module Type M := N <+ P`.
*)
let declare_modtype_includes id args res mexpr_l =
let fs = Summary.Synterp.freeze_summaries () in
let mp, mbids, args, subtyps = RawModTypeOps.Synterp.start_modtype_core id (openmod_syntax_info ()).cur_mp args res in
let includes = List.map_left (RawIncludeOps.Synterp.declare_one_include_core mp) mexpr_l in
let bodies, incl_objs = List.split includes in
let incl_objs = List.map (fun x -> IncludeObject x) incl_objs in
let objects = {
Lib.substobjs = incl_objs;
keepobjs = { keep_objects = [] };
escapeobjs = { escape_objects = [] };
anticipateobjs = [];
} in
let objects = RawModTypeOps.Synterp.end_modtype_core id mbids objects fs in
SynterpVisitor.add_leaves objects;
mp, args, bodies, subtyps
let declare_module id args mtys me_l =
match me_l with
| [] ->
let mp, args, body, sign = RawModOps.Synterp.declare_module id args mtys None in
assert (Option.is_empty body);
mp, args, [], sign
| [me] ->
let mp, args, body, sign = RawModOps.Synterp.declare_module id args mtys (Some me) in
mp, args, [Option.get body], sign
| me_l -> declare_module_includes id args mtys me_l
let start_modtype id args mtys =
RawModTypeOps.Synterp.start_modtype id args mtys
let end_modtype = RawModTypeOps.Synterp.end_modtype
let declare_modtype id args mtys mty_l =
match mty_l with
| [] -> assert false
| [mty] ->
let mp, args, body, sign = RawModTypeOps.Synterp.declare_modtype id args mtys mty in
mp, args, [body], sign
| mty_l -> declare_modtype_includes id args mtys mty_l
let declare_include = RawIncludeOps.Synterp.declare_include
let register_library dir (objs:library_objects) =
let mp = MPfile dir in
let sp = path_of_file dir in
let sobjs,keepobjs,escapeobjs = objs in
SynterpVisitor.load_module 1 sp mp ([],Objs sobjs);
SynterpVisitor.load_escape 2 sp mp escapeobjs;
SynterpVisitor.load_keep 2 sp mp keepobjs
let import_modules = SynterpVisitor.import_modules
let import_module f ~export mp =
import_modules ~export [f,mp]
let close_section = SynterpVisitor.close_section
end
module Interp = struct
let start_module = RawModOps.Interp.start_module
let end_module = RawModOps.Interp.end_module
(** Declare a module in terms of a list of module bodies, by including them.
Typically used for `Module M := N <+ P`.
*)
let declare_module_includes id args res mexpr_l =
let fs = Summary.Interp.freeze_summaries () in
let mp, res_entry_o, subtyps, _, _ = RawModOps.Interp.start_module_core id args res in
let mod_info = { cur_typ = res_entry_o; cur_typs = subtyps } in
let incl_objs = List.map_left (fun x -> IncludeObject (RawIncludeOps.Interp.declare_one_include_core x)) mexpr_l in
let objects = {
Lib.substobjs = incl_objs;
keepobjs = { keep_objects = [] };
escapeobjs = { escape_objects = [] };
anticipateobjs = [];
} in
let mp, objects = RawModOps.Interp.end_module_core id mod_info objects fs in
InterpVisitor.add_leaves objects;
mp
(** Declare a module type in terms of a list of module bodies, by including them.
Typically used for `Module Type M := N <+ P`.
*)
let declare_modtype_includes id args res mexpr_l =
let fs = Summary.Interp.freeze_summaries () in
let mp, _, subtyps, _ = RawModTypeOps.Interp.start_modtype_core id args res in
let incl_objs = List.map_left (fun x -> IncludeObject (RawIncludeOps.Interp.declare_one_include_core x)) mexpr_l in
let objects = {
Lib.substobjs = incl_objs;
keepobjs = { keep_objects = [] };
escapeobjs = { escape_objects = [] };
anticipateobjs = [];
} in
let mp, objects = RawModTypeOps.Interp.end_modtype_core id subtyps objects fs in
InterpVisitor.add_leaves objects;
mp
let declare_module id args mtys me_l =
match me_l with
| [] -> RawModOps.Interp.declare_module id args mtys None
| [me] -> RawModOps.Interp.declare_module id args mtys (Some me)
| me_l -> declare_module_includes id args mtys me_l
let start_modtype = RawModTypeOps.Interp.start_modtype
let end_modtype = RawModTypeOps.Interp.end_modtype
let declare_modtype id args mtys mty_l =
match mty_l with
| [] -> assert false
| [mty] -> RawModTypeOps.Interp.declare_modtype id args mtys mty
| mty_l -> declare_modtype_includes id args mtys mty_l
let declare_include me_asts =
if Lib.sections_are_opened () then
user_err Pp.(str "Include is not allowed inside sections.");
RawIncludeOps.Interp.declare_include me_asts
let register_library dir cenv (objs:library_objects) digest vmtab =
let mp = MPfile dir in
let sp = path_of_file dir in
let () =
try
(* If the library was loaded inside a module or section, the
end_segment will replay the library object for non-kernel
effects but the kernel did not forget the library. *)
ignore(Global.lookup_module mp);
with Not_found ->
begin
let mp' = Global.import cenv vmtab digest in
if not (ModPath.equal mp mp') then
anomaly (Pp.str "Unexpected disk module name.")
end
in
let sobjs,keepobjs,escapeobjs = objs in
InterpVisitor.load_module 1 sp mp ([],Objs sobjs);
InterpVisitor.load_escape 1 sp mp escapeobjs;
InterpVisitor.load_keep 1 sp mp keepobjs
let import_modules = InterpVisitor.import_modules
let import_module f ~export mp =
import_modules ~export [f,mp]
let close_section = InterpVisitor.close_section
end
let end_library_hook = ref []
let append_end_library_hook f =
end_library_hook := f :: !end_library_hook
let end_library_hook () =
List.iter (fun f -> f ()) (List.rev !end_library_hook)
let end_library ~output_native_objects dir =
end_library_hook();
let { Lib.info; interp_objects = lib_stack; synterp_objects = lib_stack_syntax; } =
Lib.end_compilation dir
in
let mp,cenv,vmlib,ast = Global.export ~output_native_objects dir in
assert (ModPath.equal mp (MPfile dir));
let drop_anticipate {Lib.substobjs; keepobjs; escapeobjs; anticipateobjs=_} =
(substobjs, keepobjs, escapeobjs)
in
cenv,(drop_anticipate lib_stack),(drop_anticipate lib_stack_syntax),vmlib,ast,info
(** {6 Iterators} *)
let iter_all_interp_segments f =
let rec apply_obj prefix obj = match obj with
| IncludeObject aobjs ->
let objs = InterpVisitor.expand_aobjs aobjs in
List.iter (apply_obj prefix) objs
| _ -> f prefix obj
in
let rec subst_view (obj : exp_substituted_object) : Libobject.t = match obj with
| KeepObject (_, o) | EscapeObject (_, o) -> Empty.abort o
| (AtomicObject _ | ExportObject _ | ModuleObject _ | ModuleTypeObject _) as o -> o
| IncludeObject aobjs ->
let aobjs = aobjs.exp_algebraic_objects in
IncludeObject (Objs (List.map subst_view aobjs))
in
let apply_mod_obj _ modobjs =
let prefix = modobjs.module_prefix in
List.iter (fun obj -> apply_obj prefix (subst_view obj)) modobjs.module_substituted_objects;
List.iter (fun obj -> apply_obj prefix obj) modobjs.module_keep_objects.keep_objects
in
let apply_nodes (node, os) = List.iter (fun o -> apply_obj (Lib.node_prefix node) o) os in
MPmap.iter apply_mod_obj (InterpVisitor.ModObjs.all ());
List.iter apply_nodes (Lib.contents ())
(** {6 Some types used to shorten declaremods.mli} *)
type module_params = (lident list * (Constrexpr.module_ast * inline)) list
type module_expr = (Modintern.module_struct_expr * ModPath.t * Modintern.module_kind * Entries.inline)
type module_params_expr = (MBId.t list * module_expr) list
(** {6 Debug} *)
let debug_print_modtab () = InterpVisitor.debug_print_modtab ()
(** For printing modules, [process_module_binding] adds names of
bound module (and its components) to Nametab. It also loads
objects associated to it. *)
let process_module_binding mbid me =
let sp = Libnames.make_path DirPath.empty (MBId.to_id mbid) in
let mp = MPbound mbid in
let sobjs = InterpVisitor.get_module_sobjs false (Global.env()) (default_inline ()) me in
let subst = map_mp (get_module_path me) mp (empty_delta_resolver mp) in
let sobjs = subst_sobjs subst sobjs in
SynterpVisitor.load_module 1 sp mp sobjs;
InterpVisitor.load_module 1 sp mp sobjs
(** Compatibility layer *)
let import_module f ~export mp =
Synterp.import_module f ~export mp;
Interp.import_module f ~export mp
let declare_module id args mtys me_l =
let mp, args, bodies, sign = Synterp.declare_module id args mtys me_l in
Interp.declare_module id args sign bodies
let start_module export id args res =
let mp, args, sign = Synterp.start_module export id args res in
Interp.start_module export id args sign
let end_module () =
let _mp = Synterp.end_module () in
Interp.end_module ()
let declare_modtype id args mtys mty_l =
let mp, args, bodies, subtyps = Synterp.declare_modtype id args mtys mty_l in
Interp.declare_modtype id args subtyps bodies
let start_modtype id args mtys =
let mp, args, sub_mty_l = Synterp.start_modtype id args mtys in
Interp.start_modtype id args sub_mty_l
let end_modtype () =
let _mp = Synterp.end_modtype () in
Interp.end_modtype ()
let declare_include me_asts =
let l = Synterp.declare_include me_asts in
Interp.declare_include l
let () = append_end_library_hook Profile_tactic.do_print_results_at_close
|