File: BacS2013.v

package info (click to toggle)
coquelicot 3.4.4-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 1,476 kB
  • sloc: cpp: 2,077; makefile: 16; sh: 5
file content (496 lines) | stat: -rw-r--r-- 12,289 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
(**
This file is part of the Coquelicot formalization of real
analysis in Coq: http://coquelicot.saclay.inria.fr/

Copyright (C) 2011-2015 Sylvie Boldo
#<br />#
Copyright (C) 2011-2015 Catherine Lelay
#<br />#
Copyright (C) 2011-2015 Guillaume Melquiond

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)

From Coq Require Import Reals Psatz ssreflect.

From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis.

(** This file describes an experiment: most 18-year old French
students pass an exam called Baccalaureate which ends the high school
and is required for attending the university. We took the 2013
mathematics test of the scientific Baccalaureate at the same time as
the students. The pdf of the test is available
#<a href="https://eduscol.education.fr/prep-exam/sujets/13MASCOMLR1.pdf">here</a>#. *)


Ltac pos_rat :=
  repeat ( apply Rdiv_lt_0_compat
         || apply Rplus_lt_0_compat
         || apply Rmult_lt_0_compat) ;
  try by apply Rlt_0_1.

Lemma sign_0_lt : forall x, 0 < x <-> 0 < sign x.
Proof.
intros x.
unfold sign.
destruct total_order_T as [[H|H]|H] ; lra.
Qed.

Lemma sign_lt_0 : forall x, x < 0 <-> sign x < 0.
Proof.
intros x.
unfold sign.
destruct total_order_T as [[H|H]|H] ; lra.
Qed.

(** * Exercice 2 *)
(* 8:14 *)

Definition fab (a b x : R) : R := (a + b * ln x) / x.

(** ** Questions 1 *)

(** 1.a. On voit sur le graphique que l'image de 1 par f correspond au point B(1,2). On a donc f(1) = 2.
Comme la tangente (BC) à la courbe en ce point admet pour coefficient directeur 0, f'(1) = 0 *)

(** 1.b *)

Lemma Dfab (a b : R) : forall x, 0 < x
  -> is_derive (fab a b) x (((b - a) - b * ln x) / x ^ 2).
Proof.
  move => x Hx.
  evar_last.
  apply is_derive_div.
  apply @is_derive_plus.
  apply is_derive_const.
  apply is_derive_scal.
  now apply is_derive_Reals, derivable_pt_lim_ln.
  apply is_derive_id.
  by apply Rgt_not_eq.
  rewrite /Rdiv /plus /zero /one /=.
  field.
  by apply Rgt_not_eq.
Qed.

(** 1.c *)

Lemma Val_a_b (a b : R) : fab a b 1 = 2 -> Derive (fab a b) 1 = 0 -> a = 2 /\ b = 2.
Proof.
  move => Hf Hdf.
  rewrite /fab in Hf.
  rewrite ln_1 in Hf.
  rewrite Rdiv_1 in Hf.
  rewrite Rmult_0_r in Hf.
  rewrite Rplus_0_r in Hf.
  rewrite Hf in Hdf |- * => {a Hf}.
  split.
  reflexivity.
  replace (Derive (fab 2 b) 1) with (((b - 2) - b * ln 1) / 1 ^ 2) in Hdf.
  rewrite ln_1 /= in Hdf.
  field_simplify in Hdf.
  rewrite ?Rdiv_1 in Hdf.
  by apply Rminus_diag_uniq.
  apply sym_eq, is_derive_unique.
  apply Dfab.
  by apply Rlt_0_1.
Qed.

Definition f (x : R) : R := fab 2 2 x.

(** ** Questions 2 *)
(* 8:38 *)
(** 2.a. *)

Lemma Signe_df : forall x, 0 < x -> sign (Derive f x) = sign (- ln x).
Proof.
  move => x Hx.
  rewrite (is_derive_unique f x _ (Dfab 2 2 x Hx)).
  replace ((2 - 2 - 2 * ln x) / x ^ 2) with (2 / x ^ 2 * (- ln x)) by (field ; now apply Rgt_not_eq).
  rewrite sign_mult sign_eq_1.
  apply Rmult_1_l.
  apply Rdiv_lt_0_compat.
  apply Rlt_0_2.
  apply pow2_gt_0.
  by apply Rgt_not_eq.
Qed.

(** 2.b. *)

Lemma filterlim_f_0 :
  filterlim f (at_right 0) (Rbar_locally m_infty).
Proof.
  unfold f, fab.
  eapply (filterlim_comp_2 _ _ Rmult).
  eapply filterlim_comp_2.
  apply filterlim_const.
  eapply filterlim_comp_2.
  apply filterlim_const.
  by apply is_lim_ln_0.
  apply (filterlim_Rbar_mult 2 m_infty m_infty).
  unfold is_Rbar_mult, Rbar_mult'.
  case: Rle_dec (Rlt_le _ _ Rlt_0_2) => // H _ ;
  case: Rle_lt_or_eq_dec (Rlt_not_eq _ _ Rlt_0_2) => //.
  apply (filterlim_Rbar_plus 2 _ m_infty).
  by [].
  by apply filterlim_Rinv_0_right.
  by apply (filterlim_Rbar_mult m_infty p_infty).
Qed.

Lemma Lim_f_p_infty : is_lim f p_infty 0.
Proof.
  apply is_lim_ext_loc with (fun x => 2 / x + 2 * (ln x / x)).
    exists 0.
    move => y Hy.
    rewrite /f /fab.
    field.
    by apply Rgt_not_eq.
  eapply is_lim_plus.
  apply is_lim_scal_l.
  apply is_lim_inv.
  by apply is_lim_id.
  by [].
  apply is_lim_scal_l.
  by apply is_lim_div_ln_p.
  unfold is_Rbar_plus, Rbar_plus' ; apply f_equal, f_equal ; ring.
Qed.

(** 2.c. *)

Lemma Variation_1 : forall x y, 0 < x -> x < y -> y < 1 -> f x < f y.
Proof.
  apply (incr_function _ 0 1 (fun x => (2 - 2 - 2 * ln x) / x ^ 2)).
  move => x H0x Hx1.
  by apply (Dfab 2 2 x).
  move => x H0x Hx1.
  apply sign_0_lt.
  rewrite -(is_derive_unique _ _ _ (Dfab 2 2 x H0x)).
  rewrite Signe_df.
  apply -> sign_0_lt.
  apply Ropp_lt_cancel ; rewrite Ropp_0 Ropp_involutive.
  rewrite -ln_1.
  by apply ln_increasing.
  by apply H0x.
Qed.

Lemma Variation_2 : forall x y, 1 < x -> x < y -> f x > f y.
Proof.
  move => x y H1x Hxy.
  apply Ropp_lt_cancel.
  apply (incr_function (fun x => - f x) 1 p_infty (fun z => - ((2 - 2 - 2 * ln z) / z ^ 2))).
  move => z H1z _.
  apply: is_derive_opp.
  apply (Dfab 2 2 z).
  by apply Rlt_trans with (1 := Rlt_0_1).
  move => z H1z _.
  apply Ropp_lt_cancel ; rewrite Ropp_0 Ropp_involutive.
  apply sign_lt_0.
  rewrite -(is_derive_unique _ _ _ (Dfab 2 2 z (Rlt_trans _ _ _ Rlt_0_1 H1z))).
  rewrite Signe_df.
  apply -> sign_lt_0.
  apply Ropp_lt_cancel ; rewrite Ropp_0 Ropp_involutive.
  rewrite -ln_1.
  apply ln_increasing.
  by apply Rlt_0_1.
  by apply H1z.
  by apply Rlt_trans with (1 := Rlt_0_1).
  by [].
  by [].
  by [].
Qed.

(** ** Questions 3 *)
(* 9:40 *)

(** 3.a *)

Lemma f_eq_1_0_1 : exists x, 0 < x <= 1 /\ f x = 1.
Proof.
  case: (IVT_Rbar_incr (fun x => f (Rabs x)) 0 1 m_infty 2 1).
    eapply filterlim_comp.
    apply filterlim_Rabs_0.
    by apply filterlim_f_0.
  apply is_lim_comp with 1.
  replace 2 with (f 1).
  apply is_lim_continuity.
  apply derivable_continuous_pt.
  exists (((2 - 2) - 2 * ln 1) / 1 ^ 2) ; apply is_derive_Reals, Dfab.
  by apply Rlt_0_1.
  rewrite /f /fab ln_1 /= ; field.
  rewrite -{2}(Rabs_pos_eq 1).
  apply (is_lim_continuity Rabs 1).
  by apply continuity_pt_filterlim, continuous_Rabs.
  by apply Rle_0_1.
  exists (mkposreal _ Rlt_0_1) => /= x H0x Hx.
  rewrite /ball /= /AbsRing_ball /= in H0x.
  apply Rabs_lt_between' in H0x.
  rewrite Rminus_eq_0 in H0x.
  contradict Hx.
  rewrite -(Rabs_pos_eq x).
  by apply Rbar_finite_eq.
  by apply Rlt_le, H0x.
  move => x H0x Hx1.
  apply (continuity_pt_comp Rabs).
  by apply continuity_pt_filterlim, continuous_Rabs.
  rewrite Rabs_pos_eq.
  apply derivable_continuous_pt.
  exists (((2 - 2) - 2 * ln x) / x ^ 2) ; apply is_derive_Reals, Dfab.
  by [].
  by apply Rlt_le.
  by apply Rlt_0_1.
  split => //.
  apply Rminus_lt_0 ; ring_simplify ; by apply Rlt_0_1.
  move => x [H0x [Hx1 Hfx]].
  rewrite Rabs_pos_eq in Hfx.
  exists x ; repeat split.
  by apply H0x.
  by apply Rlt_le.
  by apply Hfx.
  by apply Rlt_le.
Qed.

(** 3.b. *)

Lemma f_eq_1_1_p_infty : exists x, 1 <= x /\ f x = 1.
Proof.
  case: (IVT_Rbar_incr (fun x => - f x) 1 p_infty (-2) 0 (-1)).
  replace (-2) with (-f 1).
  apply (is_lim_continuity (fun x => - f x)).
  apply continuity_pt_opp.
  apply derivable_continuous_pt.
  exists (((2 - 2) - 2 * ln 1) / 1 ^ 2) ; apply is_derive_Reals, Dfab.
  by apply Rlt_0_1.
  rewrite /f /fab ln_1 /= ; field.
  evar_last.
  apply is_lim_opp.
  by apply Lim_f_p_infty.
  simpl ; by rewrite Ropp_0.
  move => x H0x Hx1.
  apply continuity_pt_opp.
  apply derivable_continuous_pt.
  exists (((2 - 2) - 2 * ln x) / x ^ 2) ; apply is_derive_Reals, Dfab.
  by apply Rlt_trans with (1 := Rlt_0_1).
  by [].
  split ; apply Rminus_lt_0 ; ring_simplify ; by apply Rlt_0_1.
  move => x [H0x [Hx1 Hfx]].
  exists x ; split.
  by apply Rlt_le.
  rewrite -(Ropp_involutive (f x)) Hfx ; ring.
Qed.

(** ** Questions 5 *)
(* 10:08 *)

(** 5.a. *)

(** 5.b. *)

Lemma If : forall x, 0 < x -> is_derive (fun y : R => 2 * ln y + (ln y) ^ 2) x (f x).
Proof.
  move => y Hy.
  evar_last.
  apply @is_derive_plus.
  apply is_derive_Reals.
  apply derivable_pt_lim_scal.
  by apply derivable_pt_lim_ln.
  apply is_derive_pow.
  by apply is_derive_Reals, derivable_pt_lim_ln.
  rewrite /f /fab /plus /= ; field.
  by apply Rgt_not_eq.
Qed.

Lemma RInt_f : is_RInt f ( / exp 1) 1 1.
Proof.
  have Haux1: (0 < /exp 1).
    apply Rinv_0_lt_compat.
    apply exp_pos.
  evar_last.
  apply: is_RInt_derive.
  move => x Hx.
  apply If.
  apply Rlt_le_trans with (2 := proj1 Hx).
  apply Rmin_case.
  by apply Haux1.
  by apply Rlt_0_1.
  move => x Hx.
  apply continuity_pt_filterlim.
  apply derivable_continuous_pt.
  exists (((2 - 2) - 2 * ln x) / x ^ 2) ; apply is_derive_Reals, Dfab.
  apply Rlt_le_trans with (2 := proj1 Hx).
  apply Rmin_case.
  by apply Haux1.
  by apply Rlt_0_1.
  rewrite /minus /= /plus /opp /= -[eq]/(@eq R).
  rewrite ln_Rinv.
  rewrite ln_exp.
  rewrite ln_1.
  ring.
  by apply exp_pos.
Qed.

(** * Exercice 4 *)
(* 10:36 *)

Fixpoint u (n : nat) : R :=
  match n with
    | O => 2
    | S n => 2/3 * u n + 1/3 * (INR n) + 1
  end.

(** ** Questions 1 *)
(** 1.a. *)

(** 1.b. *)

(** ** Questions 2 *)
(* 10:40 *)
(** 2.a *)

Lemma Q2a : forall n, u n <= INR n + 3.
Proof.
  elim => [ | n IH] ; rewrite ?S_INR /=.
  apply Rminus_le_0 ; ring_simplify ; apply Rle_0_1.
  eapply Rle_trans.
  apply Rplus_le_compat_r.
  apply Rplus_le_compat_r.
  apply Rmult_le_compat_l.
  lra.
  by apply IH.
  lra.
Qed.

(** 2.b. *)
Lemma Q2b : forall n, u (S n) - u n = 1/3 * (INR n + 3 - u n).
Proof.
  move => n ; simpl.
  field.
Qed.

(** 2.c. *)

Lemma Q2c : forall n, u n <= u (S n).
Proof.
  move => n.
  apply Rminus_le_0.
  rewrite Q2b.
  apply Rmult_le_pos.
  lra.
  apply (Rminus_le_0 (u n)).
  by apply Q2a.
Qed.

(** ** Question 3 *)
(* 10:49 *)

Definition v (n : nat) : R := u n - INR n.

(** 3.a. *)

Lemma Q3a : forall n, v n = 2 * (2/3) ^ n.
Proof.
  elim => [ | n IH].
  rewrite /v /u /= ; ring.
  replace (2 * (2 / 3) ^ S n) with (v n * (2/3)) by (rewrite IH /= ; ring).
  rewrite /v S_INR /=.
  field.
Qed.

(** 3.b. *)

Lemma Q3b : forall n, u n = 2 * (2/3)^n + INR n.
Proof.
  move => n.
  rewrite -Q3a /v ; ring.
Qed.

Lemma Q3c : is_lim_seq u p_infty.
Proof.
  apply is_lim_seq_ext with (fun n => 2 * (2/3)^n + INR n).
  move => n ; by rewrite Q3b.
  eapply is_lim_seq_plus.
  eapply is_lim_seq_mult.
  by apply is_lim_seq_const.
  apply is_lim_seq_geom.
  rewrite Rabs_pos_eq.
  lra.
  lra.
  by [].
  apply is_lim_seq_INR.
  by [].
Qed.

(** ** Questions 4 *)
(* 11:00 *)

Definition Su (n : nat) : R := sum_f_R0 u n.
Definition Tu (n : nat) : R := Su n / (INR n) ^ 2.

(** 4.a. *)

Lemma Q4a : forall n, Su n = 6 - 4 * (2/3)^n + INR n * (INR n + 1) / 2.
Proof.
  move => n.
  rewrite /Su.
  rewrite -(sum_eq (fun n => (2/3)^n * 2 + INR n)).
  rewrite sum_plus.
  rewrite -scal_sum.
  rewrite tech3.
  rewrite sum_INR.
  simpl ; field.
  apply Rlt_not_eq, Rlt_div_l.
  repeat apply Rplus_lt_0_compat ; apply Rlt_0_1.
  apply Rminus_lt_0 ; ring_simplify ; by apply Rlt_0_1.
  move => i _.
  rewrite Q3b ; ring.
Qed.

(** 4.b. *)

Lemma Q4b : is_lim_seq Tu (1/2).
Proof.
  apply is_lim_seq_ext_loc with (fun n => (6 - 4 * (2/3)^n) / (INR n ^2) + / (2 * INR n) + /2).
    exists 1%nat => n Hn ; rewrite /Tu Q4a.
    simpl ; field.
    apply Rgt_not_eq, (lt_INR O) ; intuition.
  eapply is_lim_seq_plus.
  eapply is_lim_seq_plus.
  eapply is_lim_seq_div.
  eapply is_lim_seq_minus.
  apply is_lim_seq_const.
  eapply is_lim_seq_mult.
  by apply is_lim_seq_const.
  apply is_lim_seq_geom.
  rewrite Rabs_pos_eq.
  lra.
  lra.
  by [].
  rewrite /is_Rbar_minus /is_Rbar_plus /=.
  now ring_simplify (6 + - (4 * 0)).
  repeat eapply is_lim_seq_mult.
  apply is_lim_seq_INR.
  apply is_lim_seq_INR.
  apply is_lim_seq_const.
  apply is_Rbar_mult_p_infty_pos.
  by apply Rlt_0_1.
  by [].
  by [].
  by apply is_Rbar_div_p_infty.
  apply is_lim_seq_inv.
  eapply is_lim_seq_mult.
  by apply is_lim_seq_const.
  by apply is_lim_seq_INR.
  by apply is_Rbar_mult_sym, is_Rbar_mult_p_infty_pos, Rlt_0_2.
  by [].
  by [].
  apply is_lim_seq_const.
  apply (f_equal (@Some _)), f_equal.
  field.
Qed.
(* 11:33 *)