File: linearAlgebra.cpp

package info (click to toggle)
core%2B%2B 1.7-12
  • links: PTS
  • area: non-free
  • in suites: jessie, jessie-kfreebsd, wheezy
  • size: 8,356 kB
  • ctags: 11,885
  • sloc: cpp: 26,527; ansic: 10,005; makefile: 2,661; sh: 1,473
file content (529 lines) | stat: -rw-r--r-- 12,361 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
//
//  File: linearAlgebra.ccp
//    	  -- class Vector implementation
//        -- class Matrix implementation
//  Linear Algebra Extension of the CORE library, ver. 1.0
//    Copyright (c) 1998, 1999, 2000 Exact Computation Project
//    written by Igor Pechtchanski (pechtcha@cs.nyu.edu)
//  $Id: linearAlgebra.cpp,v 1.7 2004/08/04 10:49:31 exact Exp $
//

#ifndef CORE_LEVEL
#define CORE_LEVEL 3
#endif

#include <CORE/linearAlgebra.h>

static Vector VECTOR_ZERO_2D(0.0, 0.0);
static Vector VECTOR_ZERO_3D(0.0, 0.0, 0.0);

//////////////////////////////////////////////////////////////////////
// Vector class implementation
//////////////////////////////////////////////////////////////////////

Vector::Vector(int d) : dim(d) {
   _rep = new double[dim];
   for (int i = 0; i < dim; i++)
      _rep[i] = 0;
}

Vector::Vector() : dim(-1) {
   _rep = NULL;
}

Vector::Vector(double x, double y) : dim(2) {
   _rep = new double[dim];
   _rep[0] = x;
   _rep[1] = y;
}

Vector::Vector(double x, double y, double z) : dim(3) {
   _rep = new double[dim];
   _rep[0] = x;
   _rep[1] = y;
   _rep[2] = z;
}

Vector::Vector(int d, double *element) : dim(d) {
  _rep = new double[dim];
  for (int i = 0; i<dim; i++)
    _rep[i] = element[i];
}

Vector::Vector(const Vector& v) : dim(v.dim) {
   _rep = new double[dim];
   for (int i = 0; i < dim; i++)
      _rep[i] = v._rep[i];
}

Vector::~Vector() {
   delete[] _rep;
}

const Vector& Vector::operator=(const Vector& v) {
   if (dim != v.dim) {
      dim = v.dim;
      delete[] _rep;
      _rep = new double[dim];
   }
   for (int i = 0; i < dim; i++)
      _rep[i] = v._rep[i];
   return *this;
}

bool Vector::operator==(const Vector& v) {
   if (dim != v.dim) return false;
   for (int i = 0; i < dim; i++)
      if (_rep[i] != v._rep[i]) return false;
   return true;
}

bool Vector::operator!=(const Vector& v) {
   return !(*this == v);
}

const Vector& Vector::operator+=(const Vector& v) {
   if (dim != v.dim) throw ArithmeticException();
   for (int i = 0; i < dim; i++)
      _rep[i] += v._rep[i];
   return *this;
}

const Vector& Vector::operator-=(const Vector& v) {
   if (dim != v.dim) throw ArithmeticException();
   for (int i = 0; i < dim; i++)
      _rep[i] -= v._rep[i];
   return *this;
}

const Vector& Vector::operator*=(double a) {
   for (int i = 0; i < dim; i++)
      _rep[i] *= a;
   return *this;
}

const double& Vector::operator[](int i) const {
   if (i < 0 || i >= dim) throw RangeException();
   return _rep[i];
}

double& Vector::operator[](int i) {
   if (i < 0 || i >= dim) throw RangeException();
   return _rep[i];
}

double Vector::norm() const {
   return sqrt(dotProduct(*this, *this));
}

double Vector::maxnorm() const {
   double n = 0;
   //   for (int i = 0; i < dim; i++)
   //      if (fabs(_rep[i]) > n) n = fabs(_rep[i]);
   return n;
}

double Vector::infnorm() const {
   double n = 0;
   for (int i = 0; i < dim; i++)
      n += fabs(_rep[i]);
   return n;
}

bool Vector::isZero() const {
  for (int i=0; i<dim; i++)
    if (_rep[i] != 0) return false;
  return true;
}

Vector operator+(const Vector& a, const Vector& b) {
   Vector v = a;
   v += b;
   return v;
}

Vector operator-(const Vector& a, const Vector& b) {
   Vector v = a;
   v -= b;
   return v;
}

Vector operator-(const Vector& a) {
   return Vector(0,0,0) - a;
}

Vector operator*(const Vector& a, double b) {
   Vector v = a;
   v *= b;
   return v;
}

Vector operator*(double a, const Vector& b) {
   Vector v = b;
   v *= a;
   return v;
}

double dotProduct(const Vector& a, const Vector& b) {
   if (a.dim != b.dim) throw Vector::ArithmeticException();
   double d = 0;
   for (int i = 0; i < a.dim; i++)
      d += a._rep[i] * b._rep[i];
   return d;
}

Vector Vector::cross(const Vector &v) const {
   if (dim != 3) std::cerr << "Vector::cross( Vector &v ) -- has to be in 3-dimension\n";
   return Vector(_rep[1] * v._rep[2] - _rep[2] * v._rep[1], 
                 _rep[2] * v._rep[0] - _rep[0] * v._rep[2], 
                 _rep[0] * v._rep[1] - _rep[1] * v._rep[0]);
}


Vector Vector::crossProduct(int dim, ...) {
  // Caution: conform to the calling syntax exactly! -- Chen Li
  // there should be (dim-1) Vector pointers passed in as arguments
  va_list ap;
  // Vector *v[dim-1];
  Vector **v = new Vector* [dim-1];
  int arg_no = 0;
  va_start(ap, dim);
  // read in the arguments
  while (arg_no < dim-1) {
    v[arg_no++] = va_arg(ap, Vector*);
  }
  va_end(ap);

  Matrix m(dim, dim);
  for (int k=0; k<dim; k++) 
    m(0, k) = 1.0;

  for (int i=0; i < dim-1; i++) {
    // verify the validity of inputs
    if (v[i]->dimension() != dim) 
      throw Vector::ArithmeticException();
    for (int j=0; j < dim; j++)
      m(i+1, j) = (*v[i])[j];
  }
  
  Vector result(dim);
  for (int l=0; l<dim; l++)
    result[l] = m.valueAlgebraRemainder(0, l);
  return result;
}  


std::istream& operator>>(std::istream& i, Vector& v) {
   int dim;
   i >> dim;
   Vector w(dim);
   for (int j=0; j<dim; ++j)
     i >> w[j];

   v = w;
   return i;
}

std::ostream& operator<<(std::ostream& o, const Vector& v) {
   o << "Vector(";
   for (int i = 0; i < v.dim; i++)
      o << (i>0?",":"") << v._rep[i];
   o << ")";
   return o;
}


//////////////////////////////////////////////////////////////////////
// Matrix class implementation
//////////////////////////////////////////////////////////////////////

Matrix::Matrix(int d) : dim1(d), dim2(d) {
   _rep = new double[dim1*dim2];
   for (int i = 0; i < dim1*dim2; i++)
      _rep[i] = 0;
}

Matrix::Matrix(int d1, int d2) : dim1(d1), dim2(d2) {
   _rep = new double[dim1*dim2];
   for (int i = 0; i < dim1*dim2; i++)
      _rep[i] = 0;
}

Matrix::Matrix(double m00, double m01,
               double m10, double m11) : dim1(2), dim2(2) {
   _rep = new double[dim1*dim2];
   _rep[0] = m00; _rep[1] = m01;
   _rep[2] = m10; _rep[3] = m11;
}

Matrix::Matrix(double m00, double m01, double m02,
	       double m10, double m11, double m12,
               double m20, double m21, double m22) : dim1(3), dim2(3) {
   _rep = new double[dim1*dim2];
   _rep[0] = m00; _rep[1] = m01; _rep[2] = m02;
   _rep[3] = m10; _rep[4] = m11; _rep[5] = m12;
   _rep[6] = m20; _rep[7] = m21; _rep[8] = m22;
}

Matrix::Matrix(int m, int n, double *data) : dim1(m), dim2(n) {
  _rep = new double[dim1 * dim2];
  for (int i=0; i < dim1 * dim2; i++)
    _rep[i] = data[i];
}

Matrix::Matrix(const Matrix& m) : dim1(m.dim1), dim2(m.dim2) {
   _rep = new double[dim1*dim2];
   for (int i = 0; i < dim1*dim2; i++)
      _rep[i] = m._rep[i];
}

Matrix::~Matrix() {
   delete[] _rep;
}

Matrix& Matrix::operator=(const Matrix& m) {
  if (dim1*dim2 != m.dim1*m.dim2) {
    delete[] _rep;
    _rep = new double[m.dim1*m.dim2];
  }
  dim1 = m.dim1;
  dim2 = m.dim2;
  int i = 0;
  // Chen Li, if use for statemen it gives some strange compiler error
  // so I changed it to "equivalent" while statement. ???
  //  for (i = 0; i < dim1*dim2; i++) {
  while (i < dim1 * dim2) {
    _rep[i] = m._rep[i];
    i++;
  }
  return (*this);
}

bool Matrix::operator==(const Matrix& m) {
   if (dim1 != m.dim1 || dim2 != m.dim2) return false;
   for (int i = 0; i < dim1*dim2; i++)
      if (_rep[i] != m._rep[i]) return false;
   return true;
}

bool Matrix::operator!=(const Matrix& m) {
   return !(*this == m);
}

const Matrix& Matrix::operator+=(const Matrix& m) {
   if (dim1 != m.dim1 || dim2 != m.dim2) throw ArithmeticException();
   for (int i = 0; i < dim1*dim2; i++)
      _rep[i] += m._rep[i];
   return *this;
}

const Matrix& Matrix::operator-=(const Matrix& m) {
   if (dim1 != m.dim1 || dim2 != m.dim2) throw ArithmeticException();
   for (int i = 0; i < dim1*dim2; i++)
      _rep[i] -= m._rep[i];
   return *this;
}

const Matrix& Matrix::operator*=(double d) {
   for (int i = 0; i < dim1*dim2; i++)
      _rep[i] *= d;
   return *this;
}

const double& Matrix::operator()(int i, int j) const {
   if (i < 0 || i >= dim1 || j < 0 || j >= dim2) throw RangeException();
   return _rep[i*dim2 + j];
}

double& Matrix::operator()(int i, int j) {
   if (i < 0 || i >= dim1 || j < 0 || j >= dim2) throw RangeException();
   return _rep[i*dim2 + j];
}

const Matrix& Matrix::transpose() {
   if (dim1 == dim2) {
      for (int i = 0; i < dim1; i++)
         for (int j = i+1; j < dim2; j++) {
            double t = _rep[i*dim2 + j];
            _rep[i*dim2 + j] = _rep[j*dim1 + i];
            _rep[j*dim1 + i] = t;
         }
   } else {
      int d = dim1;
      dim1 = dim2;
      dim2 = d;
      double *r = _rep;
      _rep = new double[dim1*dim2];
      for (int i = 0; i < dim1; i++)
         for (int j = 0; j < dim2; j++)
            _rep[i*dim2 + j] = r[j*dim1 + i];
   }
   return *this;
}

// not right!
 // BUG to be fixed!
double Matrix::determinant() const {
  if (dim1 != dim2) throw ArithmeticException();
  Matrix A = *this;
  int i, j, k;
  for (i = 0; i < dim1 - 1; i++) {
    if (A(i,i) == 0) { // pivoting
      int p = i;
      for (int q = i + 1; q < dim1; q++) {
	if (A(q, i) != 0) {
	  p = q;
	  break;
	}
      }
      if (p == i) return 0;
      //      assert(p != i);
      // swap
      double tmp;
      for (int d = i; d < dim1; d++) {
	tmp = A(i, d);
	A(i, d) = A(p, d);
	A(p, d) = tmp;
      }
    }

    for (j = i + 1; j < dim1; j++) {
      A(j, i) /= A(i, i);
      for (k = i + 1; k < dim1; k++) {
	A(j,k) -= A(i,k) * A(j,i);
      }
    }
  }
   
  double det = 1;
  for (i = 0; i < dim1; i++)
      det *= A(i,i);
  return det;
}

// friend det function (for 2x2 determinants)
double det(const double a, const double b,
                const double c, const double d) {
        return (a*d - b*c);
}

// friend det function (u, v are 2d vectors)
double det(const Vector u, const Vector & v) {
        assert(u.dimension()==2); assert(v.dimension()==2);
        return( u[0] * v[1] - u[1] * v[0] );
}

Matrix Matrix::matrixAlgebraRemainder(int m, int n) const {
  Matrix R(dim1-1, dim2-1);
  int pos=0;

  for (int i = 0; i < dim1; i++) {
    if (i == m) continue;
    for (int j = 0; j < dim2; j++) {
      if (j == n) continue;
      R._rep[pos++] = _rep[i*dim1+j];
    }
  }
  return R;
}

double Matrix::valueAlgebraRemainder(int m, int n) const {
  if ((m+n) % 2) { // (m+n) is odd
    return -matrixAlgebraRemainder(m, n).determinant();
  } else { // (m+n) is even
    return matrixAlgebraRemainder(m, n).determinant();
  }
}

Matrix operator+(const Matrix& a, const Matrix& b) {
   Matrix m = a;
   m += b;
   return m;
}

Matrix operator-(const Matrix& a, const Matrix& b) {
   Matrix m = a;
   m -= b;
   return m;
}

Matrix operator*(const Matrix& a, double b) {
   Matrix m = a;
   m *= b;
   return m;
}

Matrix operator*(double a, const Matrix& b) {
   Matrix m = b;
   m *= a;
   return m;
}

Vector operator*(const Vector& a, const Matrix& b) {
   if (a.dim != b.dim1) throw Matrix::ArithmeticException();
   Vector v(b.dim2);
   for (int i = 0; i < b.dim2; i++) {
      double d = 0;
      for (int j = 0; j < a.dim; j++)
         d += a._rep[j]*b._rep[j*b.dim2 + i];
      v._rep[i] = d;
   }
   return v;
}

Vector operator*(const Matrix& a, const Vector& b) {
   if (b.dim != a.dim2) throw Matrix::ArithmeticException();
   Vector v(a.dim1);
   for (int i = 0; i < a.dim1; i++) {
      double d = 0;
      for (int j = 0; j < b.dim; j++)
         d += a._rep[i*a.dim2 + j]*b._rep[j];
      v._rep[i] = d;
   }
   return v;
}

Matrix operator*(const Matrix& a, const Matrix& b) {
   if (a.dim2 != b.dim1) throw Matrix::ArithmeticException();
   Matrix m(a.dim1, b.dim2);
   for (int i = 0; i < a.dim1; i++)
      for (int j = 0; j < b.dim2; j++) {
         double d = 0;
         for (int k = 0; k < a.dim2; k++)
            d += a._rep[i*a.dim2 + k]*b._rep[k*b.dim2 + j];
         m._rep[i*b.dim2 + j] = d;
      }
   return m;
}

Matrix transpose(const Matrix& a) {
   Matrix m = a;
   m.transpose();
   return m;
}


std::istream& operator>>(std::istream& i, Matrix& m) {
   int dim;
   i >> dim;
   Matrix n(dim);
   for (int j=0; j<dim; ++j)
     for (int k=0; k<dim; ++k)
       i >> n(j,k);
   m = n;
   return i;
}

std::ostream& operator<<(std::ostream& o, const Matrix& m) {
   o << "Matrix(";
   for (int i = 0; i < m.dim1; i++) {
      o << (i>0?";":"");
      for (int j = 0; j < m.dim2; j++)
         o << (j>0?",":"") << m._rep[i*m.dim2 + j];
   }
   o << ")";
   return o;
}