1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
/* Copyright 2023 The ChromiumOS Authors
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Authors: Muhammad Monir Hossain <muhammad.monir.hossain@intel.com>
* Jeremy Compostella <jeremy.compostella@intel.com>
*/
/*
* The algorithm implemented below is described in Montgomery Multiplication
* Using Vector Instructions document from Microsoft Research, August 20, 2013
* (cf. https://eprint.iacr.org/2013/519.pdf).
*
* This implementation leverages SSE2 instructions to perform arithmetic
* operations in parallel.
*
* This algorithm uses the modulus positive inverse (1 / N mod 2^32) which can
* be easily computed from the modulus negative inverse provided by the public
* key data structure `n0inv' field.
*/
#include "2api.h"
#include "2common.h"
#include "2return_codes.h"
#include "2rsa.h"
typedef long long vb2_m128i __attribute__((__vector_size__(16), __may_alias__));
typedef int vb2_v4si __attribute__((__vector_size__(16)));
typedef unsigned long long vb2_v2du __attribute__((__vector_size__(16)));
static inline vb2_m128i __attribute__((__always_inline__))
vb2_set_epi32 (int q3, int q2, int q1, int q0)
{
return (vb2_m128i)(vb2_v4si){ q0, q1, q2, q3 };
}
static inline vb2_m128i __attribute__((__always_inline__))
vb2_setzero_si128 (void)
{
return (vb2_m128i)(vb2_v4si){ 0, 0, 0, 0 };
}
static inline vb2_m128i __attribute__((__always_inline__))
vb2_add_epi64 (vb2_m128i a, vb2_m128i b)
{
return (vb2_m128i)((vb2_v2du)a + (vb2_v2du)b);
}
static inline vb2_m128i __attribute__((__always_inline__))
vb2_srli_epi64 (vb2_m128i a, int b)
{
return (vb2_m128i)__builtin_ia32_psrlqi128(a, b);
}
static inline vb2_m128i __attribute__((__always_inline__))
vb2_mul_epu32 (vb2_m128i a, vb2_m128i b)
{
return (vb2_m128i)__builtin_ia32_pmuludq128((vb2_v4si)a, (vb2_v4si)b);
}
static inline vb2_m128i __attribute__((__always_inline__))
vb2_and_si128 (vb2_m128i a, vb2_m128i b)
{
return (vb2_m128i)((vb2_v2du)a & (vb2_v2du)b);
}
/**
* Montgomery c[] = d[] - e[] if d[] > e[], c[] = d[] - e[] + mod[] otherwise.
*
* de[] has d[] in lower 64 bits (effectively lower 32 bits) and e[] in upper
* 64 bits (effectively lower 32 bits)
* de[] is used as a temporary buffer and therefore its content will be lost.
*/
static void sub_mod(const struct vb2_public_key *key, vb2_m128i *de, uint32_t *c)
{
uint32_t i, borrow = 0, carry = 0, d, e;
uint64_t sum, *de_i;
for (i = 0; i < key->arrsize; i++) {
de_i = (uint64_t *)&de[i];
d = (uint32_t)de_i[1];
e = (uint32_t)de_i[0];
/* Use de_i[0] as temporary storage of d[] - e[]. */
de_i[0] = (uint32_t)d - e - borrow;
borrow = d ^ ((d ^ e) | (d ^ (uint32_t)de_i[0]));
borrow >>= 31;
}
/* To keep the code running in constant-time for side-channel
* resistance, D − E + mod is systematically computed even if we do not
* need it. */
for (i = 0; i < key->arrsize; i++) {
de_i = (uint64_t *)&de[i];
sum = de_i[0] + key->n[i] + carry;
carry = sum >> 32;
/* Use de_i[1] as temporary storage. */
de_i[1] = (uint32_t)sum;
}
int index = borrow ? 1 : 0;
for (i = 0; i < key->arrsize; i++) {
de_i = (uint64_t *)&de[i];
c[i] = (uint32_t)de_i[index];
}
}
/**
* Montgomery c[] = a[] * b[] / R % mod
*/
static void mont_mult(const struct vb2_public_key *key,
uint32_t *c,
const uint32_t *a,
const uint32_t *b,
const uint32_t mu,
vb2_m128i *de,
vb2_m128i *b_modulus)
{
const uint32_t mub0 = mu * b[0];
const vb2_m128i mask = vb2_set_epi32(0, 0xffffffff, 0, 0xffffffff);
const uint64_t *de0 = (uint64_t *)de;
uint32_t i, j, q, muc0;
vb2_m128i p01, t01, mul;
for (i = 0; i < key->arrsize; i++) {
b_modulus[i] = vb2_set_epi32(0, b[i], 0, key->n[i]);
de[i] = vb2_setzero_si128();
}
for (j = 0; j < key->arrsize; j++) {
c[0] = (uint32_t)de0[1] - de0[0];
muc0 = mu * c[0];
q = muc0 + mub0 * a[j];
mul = vb2_set_epi32(0, a[j], 0, q);
p01 = vb2_add_epi64(de[0], vb2_mul_epu32(mul, b_modulus[0]));
t01 = vb2_srli_epi64(p01, 32);
for (i = 1; i < key->arrsize; i++) {
p01 = vb2_add_epi64(vb2_add_epi64(t01, de[i]),
vb2_mul_epu32(mul, b_modulus[i]));
t01 = vb2_srli_epi64(p01, 32);
de[i - 1] = vb2_and_si128(mask, p01);
}
de[key->arrsize - 1] = t01;
}
sub_mod(key, de, c);
}
static void swap_endianness(const uint32_t *in, uint32_t *out, size_t size)
{
size_t i;
for (i = 0; i < size; i++)
out[i] = __builtin_bswap32(in[size - 1 - i]);
}
vb2_error_t vb2ex_hwcrypto_modexp(const struct vb2_public_key *key,
uint8_t *inout, void *workbuf,
size_t workbuf_size, int exp)
{
const uint32_t mu = -key->n0inv;
uint32_t *a = workbuf;
uint32_t *aR = a + key->arrsize;
uint32_t *aaR = aR + key->arrsize;
uint32_t *aaa = aaR; /* Re-use location. */
vb2_m128i *de = (vb2_m128i *)(((uintptr_t)(aaa + key->arrsize) + 0xf) & ~0xf);
vb2_m128i *b_modulus = de + key->arrsize;
size_t i;
if ((void *)&b_modulus[key->arrsize] - workbuf > workbuf_size) {
VB2_DEBUG("ERROR - HW modexp work buffer too small!\n");
return VB2_ERROR_WORKBUF_SMALL;
}
/* Convert big endian to little endian. */
swap_endianness((uint32_t *)inout, a, key->arrsize);
/* aR = a * RR / R mod M */
mont_mult(key, aR, a, key->rr, mu, de, b_modulus);
if (exp == 3) {
/* aaR = aR * aR / R mod M */
mont_mult(key, aaR, aR, aR, mu, de, b_modulus);
/* a = aaR * aR / R mod M */
mont_mult(key, a, aaR, aR, mu, de, b_modulus);
/* To multiply with 1, prepare aR with first element 1 and
* others as 0. */
aR[0] = 1;
for (i = 1; i < key->arrsize; i++)
aR[i] = 0;
/* aaa = a * aR / R mod M = a * 1 / R mod M*/
mont_mult(key, aaa, a, aR, mu, de, b_modulus);
} else {
/* Exponent 65537 */
for (i = 0; i < 16; i += 2) {
/* aaR = aR * aR / R mod M */
mont_mult(key, aaR, aR, aR, mu, de, b_modulus);
/* aR = aaR * aaR / R mod M */
mont_mult(key, aR, aaR, aaR, mu, de, b_modulus);
}
/* aaa = aR * a / R mod M */
mont_mult(key, aaa, aR, a, mu, de, b_modulus);
}
/* Convert little endian to big endian. */
swap_endianness(aaa, (uint32_t *)inout, key->arrsize);
return VB2_SUCCESS;
}
|