1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <stdlib.h>
#include <types.h>
#include <string.h>
#include <tests/test.h>
#include <imd.h>
#include <imd_private.h>
#include <cbmem.h>
#include <commonlib/bsd/helpers.h>
#include <lib.h>
/* Auxiliary functions and definitions. */
#define LG_ROOT_SIZE \
align_up_pow2(sizeof(struct imd_root_pointer) + sizeof(struct imd_root) \
+ 3 * sizeof(struct imd_entry))
#define LG_ENTRY_ALIGN (2 * sizeof(int32_t))
#define LG_ENTRY_SIZE (2 * sizeof(int32_t))
#define LG_ENTRY_ID 0xA001
#define SM_ROOT_SIZE LG_ROOT_SIZE
#define SM_ENTRY_ALIGN sizeof(uint32_t)
#define SM_ENTRY_SIZE sizeof(uint32_t)
#define SM_ENTRY_ID 0xB001
#define INVALID_REGION_ID 0xC001
static uint32_t align_up_pow2(uint32_t x)
{
return (1 << log2_ceil(x));
}
static size_t max_entries(size_t root_size)
{
return (root_size - sizeof(struct imd_root_pointer) - sizeof(struct imd_root))
/ sizeof(struct imd_entry);
}
/*
* Mainly, we should check that imd_handle_init() aligns upper_limit properly
* for various inputs. Upper limit is the _exclusive_ address, so we expect
* ALIGN_DOWN.
*/
static void test_imd_handle_init(void **state)
{
int i;
void *base;
struct imd imd;
uintptr_t test_inputs[] = {
0, /* Lowest possible address */
0xA000, /* Fits in 16 bits, should not get rounded down */
0xDEAA, /* Fits in 16 bits */
0xB0B0B000, /* Fits in 32 bits, should not get rounded down */
0xF0F0F0F0, /* Fits in 32 bits */
((1ULL << 32) + 4), /* Just above 32-bit limit */
0x6666777788889000, /* Fits in 64 bits, should not get rounded down */
((1ULL << 60) - 100) /* Very large address, fitting in 64 bits */
};
for (i = 0; i < ARRAY_SIZE(test_inputs); i++) {
base = (void *)test_inputs[i];
imd_handle_init(&imd, (void *)base);
assert_int_equal(imd.lg.limit % LIMIT_ALIGN, 0);
assert_int_equal(imd.lg.limit, ALIGN_DOWN(test_inputs[i], LIMIT_ALIGN));
assert_ptr_equal(imd.lg.r, NULL);
/* Small allocations not initialized */
assert_ptr_equal(imd.sm.limit, NULL);
assert_ptr_equal(imd.sm.r, NULL);
}
}
static void test_imd_handle_init_partial_recovery(void **state)
{
void *base;
struct imd imd = {0};
const struct imd_entry *entry;
imd_handle_init_partial_recovery(&imd);
assert_null(imd.lg.limit);
assert_null(imd.sm.limit);
base = malloc(LIMIT_ALIGN);
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
imd_handle_init_partial_recovery(&imd);
assert_non_null(imd.lg.r);
assert_null(imd.sm.limit);
assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
entry = imd_entry_add(&imd, SMALL_REGION_ID, LG_ENTRY_SIZE);
assert_non_null(entry);
imd_handle_init_partial_recovery(&imd);
assert_non_null(imd.lg.r);
assert_non_null(imd.sm.limit);
assert_ptr_equal(imd.lg.r + entry->start_offset + LG_ENTRY_SIZE, imd.sm.limit);
assert_non_null(imd.sm.r);
free(base);
}
static void test_imd_create_empty(void **state)
{
struct imd imd = {0};
void *base;
struct imd_root *r;
struct imd_entry *e;
/* Expect imd_create_empty to fail, since imd handle is not initialized */
assert_int_equal(-1, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
base = malloc(sizeof(struct imd_root_pointer) + sizeof(struct imd_root));
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
/* Try incorrect sizes */
assert_int_equal(
-1, imd_create_empty(&imd, sizeof(struct imd_root_pointer), LG_ENTRY_ALIGN));
assert_int_equal(-1, imd_create_empty(&imd, LG_ROOT_SIZE, 2 * LG_ROOT_SIZE));
/* Working case */
assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
/* Only large allocation initialized with one entry for the root region */
r = (struct imd_root *)(imd.lg.r);
assert_non_null(r);
e = &r->entries[r->num_entries - 1];
assert_int_equal(max_entries(LG_ROOT_SIZE), r->max_entries);
assert_int_equal(1, r->num_entries);
assert_int_equal(0, r->flags);
assert_int_equal(LG_ENTRY_ALIGN, r->entry_align);
assert_int_equal(0, r->max_offset);
assert_ptr_equal(e, &r->entries);
assert_int_equal(IMD_ENTRY_MAGIC, e->magic);
assert_int_equal(0, e->start_offset);
assert_int_equal(LG_ROOT_SIZE, e->size);
assert_int_equal(CBMEM_ID_IMD_ROOT, e->id);
free(base);
}
static void test_imd_create_tiered_empty(void **state)
{
void *base;
size_t sm_region_size, lg_region_wrong_size;
struct imd imd = {0};
struct imd_root *r;
struct imd_entry *fst_lg_entry, *snd_lg_entry, *sm_entry;
/* Uninitialized imd handle */
assert_int_equal(-1, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
LG_ROOT_SIZE, SM_ENTRY_ALIGN));
base = malloc(LIMIT_ALIGN);
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
/* Too small root_size for small region */
assert_int_equal(-1, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
sizeof(int32_t), 2 * sizeof(int32_t)));
/* Fail when large region doesn't have capacity for more than 1 entry */
lg_region_wrong_size = sizeof(struct imd_root_pointer) + sizeof(struct imd_root)
+ sizeof(struct imd_entry);
expect_assert_failure(imd_create_tiered_empty(
&imd, lg_region_wrong_size, LG_ENTRY_ALIGN, SM_ROOT_SIZE, SM_ENTRY_ALIGN));
assert_int_equal(0, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
SM_ROOT_SIZE, SM_ENTRY_ALIGN));
r = imd.lg.r;
/* One entry for root_region and one for small allocations */
assert_int_equal(2, r->num_entries);
fst_lg_entry = &r->entries[0];
assert_int_equal(IMD_ENTRY_MAGIC, fst_lg_entry->magic);
assert_int_equal(0, fst_lg_entry->start_offset);
assert_int_equal(LG_ROOT_SIZE, fst_lg_entry->size);
assert_int_equal(CBMEM_ID_IMD_ROOT, fst_lg_entry->id);
/* Calculated like in imd_create_tiered_empty */
sm_region_size = max_entries(SM_ROOT_SIZE) * SM_ENTRY_ALIGN;
sm_region_size += SM_ROOT_SIZE;
sm_region_size = ALIGN_UP(sm_region_size, LG_ENTRY_ALIGN);
snd_lg_entry = &r->entries[1];
assert_int_equal(IMD_ENTRY_MAGIC, snd_lg_entry->magic);
assert_int_equal(-sm_region_size, snd_lg_entry->start_offset);
assert_int_equal(CBMEM_ID_IMD_SMALL, snd_lg_entry->id);
assert_int_equal(sm_region_size, snd_lg_entry->size);
r = imd.sm.r;
assert_int_equal(1, r->num_entries);
sm_entry = &r->entries[0];
assert_int_equal(IMD_ENTRY_MAGIC, sm_entry->magic);
assert_int_equal(0, sm_entry->start_offset);
assert_int_equal(SM_ROOT_SIZE, sm_entry->size);
assert_int_equal(CBMEM_ID_IMD_ROOT, sm_entry->id);
free(base);
}
/* Tests for imdr_recover. */
static void test_imd_recover(void **state)
{
int32_t offset_copy, max_offset_copy;
uint32_t rp_magic_copy, num_entries_copy;
uint32_t e_align_copy, e_magic_copy, e_id_copy;
uint32_t size_copy, diff;
void *base;
struct imd imd = {0};
struct imd_root_pointer *rp;
struct imd_root *r;
struct imd_entry *lg_root_entry, *sm_root_entry, *ptr;
const struct imd_entry *lg_entry;
/* Fail when the limit for lg was not set. */
imd.lg.limit = 0;
assert_int_equal(-1, imd_recover(&imd));
/* Set the limit for lg. */
base = malloc(LIMIT_ALIGN);
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
/* Fail when the root pointer is not valid. */
rp = (void *)imd.lg.limit - sizeof(struct imd_root_pointer);
assert_non_null(rp);
assert_int_equal(IMD_ROOT_PTR_MAGIC, rp->magic);
rp_magic_copy = rp->magic;
rp->magic = 0;
assert_int_equal(-1, imd_recover(&imd));
rp->magic = rp_magic_copy;
/* Set the root pointer. */
assert_int_equal(0, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
SM_ROOT_SIZE, SM_ENTRY_ALIGN));
assert_int_equal(2, ((struct imd_root *)imd.lg.r)->num_entries);
assert_int_equal(1, ((struct imd_root *)imd.sm.r)->num_entries);
/* Fail if the number of entries exceeds the maximum number of entries. */
r = imd.lg.r;
num_entries_copy = r->num_entries;
r->num_entries = r->max_entries + 1;
assert_int_equal(-1, imd_recover(&imd));
r->num_entries = num_entries_copy;
/* Fail if entry align is not a power of 2. */
e_align_copy = r->entry_align;
r->entry_align++;
assert_int_equal(-1, imd_recover(&imd));
r->entry_align = e_align_copy;
/* Fail when an entry is not valid. */
lg_root_entry = &r->entries[0];
e_magic_copy = lg_root_entry->magic;
lg_root_entry->magic = 0;
assert_int_equal(-1, imd_recover(&imd));
lg_root_entry->magic = e_magic_copy;
/* Add new entries: large and small. */
lg_entry = imd_entry_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE);
assert_non_null(lg_entry);
assert_int_equal(3, r->num_entries);
assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, SM_ENTRY_SIZE));
assert_int_equal(2, ((struct imd_root *)imd.sm.r)->num_entries);
/* Fail when start_addr is lower than low_limit. */
r = imd.lg.r;
max_offset_copy = r->max_offset;
r->max_offset = lg_entry->start_offset + sizeof(int32_t);
assert_int_equal(-1, imd_recover(&imd));
r->max_offset = max_offset_copy;
/* Fail when start_addr is at least imdr->limit. */
offset_copy = lg_entry->start_offset;
ptr = (struct imd_entry *)lg_entry;
ptr->start_offset = (void *)imd.lg.limit - (void *)r;
assert_int_equal(-1, imd_recover(&imd));
ptr->start_offset = offset_copy;
/* Fail when (start_addr + e->size) is higher than imdr->limit. */
size_copy = lg_entry->size;
diff = (void *)imd.lg.limit - ((void *)r + lg_entry->start_offset);
ptr->size = diff + 1;
assert_int_equal(-1, imd_recover(&imd));
ptr->size = size_copy;
/* Succeed if small region is not present. */
sm_root_entry = &r->entries[1];
e_id_copy = sm_root_entry->id;
sm_root_entry->id = 0;
assert_int_equal(0, imd_recover(&imd));
sm_root_entry->id = e_id_copy;
assert_int_equal(0, imd_recover(&imd));
free(base);
}
static void test_imd_limit_size(void **state)
{
void *base;
struct imd imd = {0};
size_t root_size, max_size;
max_size = align_up_pow2(sizeof(struct imd_root_pointer) + sizeof(struct imd_root)
+ 3 * sizeof(struct imd_entry));
assert_int_equal(-1, imd_limit_size(&imd, max_size));
base = malloc(LIMIT_ALIGN);
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
root_size = align_up_pow2(sizeof(struct imd_root_pointer) + sizeof(struct imd_root)
+ 2 * sizeof(struct imd_entry));
imd.lg.r = (void *)imd.lg.limit - root_size;
imd_create_empty(&imd, root_size, LG_ENTRY_ALIGN);
assert_int_equal(-1, imd_limit_size(&imd, root_size - 1));
assert_int_equal(0, imd_limit_size(&imd, max_size));
/* Cannot create such a big entry */
assert_null(imd_entry_add(&imd, LG_ENTRY_ID, max_size - root_size + 1));
free(base);
}
static void test_imd_lockdown(void **state)
{
struct imd imd = {0};
struct imd_root *r_lg, *r_sm;
assert_int_equal(-1, imd_lockdown(&imd));
imd.lg.r = malloc(sizeof(struct imd_root));
if (imd.lg.r == NULL)
fail_msg("Cannot allocate enough memory - fail test");
r_lg = (struct imd_root *)(imd.lg.r);
assert_int_equal(0, imd_lockdown(&imd));
assert_true(r_lg->flags & IMD_FLAG_LOCKED);
imd.sm.r = malloc(sizeof(struct imd_root));
if (imd.sm.r == NULL)
fail_msg("Cannot allocate enough memory - fail test");
r_sm = (struct imd_root *)(imd.sm.r);
assert_int_equal(0, imd_lockdown(&imd));
assert_true(r_sm->flags & IMD_FLAG_LOCKED);
free(imd.lg.r);
free(imd.sm.r);
}
static void test_imd_region_used(void **state)
{
struct imd imd = {0};
struct imd_entry *first_entry, *new_entry;
struct imd_root *r;
size_t size;
void *imd_base;
void *base;
assert_int_equal(-1, imd_region_used(&imd, &base, &size));
imd_base = malloc(LIMIT_ALIGN);
if (imd_base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)imd_base));
assert_int_equal(-1, imd_region_used(&imd, &base, &size));
assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
assert_int_equal(0, imd_region_used(&imd, &base, &size));
r = (struct imd_root *)imd.lg.r;
first_entry = &r->entries[r->num_entries - 1];
assert_int_equal(r + first_entry->start_offset, (uintptr_t)base);
assert_int_equal(first_entry->size, size);
assert_non_null(imd_entry_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE));
assert_int_equal(2, r->num_entries);
assert_int_equal(0, imd_region_used(&imd, &base, &size));
new_entry = &r->entries[r->num_entries - 1];
assert_true((void *)r + new_entry->start_offset == base);
assert_int_equal(first_entry->size + new_entry->size, size);
free(imd_base);
}
static void test_imd_entry_add(void **state)
{
int i;
struct imd imd = {0};
size_t entry_size = 0;
size_t used_size;
ssize_t entry_offset;
void *base;
struct imd_root *r, *sm_r, *lg_r;
struct imd_entry *first_entry, *new_entry;
uint32_t num_entries_copy;
int32_t max_offset_copy;
/* No small region case. */
assert_null(imd_entry_add(&imd, LG_ENTRY_ID, entry_size));
base = malloc(LIMIT_ALIGN);
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
r = (struct imd_root *)imd.lg.r;
first_entry = &r->entries[r->num_entries - 1];
/* Cannot add an entry when root is locked. */
r->flags = IMD_FLAG_LOCKED;
assert_null(imd_entry_add(&imd, LG_ENTRY_ID, entry_size));
r->flags = 0;
/* Fail when the maximum number of entries has been reached. */
num_entries_copy = r->num_entries;
r->num_entries = r->max_entries;
assert_null(imd_entry_add(&imd, LG_ENTRY_ID, entry_size));
r->num_entries = num_entries_copy;
/* Fail when entry size is 0 */
assert_null(imd_entry_add(&imd, LG_ENTRY_ID, 0));
/* Fail when entry size (after alignment) overflows imd total size. */
entry_size = 2049;
max_offset_copy = r->max_offset;
r->max_offset = -entry_size;
assert_null(imd_entry_add(&imd, LG_ENTRY_ID, entry_size));
r->max_offset = max_offset_copy;
/* Finally succeed. */
entry_size = 2 * sizeof(int32_t);
assert_non_null(imd_entry_add(&imd, LG_ENTRY_ID, entry_size));
assert_int_equal(2, r->num_entries);
new_entry = &r->entries[r->num_entries - 1];
assert_int_equal(sizeof(struct imd_entry), (void *)new_entry - (void *)first_entry);
assert_int_equal(IMD_ENTRY_MAGIC, new_entry->magic);
assert_int_equal(LG_ENTRY_ID, new_entry->id);
assert_int_equal(entry_size, new_entry->size);
used_size = ALIGN_UP(entry_size, r->entry_align);
entry_offset = first_entry->start_offset - used_size;
assert_int_equal(entry_offset, new_entry->start_offset);
/* Use small region case. */
imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN, SM_ROOT_SIZE,
SM_ENTRY_ALIGN);
lg_r = imd.lg.r;
sm_r = imd.sm.r;
/* All five new entries should be added to small allocations */
for (i = 0; i < 5; i++) {
assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, SM_ENTRY_SIZE));
assert_int_equal(i + 2, sm_r->num_entries);
assert_int_equal(2, lg_r->num_entries);
}
/* But next should fall back on large region */
assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, SM_ENTRY_SIZE));
assert_int_equal(6, sm_r->num_entries);
assert_int_equal(3, lg_r->num_entries);
/*
* Small allocation is created when occupies less than 1/4 of available
* small region. Verify this.
*/
imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN, SM_ROOT_SIZE,
SM_ENTRY_ALIGN);
assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, -sm_r->max_offset / 4 + 1));
assert_int_equal(1, sm_r->num_entries);
assert_int_equal(3, lg_r->num_entries);
/* Next two should go into small region */
assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, -sm_r->max_offset / 4));
assert_int_equal(2, sm_r->num_entries);
assert_int_equal(3, lg_r->num_entries);
/* (1/4 * 3/4) */
assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, -sm_r->max_offset / 16 * 3));
assert_int_equal(3, sm_r->num_entries);
assert_int_equal(3, lg_r->num_entries);
free(base);
}
static void test_imd_entry_find(void **state)
{
struct imd imd = {0};
void *base;
base = malloc(LIMIT_ALIGN);
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
assert_int_equal(0, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
SM_ROOT_SIZE, SM_ENTRY_ALIGN));
assert_non_null(imd_entry_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE));
assert_non_null(imd_entry_find(&imd, LG_ENTRY_ID));
assert_non_null(imd_entry_find(&imd, SMALL_REGION_ID));
/* Try invalid id, should fail */
assert_null(imd_entry_find(&imd, INVALID_REGION_ID));
free(base);
}
static void test_imd_entry_find_or_add(void **state)
{
struct imd imd = {0};
const struct imd_entry *entry;
struct imd_root *r;
void *base;
base = malloc(LIMIT_ALIGN);
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
assert_null(imd_entry_find_or_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE));
assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
entry = imd_entry_find_or_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE);
assert_non_null(entry);
r = (struct imd_root *)imd.lg.r;
assert_int_equal(entry->id, LG_ENTRY_ID);
assert_int_equal(2, r->num_entries);
assert_non_null(imd_entry_find_or_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE));
assert_int_equal(2, r->num_entries);
free(base);
}
static void test_imd_entry_size(void **state)
{
struct imd_entry entry = {.size = LG_ENTRY_SIZE};
assert_int_equal(LG_ENTRY_SIZE, imd_entry_size(&entry));
entry.size = 0;
assert_int_equal(0, imd_entry_size(&entry));
}
static void test_imd_entry_at(void **state)
{
struct imd imd = {0};
struct imd_root *r;
struct imd_entry *e = NULL;
const struct imd_entry *entry;
void *base;
base = malloc(LIMIT_ALIGN);
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
/* Fail when entry is NULL */
assert_null(imd_entry_at(&imd, e));
entry = imd_entry_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE);
assert_non_null(entry);
r = (struct imd_root *)imd.lg.r;
assert_ptr_equal((void *)r + entry->start_offset, imd_entry_at(&imd, entry));
free(base);
}
static void test_imd_entry_id(void **state)
{
struct imd_entry entry = {.id = LG_ENTRY_ID};
assert_int_equal(LG_ENTRY_ID, imd_entry_id(&entry));
}
static void test_imd_entry_remove(void **state)
{
void *base;
struct imd imd = {0};
struct imd_root *r;
const struct imd_entry *fst_lg_entry, *snd_lg_entry, *fst_sm_entry;
const struct imd_entry *e = NULL;
/* Uninitialized handle */
assert_int_equal(-1, imd_entry_remove(&imd, e));
base = malloc(LIMIT_ALIGN);
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
assert_int_equal(0, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
SM_ROOT_SIZE, SM_ENTRY_ALIGN));
r = imd.lg.r;
assert_int_equal(2, r->num_entries);
fst_lg_entry = &r->entries[0];
snd_lg_entry = &r->entries[1];
/* Only last entry can be removed */
assert_int_equal(-1, imd_entry_remove(&imd, fst_lg_entry));
r->flags = IMD_FLAG_LOCKED;
assert_int_equal(-1, imd_entry_remove(&imd, snd_lg_entry));
r->flags = 0;
r = imd.sm.r;
assert_int_equal(1, r->num_entries);
fst_sm_entry = &r->entries[0];
/* Fail trying to remove root entry */
assert_int_equal(-1, imd_entry_remove(&imd, fst_sm_entry));
assert_int_equal(1, r->num_entries);
r = imd.lg.r;
assert_int_equal(0, imd_entry_remove(&imd, snd_lg_entry));
assert_int_equal(1, r->num_entries);
/* Fail trying to remove root entry */
assert_int_equal(-1, imd_entry_remove(&imd, fst_lg_entry));
assert_int_equal(1, r->num_entries);
free(base);
}
static void test_imd_cursor_init(void **state)
{
struct imd imd = {0};
struct imd_cursor cursor;
assert_int_equal(-1, imd_cursor_init(NULL, NULL));
assert_int_equal(-1, imd_cursor_init(NULL, &cursor));
assert_int_equal(-1, imd_cursor_init(&imd, NULL));
assert_int_equal(0, imd_cursor_init(&imd, &cursor));
assert_ptr_equal(cursor.imdr[0], &imd.lg);
assert_ptr_equal(cursor.imdr[1], &imd.sm);
}
static void test_imd_cursor_next(void **state)
{
void *base;
struct imd imd = {0};
struct imd_cursor cursor;
struct imd_root *r;
const struct imd_entry *entry;
struct imd_entry *fst_lg_entry, *snd_lg_entry, *fst_sm_entry;
assert_int_equal(0, imd_cursor_init(&imd, &cursor));
cursor.current_imdr = 3;
cursor.current_entry = 0;
assert_null(imd_cursor_next(&cursor));
cursor.current_imdr = 0;
assert_null(imd_cursor_next(&cursor));
base = malloc(LIMIT_ALIGN);
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
assert_int_equal(0, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
SM_ROOT_SIZE, SM_ENTRY_ALIGN));
r = imd.lg.r;
entry = imd_cursor_next(&cursor);
assert_non_null(entry);
fst_lg_entry = &r->entries[0];
assert_int_equal(fst_lg_entry->id, entry->id);
assert_ptr_equal(fst_lg_entry, entry);
entry = imd_cursor_next(&cursor);
assert_non_null(entry);
snd_lg_entry = &r->entries[1];
assert_int_equal(snd_lg_entry->id, entry->id);
assert_ptr_equal(snd_lg_entry, entry);
entry = imd_cursor_next(&cursor);
assert_non_null(entry);
r = imd.sm.r;
fst_sm_entry = &r->entries[0];
assert_int_equal(fst_sm_entry->id, entry->id);
assert_ptr_equal(fst_sm_entry, entry);
entry = imd_cursor_next(&cursor);
assert_null(entry);
}
int main(void)
{
const struct CMUnitTest tests[] = {
cmocka_unit_test(test_imd_handle_init),
cmocka_unit_test(test_imd_handle_init_partial_recovery),
cmocka_unit_test(test_imd_create_empty),
cmocka_unit_test(test_imd_create_tiered_empty),
cmocka_unit_test(test_imd_recover),
cmocka_unit_test(test_imd_limit_size),
cmocka_unit_test(test_imd_lockdown),
cmocka_unit_test(test_imd_region_used),
cmocka_unit_test(test_imd_entry_add),
cmocka_unit_test(test_imd_entry_find),
cmocka_unit_test(test_imd_entry_find_or_add),
cmocka_unit_test(test_imd_entry_size),
cmocka_unit_test(test_imd_entry_at),
cmocka_unit_test(test_imd_entry_id),
cmocka_unit_test(test_imd_entry_remove),
cmocka_unit_test(test_imd_cursor_init),
cmocka_unit_test(test_imd_cursor_next),
};
return cb_run_group_tests(tests, NULL, NULL);
}
|