1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <alloca.h>
#include <errno.h>
#include <inttypes.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <arpa/inet.h>
#include <dirent.h>
#include <endian.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <commonlib/bsd/cbmem_id.h>
#include <commonlib/bsd/ipchksum.h>
#include <commonlib/coreboot_tables.h>
#include <commonlib/helpers.h>
#include <commonlib/timestamp_serialized.h>
#include <commonlib/tpm_log_serialized.h>
#ifdef __OpenBSD__
#include <sys/param.h>
#include <sys/sysctl.h>
#endif
#include "cbmem_util.h"
struct mapping {
void *virt;
size_t offset;
size_t virt_size;
unsigned long long phys;
size_t size;
};
/* File handle used to access /dev/mem */
static int mem_fd;
static struct mapping lbtable_mapping;
static unsigned long long system_page_size(void)
{
static unsigned long long page_size;
if (!page_size)
page_size = getpagesize();
return page_size;
}
static inline size_t size_to_mib(size_t sz)
{
return sz >> 20;
}
/* Return mapping of physical address requested. */
static void *mapping_virt(const struct mapping *mapping)
{
char *v = mapping->virt;
if (v == NULL)
return NULL;
return v + mapping->offset;
}
/* Returns virtual address on success, NULL on error. mapping is filled in. */
static void *map_memory_with_prot(struct mapping *mapping, unsigned long long phys, size_t sz,
int prot)
{
void *v;
unsigned long long page_size;
page_size = system_page_size();
mapping->virt = NULL;
mapping->offset = phys % page_size;
mapping->virt_size = sz + mapping->offset;
mapping->size = sz;
mapping->phys = phys;
if (size_to_mib(mapping->virt_size) == 0) {
debug("Mapping %zuB of physical memory at 0x%llx (requested 0x%llx).\n",
mapping->virt_size, phys - mapping->offset, phys);
} else {
debug("Mapping %zuMB of physical memory at 0x%llx (requested 0x%llx).\n",
size_to_mib(mapping->virt_size), phys - mapping->offset, phys);
}
v = mmap(NULL, mapping->virt_size, prot, MAP_SHARED, mem_fd, phys - mapping->offset);
if (v == MAP_FAILED) {
debug("Mapping failed %zuB of physical memory at 0x%llx.\n", mapping->virt_size,
phys - mapping->offset);
return NULL;
}
mapping->virt = v;
if (mapping->offset != 0)
debug(" ... padding virtual address with 0x%zx bytes.\n", mapping->offset);
return mapping_virt(mapping);
}
/* Convenience helper for the common case of read-only mappings. */
static const void *map_memory(struct mapping *mapping, unsigned long long phys, size_t sz)
{
return map_memory_with_prot(mapping, phys, sz, PROT_READ);
}
/* Returns 0 on success, < 0 on error. mapping is cleared if successful. */
static int unmap_memory(struct mapping *mapping)
{
if (mapping->virt == NULL)
return -1;
munmap(mapping->virt, mapping->virt_size);
mapping->virt = NULL;
mapping->offset = 0;
mapping->virt_size = 0;
return 0;
}
/*
* Some architectures map /dev/mem memory in a way that doesn't support
* unaligned accesses. Most normal libc memcpy()s aren't safe to use in this
* case, so build our own which makes sure to never do unaligned accesses on
* *src (*dest is fine since we never map /dev/mem for writing).
*/
static void *aligned_memcpy(void *dest, const void *src, size_t n)
{
uint8_t *d = dest;
const volatile uint8_t *s = src; /* volatile to prevent optimization */
while ((uintptr_t)s & (sizeof(size_t) - 1)) {
if (n-- == 0)
return dest;
*d++ = *s++;
}
while (n >= sizeof(size_t)) {
*(size_t *)d = *(const volatile size_t *)s;
d += sizeof(size_t);
s += sizeof(size_t);
n -= sizeof(size_t);
}
while (n-- > 0)
*d++ = *s++;
return dest;
}
/* Return < 0 on error, 0 on success. */
static int parse_cbtable(uint64_t address, size_t table_size)
{
const uint8_t *buf;
struct mapping header_mapping;
size_t req_size;
size_t i;
req_size = table_size;
/* Default to 4 KiB search space. */
if (req_size == 0)
req_size = 4 * 1024;
debug("Looking for coreboot table at %" PRIx64 " %zd bytes.\n", address, req_size);
buf = map_memory(&header_mapping, address, req_size);
if (!buf)
return -1;
/* look at every 16 bytes */
for (i = 0; i <= req_size - sizeof(struct lb_header); i += 16) {
const struct lb_header *lbh;
struct mapping table_mapping;
lbh = (const struct lb_header *)&buf[i];
if (memcmp(lbh->signature, "LBIO", sizeof(lbh->signature)) ||
!lbh->header_bytes || ipchksum(lbh, sizeof(*lbh))) {
continue;
}
/* Map in the whole table to parse. */
if (!map_memory(&table_mapping, address + i,
lbh->header_bytes + lbh->table_bytes)) {
debug("Couldn't map in table\n");
continue;
}
const uint8_t *table_contents =
&((uint8_t *)mapping_virt(&table_mapping))[lbh->header_bytes];
if (ipchksum(table_contents, lbh->table_bytes) !=
lbh->table_checksum) {
debug("Signature found, but wrong checksum.\n");
unmap_memory(&table_mapping);
continue;
}
debug("Found at %#" PRIx64 "\n", address + i);
const struct lb_record *lbr_p;
for (size_t offset = 0; offset < lbh->table_bytes; offset += lbr_p->size) {
lbr_p = (const struct lb_record *)&table_contents[offset];
debug(" coreboot table entry 0x%02x\n", lbr_p->tag);
if (lbr_p->tag != LB_TAG_FORWARD)
continue;
/* This is a forwarding entry. Repeat the search at the new address. */
struct lb_forward lbf_p = *(const struct lb_forward *)lbr_p;
debug(" Found forwarding entry.\n");
const uint64_t next_addr = lbf_p.forward;
unmap_memory(&header_mapping);
unmap_memory(&table_mapping);
return parse_cbtable(next_addr, 0);
}
debug("correct coreboot table found.\n");
unmap_memory(&header_mapping);
lbtable_mapping = table_mapping;
return 0;
}
unmap_memory(&header_mapping);
return -1;
}
#if defined(__arm__) || defined(__aarch64__)
static void dt_update_cells(const char *name, int *addr_cells_ptr, int *size_cells_ptr)
{
if (*addr_cells_ptr >= 0 && *size_cells_ptr >= 0)
return;
int buffer;
size_t nlen = strlen(name);
char *prop = alloca(nlen + sizeof("/#address-cells"));
strcpy(prop, name);
if (*addr_cells_ptr < 0) {
strcpy(prop + nlen, "/#address-cells");
int fd = open(prop, O_RDONLY);
if (fd < 0 && errno != ENOENT) {
perror(prop);
} else if (fd >= 0) {
if (read(fd, &buffer, sizeof(int)) < 0)
perror(prop);
else
*addr_cells_ptr = ntohl(buffer);
close(fd);
}
}
if (*size_cells_ptr < 0) {
strcpy(prop + nlen, "/#size-cells");
int fd = open(prop, O_RDONLY);
if (fd < 0 && errno != ENOENT) {
perror(prop);
} else if (fd >= 0) {
if (read(fd, &buffer, sizeof(int)) < 0)
perror(prop);
else
*size_cells_ptr = ntohl(buffer);
close(fd);
}
}
}
static char *dt_find_compat(const char *parent, const char *compat, int *addr_cells_ptr,
int *size_cells_ptr)
{
char *ret = NULL;
struct dirent *entry;
DIR *dir;
if (!(dir = opendir(parent))) {
perror(parent);
return NULL;
}
/* Loop through all files in the directory (DT node). */
while ((entry = readdir(dir))) {
/* We only care about compatible props or subnodes. */
if (entry->d_name[0] == '.' ||
!((entry->d_type & DT_DIR) || !strcmp(entry->d_name, "compatible")))
continue;
/* Assemble the file name (on the stack, for speed). */
size_t plen = strlen(parent);
char *name = alloca(plen + strlen(entry->d_name) + 2);
strcpy(name, parent);
name[plen] = '/';
strcpy(name + plen + 1, entry->d_name);
/* If it's a subnode, recurse. */
if (entry->d_type & DT_DIR) {
ret = dt_find_compat(name, compat, addr_cells_ptr, size_cells_ptr);
/* There is only one matching node to find, abort. */
if (ret) {
/* Gather cells values on the way up. */
dt_update_cells(parent, addr_cells_ptr, size_cells_ptr);
break;
}
continue;
}
/* If it's a compatible string, see if it's the right one. */
int fd = open(name, O_RDONLY);
int clen = strlen(compat);
char *buffer = alloca(clen + 1);
if (fd < 0) {
perror(name);
continue;
}
if (read(fd, buffer, clen + 1) < 0) {
perror(name);
close(fd);
continue;
}
close(fd);
if (!strcmp(compat, buffer)) {
/* Initialize these to "unset" for the way up. */
*addr_cells_ptr = *size_cells_ptr = -1;
/* Can't leave string on the stack or we'll lose it! */
ret = strdup(parent);
break;
}
}
closedir(dir);
return ret;
}
#endif /* defined(__arm__) || defined(__aarch64__) */
bool cbmem_devmem_init(bool writeable)
{
mem_fd = open("/dev/mem", writeable ? O_RDWR : O_RDONLY, 0);
if (mem_fd < 0) {
fprintf(stderr, "Failed to gain memory access: %s\n", strerror(errno));
return false;
}
#if defined(__arm__) || defined(__aarch64__)
int addr_cells, size_cells;
char *coreboot_node =
dt_find_compat("/proc/device-tree", "coreboot", &addr_cells, &size_cells);
if (!coreboot_node) {
fprintf(stderr, "Could not find 'coreboot' compatible node!\n");
return false;
}
if (addr_cells < 0) {
fprintf(stderr, "Warning: no #address-cells node in tree!\n");
addr_cells = 1;
}
int nlen = strlen(coreboot_node);
char *reg = alloca(nlen + sizeof("/reg"));
strcpy(reg, coreboot_node);
strcpy(reg + nlen, "/reg");
free(coreboot_node);
int fd = open(reg, O_RDONLY);
if (fd < 0) {
perror(reg);
return false;
}
int i;
size_t size_to_read = addr_cells * 4 + size_cells * 4;
uint8_t *dtbuffer = alloca(size_to_read);
if (read(fd, dtbuffer, size_to_read) < 0) {
perror(reg);
return false;
}
close(fd);
/* No variable-length byte swap function anywhere in C... how sad. */
uint64_t baseaddr = 0;
for (i = 0; i < addr_cells * 4; i++) {
baseaddr <<= 8;
baseaddr |= *dtbuffer;
dtbuffer++;
}
uint64_t cb_table_size = 0;
for (i = 0; i < size_cells * 4; i++) {
cb_table_size <<= 8;
cb_table_size |= *dtbuffer;
dtbuffer++;
}
parse_cbtable(baseaddr, cb_table_size);
#else
unsigned long long possible_base_addresses[] = {0, 0xf0000};
/* Find and parse coreboot table */
for (size_t j = 0; j < ARRAY_SIZE(possible_base_addresses); j++) {
if (!parse_cbtable(possible_base_addresses[j], 0))
break;
}
#endif
if (mapping_virt(&lbtable_mapping) == NULL) {
debug("Table not found.\n");
return false;
}
return true;
}
void cbmem_devmem_terminate(void)
{
unmap_memory(&lbtable_mapping);
close(mem_fd);
mem_fd = -1;
}
/* This is a work-around for a nasty problem introduced by initially having
* pointer sized entries in the lb_cbmem_ref structures. This caused problems
* on 64bit x86 systems because coreboot is 32bit on those systems.
* When the problem was found, it was corrected, but there are a lot of
* systems out there with a firmware that does not produce the right
* lb_cbmem_ref structure. Hence we try to autocorrect this issue here.
*/
static struct lb_cbmem_ref parse_cbmem_ref(const struct lb_cbmem_ref *cbmem_ref)
{
struct lb_cbmem_ref ret;
aligned_memcpy(&ret, cbmem_ref, sizeof(ret));
if (cbmem_ref->size < sizeof(*cbmem_ref))
ret.cbmem_addr = (uint32_t)ret.cbmem_addr;
debug(" cbmem_addr = %" PRIx64 "\n", ret.cbmem_addr);
return ret;
}
static uint32_t cbmem_id_to_lb_tag(uint32_t tag)
{
/* Minimal subset. Expand based on the CBMEM to coreboot table
records mapping in lib/coreboot_table.c */
switch (tag) {
case CBMEM_ID_TIMESTAMP:
return LB_TAG_TIMESTAMPS;
case CBMEM_ID_CONSOLE:
return LB_TAG_CBMEM_CONSOLE;
case CBMEM_ID_TPM_CB_LOG:
return LB_TAG_TPM_CB_LOG;
}
return LB_TAG_UNUSED;
}
static bool cbmem_devmem_probe_cbmem_entry(uint32_t id, uint64_t *addr_out, size_t *size_out)
{
const uint8_t *table;
const struct lb_header *lbh;
const uint32_t legacy_tag = cbmem_id_to_lb_tag(id);
struct lb_cbmem_ref *ref = NULL;
const struct lb_record *lbr = NULL;
table = mapping_virt(&lbtable_mapping);
if (table == NULL)
die("No correct coreboot table found\n");
lbh = (const struct lb_header *)table;
table = &table[lbh->header_bytes];
/* Fast track for the coreboot table. */
if (id == CBMEM_ID_CBTABLE) {
*addr_out = lbtable_mapping.phys;
*size_out = lbtable_mapping.size;
return true;
}
for (size_t offset = 0; offset < lbh->table_bytes - sizeof(struct lb_cbmem_entry);) {
lbr = (const void *)(table + offset);
offset += lbr->size;
/* Store coreboot table entry for later if CBMEM entry does not exist.
CBMEM entry stores size including the reserved area, so prefer it,
so more potential data and/or space is available. */
if (legacy_tag != LB_TAG_UNUSED && lbr->tag == legacy_tag)
ref = (struct lb_cbmem_ref *)lbr;
if (lbr->tag != LB_TAG_CBMEM_ENTRY)
continue;
struct lb_cbmem_entry lbe;
aligned_memcpy(&lbe, lbr, sizeof(lbe));
if (lbe.id != id)
continue;
*addr_out = lbe.address;
*size_out = lbe.entry_size;
return true;
}
/* No mapping and/or no potential reference means that
the requested entry does not exit. */
if (legacy_tag == LB_TAG_UNUSED || ref == NULL)
return false;
debug("Found coreboot table record equivalent of CBMEM entry id: %#x, tag: %#x\n", id,
legacy_tag);
const struct lb_cbmem_ref lbc = parse_cbmem_ref(ref);
size_t header_map_size = 0;
/* Process legacy coreboot table entries */
switch (lbc.tag) {
case LB_TAG_TIMESTAMPS:
header_map_size = sizeof(struct timestamp_table);
break;
case LB_TAG_CBMEM_CONSOLE:
header_map_size = sizeof(struct cbmem_console);
break;
case LB_TAG_TPM_CB_LOG:
header_map_size = sizeof(struct tpm_cb_log_table);
break;
}
struct mapping entry_mapping;
const void *entry_header = NULL;
entry_header = map_memory(&entry_mapping, lbc.cbmem_addr, header_map_size);
if (!entry_header)
die("Unable to map header for coreboot table entry id: %#x\n", legacy_tag);
*addr_out = lbc.cbmem_addr;
switch (legacy_tag) {
case LB_TAG_TIMESTAMPS: {
const struct timestamp_table *tst_p = entry_header;
*size_out = sizeof(*tst_p) + tst_p->num_entries * sizeof(tst_p->entries[0]);
break;
}
case LB_TAG_CBMEM_CONSOLE: {
const struct cbmem_console *console_p = entry_header;
*size_out = sizeof(*console_p) + console_p->size;
break;
}
case LB_TAG_TPM_CB_LOG: {
const struct tpm_cb_log_table *tclt_p = entry_header;
*size_out = sizeof(*tclt_p) + tclt_p->num_entries * sizeof(tclt_p->entries[0]);
break;
}
}
unmap_memory(&entry_mapping);
return true;
}
static void fetch_cbmem_entry(const uint32_t id, const uint64_t addr, const size_t size,
uint8_t **buf_out)
{
struct mapping cbmem_mapping;
const uint8_t *buf = map_memory(&cbmem_mapping, addr, size);
if (!buf)
die("Unable to map CBMEM entry id: %#x, size: %zu\n", id, size);
*buf_out = malloc(size);
if (!*buf_out) {
unmap_memory(&cbmem_mapping);
die("Unable to allocate memory for CBMEM entry id: %#x, size: %zu\n", id, size);
}
aligned_memcpy(*buf_out, buf, size);
unmap_memory(&cbmem_mapping);
}
bool cbmem_devmem_get_cbmem_entry(uint32_t id, uint8_t **buf_out, size_t *size_out,
uint64_t *addr_out)
{
uint64_t addr;
size_t size;
if (!cbmem_devmem_probe_cbmem_entry(id, &addr, &size)) {
debug("CBMEM entry not found. CBMEM id: %#x\n", id);
return false;
}
fetch_cbmem_entry(id, addr, size, buf_out);
if (size_out)
*size_out = size;
if (addr_out)
*addr_out = addr;
return true;
}
bool cbmem_devmem_write_cbmem_entry(uint32_t id, uint8_t *buf, size_t buf_size)
{
uint64_t addr = 0;
size_t size = 0;
uint8_t *origin_buf = NULL;
struct mapping mapping;
if (!cbmem_devmem_probe_cbmem_entry(id, &addr, &size)) {
debug("CBMEM entry not found. CBMEM id: %#x\n", id);
return false;
}
if (buf_size > size)
die("Attempting to write %zu bytes to CBMEM entry id: %#x of %zu bytes. Operation not possible.\n",
buf_size, id, size);
origin_buf = map_memory_with_prot(&mapping, addr, size, PROT_READ | PROT_WRITE);
if (!origin_buf)
die("Unable to map CBMEM entry id: %#x, size: %zu for read-write access.\n", id,
size);
aligned_memcpy(origin_buf, buf, buf_size);
unmap_memory(&mapping);
return true;
}
void cbmem_devmem_foreach_cbmem_entry(cbmem_iterator_callback cb, void *data,
bool with_contents)
{
uint8_t *table = NULL;
size_t table_size = 0;
if (!cbmem_devmem_get_cbmem_entry(CBMEM_ID_CBTABLE, &table, &table_size, NULL))
die("coreboot table not found.\n");
const struct lb_header *lbh = (const struct lb_header *)table;
const struct lb_record *lbr = NULL;
bool should_iteration_end = false;
size_t offset = 0;
while (offset < lbh->table_bytes - sizeof(struct lb_cbmem_entry) &&
should_iteration_end == false) {
lbr = (const struct lb_record *)&table[lbh->header_bytes + offset];
offset += lbr->size;
if (lbr->tag != LB_TAG_CBMEM_ENTRY)
continue;
const struct lb_cbmem_entry *lbe = (const struct lb_cbmem_entry *)lbr;
uint8_t *buf = NULL;
if (with_contents)
fetch_cbmem_entry(lbe->id, lbe->address, lbe->entry_size, &buf);
should_iteration_end = cb(lbe->id, lbe->address, buf, lbe->entry_size, data);
if (with_contents)
free(buf);
}
free(table);
}
|