1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
|
/*
Copyright (c) 1997 Simon Tatham
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Original code was from http://www.yoda.arachsys.com/dk/utils.html. While
that site and the original code do not state copyright or license, email
communication releaved the original author, and they agreed to releasing it
under the MIT license (above).
Modifications made to the original code include:
* Const correctness
* Prebuilt CRC table
* Lua interface
* Indentation and code style
* Bit stream pointers to data
* Fix bit operations near end of stream
* Style changes to conform to CorsixTH
*/
#include "rnc.h"
#include <vector>
#include <cstdint>
#include <cstddef>
static const std::uint32_t rnc_signature = 0x524E4301; /*!< "RNC\001" */
static const std::uint16_t rnc_crc_table[256] = {
0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,
0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,
0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,
0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,
0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,
0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,
0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,
0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,
0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,
0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,
0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,
0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,
0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,
0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,
0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,
0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,
0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,
0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,
0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,
0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,
0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,
0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,
0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,
0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040,
};
struct bit_stream
{
std::uint32_t bitbuf; ///< holds between 16 and 32 bits.
int bitcount; ///< how many bits does bitbuf hold?
const std::uint8_t* endpos; ///< pointer past the readable data
const std::uint8_t* p; ///< pointer in data that stream is reading.
};
struct huf_table
{
int num; ///< number of nodes in the tree.
struct
{
std::uint32_t code;
int codelen;
int value;
} table[32];
};
//! Calculate a CRC, the RNC way.
/*!
@param data data for which to calculate the CRC
@param len length of the data in bytes
*/
static std::uint16_t rnc_crc(const std::uint8_t* data, std::size_t len)
{
std::uint16_t val = 0;
while(len--)
{
val = static_cast<std::uint16_t>(val ^ *data++);
val = static_cast<std::uint16_t>((val >> 8) ^ rnc_crc_table[val & 0xFF]);
}
return val;
}
//! Return the big-endian 32 bit word at p.
/*!
@param p Pointer to data containing the word
*/
static std::uint32_t blong (const std::uint8_t *p)
{
std::uint32_t n;
n = p[0];
n = (n << 8) + p[1];
n = (n << 8) + p[2];
n = (n << 8) + p[3];
return n;
}
//! Return the big-endian 16 bit word at p.
/*!
@param p Pointer to data containing the word
*/
static std::uint32_t bword (const std::uint8_t *p)
{
std::uint32_t n;
n = p[0];
n = (n << 8) + p[1];
return n;
}
//! Return the little-endian 16 bit word at p.
/*!
@param p Pointer to data containing the word
*/
static std::uint32_t lword (const std::uint8_t *p)
{
std::uint32_t n;
n = p[1];
n = (n << 8) + p[0];
return n;
}
//! Mirror the bottom n bits of x.
/*!
@param x
@param n
*/
static std::uint32_t mirror (std::uint32_t x, int n)
{
std::uint32_t top = 1 << (n-1), bottom = 1;
while (top > bottom)
{
std::uint32_t mask = top | bottom;
std::uint32_t masked = x & mask;
if (masked != 0 && masked != mask)
{
x ^= mask;
}
top >>= 1;
bottom <<= 1;
}
return x;
}
//! Initialises a bit stream with the first two bytes of the packed
//! data.
/*!
@param bs Bit stream to be initialized
@param p Pointer to start of memory block the bitstream is to
traverse
@param endpos Pointer to byte after the last memory block the bitstream is
to traverse
*/
static void bitread_init (bit_stream *bs, const std::uint8_t *p, const std::uint8_t* endpos)
{
bs->bitbuf = lword(p);
bs->bitcount = 16;
bs->p = p;
bs->endpos = endpos;
}
//! Fixes up a bit stream after literals have been read out of the
//! data stream and the pointer has been moved.
/*!
@param bs Bit stream to correct
*/
static void bitread_fix (bit_stream *bs)
{
// Remove the top 16 bits
bs->bitcount -= 16;
bs->bitbuf &= (1<<bs->bitcount)-1;
// Replace with what is in the new current location
// in the bit stream
if(bs->p < bs->endpos - 1)
{
bs->bitbuf |= (lword(bs->p)<<bs->bitcount);
bs->bitcount += 16;
} else if (bs->p == bs->endpos - 1) {
bs->bitbuf |= (*(bs->p)<<bs->bitcount);
bs->bitcount += 16;
}
}
//! Return a word consisting of the specified bits without advancing
//! the bit stream.
/*!
@param bs Bit stream from which to peek
@param mask A 32 bit bit mask specifying which bits to peek
*/
static std::uint32_t bit_peek (bit_stream *bs, const std::uint32_t mask)
{
return bs->bitbuf & mask;
}
//! Advances the bit stream.
/*!
@param bs Bit stream to advance
@param n Number of bits to advance the stream. Must be
between 0 and 16
*/
static void bit_advance (bit_stream *bs, int n)
{
bs->bitbuf >>= n;
bs->bitcount -= n;
if (bs->bitcount < 16)
{
// At this point it is possible for bs->p to advance past
// the end of the data. In that case we simply do not read
// anything more into the buffer. If we are on the last
// byte the lword matches what is in that byte.
bs->p += 2;
if (bs->p < (bs->endpos - 1))
{
bs->bitbuf |= (lword(bs->p)<<bs->bitcount);
bs->bitcount += 16;
} else if (bs->p < bs->endpos) {
bs->bitbuf |= (*(bs->p)<<bs->bitcount);
bs->bitcount += 16;
}
}
}
//! Returns bits from the bit stream matching the mask and advances it
//! n places.
/*!
@param bs Bit stream to read
@param mask A 32 bit bit mask specifying which bits to read
@param n Number of bits to advance the stream. Must be
between 0 and 16
*/
static std::uint32_t bit_read (bit_stream *bs, std::uint32_t mask, int n)
{
std::uint32_t result = bit_peek(bs, mask);
bit_advance(bs, n);
return result;
}
//! Read a Huffman table out of the bit stream given.
/*!
@param h huf_table structure to populate
@param bs Bit stream pointing to the start of the Huffman table
description
*/
static void read_huftable(huf_table *h, bit_stream *bs)
{
int i, j, k, num;
int leaflen[32];
int leafmax;
std::uint32_t codeb; /* big-endian form of code. */
num = bit_read(bs, 0x1F, 5);
if(num == 0)
{
return;
}
leafmax = 1;
for(i = 0; i < num; i++)
{
leaflen[i] = bit_read(bs, 0x0F, 4);
if (leafmax < leaflen[i])
{
leafmax = leaflen[i];
}
}
codeb = 0L;
k = 0;
for(i = 1; i <= leafmax; i++)
{
for(j = 0; j < num; j++)
{
if(leaflen[j] == i)
{
h->table[k].code = mirror(codeb, i);
h->table[k].codelen = i;
h->table[k].value = j;
codeb++;
k++;
}
}
codeb <<= 1;
}
h->num = k;
}
//! Read a value out of the bit stream using the given Huffman table.
/*!
@param h Huffman table to transcribe from
@param bs bit stream
@param p input data
@return The value from the table with the matching bits, or -1 if none found.
*/
static std::uint32_t huf_read(huf_table *h, bit_stream *bs, const std::uint8_t **p)
{
int i;
std::uint32_t val;
std::uint32_t mask;
// Find the current bits in the table
for (i = 0; i < h->num; i++)
{
mask = (1 << h->table[i].codelen) - 1;
if(bit_peek(bs, mask) == h->table[i].code)
{
break;
}
}
// No match found in table (error)
if(i == h->num)
{
return -1;
}
bit_advance(bs, h->table[i].codelen);
val = h->table[i].value;
if (val >= 2)
{
val = 1 << (val-1);
val |= bit_read(bs, val-1, h->table[i].value - 1);
}
return val;
}
std::size_t rnc_output_size(const std::uint8_t* input)
{
return static_cast<std::size_t>(blong(input + 4));
}
std::size_t rnc_input_size(const std::uint8_t* input)
{
return static_cast<std::size_t>(blong(input + 8) + rnc_header_size);
}
//! Decompresses RNC data
/*!
@param input Pointer to compressed RNC data
@param output Pointer to allocated memory region to hold uncompressed
data. The size of output must match the value specified in the
4 byte segment of the input header starting at the 4th byte
in Big-endian.
*/
rnc_status rnc_unpack(const std::uint8_t* input, std::uint8_t* output)
{
const std::uint8_t *inputend;
std::uint8_t *outputend;
bit_stream input_bs;
huf_table raw = {0}, dist = {0}, len = {0};
std::uint32_t ch_count;
std::uint32_t ret_len;
std::uint32_t out_crc;
if(blong(input) != rnc_signature)
{
return rnc_status::file_is_not_rnc;
}
ret_len = blong(input + 4);
outputend = output + ret_len;
inputend = input + 18 + blong(input + 8);
//skip header
input += 18;
// Check the packed-data CRC. Also save the unpacked-data CRC
// for later.
if (rnc_crc(input, inputend - input) != bword(input - 4))
{
return rnc_status::packed_crc_error;
}
out_crc = bword(input - 6);
//initialize the bitstream to the input and advance past the
//first two bits as they don't have any understood use.
bitread_init(&input_bs, input, inputend);
bit_advance(&input_bs, 2);
//process chunks
while (output < outputend)
{
read_huftable(&raw, &input_bs); //raw byte length table
read_huftable(&dist, &input_bs); //distance prior to copy table
read_huftable(&len, &input_bs); //length bytes to copy table
ch_count = bit_read(&input_bs, 0xFFFF, 16);
while(true)
{
long length, posn;
// Copy bit pattern to output based on lookup
// of bytes from input.
length = huf_read(&raw, &input_bs, &input);
if(length == -1)
{
return rnc_status::huf_decode_error;
}
if(length)
{
while(length--)
{
*output++ = *(input_bs.p++);
}
bitread_fix(&input_bs);
}
if(--ch_count <= 0)
{
break;
}
// Read position to copy output to
posn = huf_read(&dist, &input_bs, &input);
if(posn == -1)
{
return rnc_status::huf_decode_error;
}
posn += 1;
// Read length of output to copy back
length = huf_read(&len, &input_bs, &input);
if(length == -1)
{
return rnc_status::huf_decode_error;
}
length += 2;
// Copy length bytes from output back posn
while (length > 0)
{
length--;
*output = output[-posn];
output++;
}
}
}
if(outputend != output)
{
return rnc_status::file_size_mismatch;
}
// Check the unpacked-data CRC.
if (rnc_crc(outputend - ret_len, ret_len) != out_crc)
{
return rnc_status::unpacked_crc_error;
}
return rnc_status::ok;
}
|