1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
|
let delta = sqrt epsilon_float
type vec = {x:float; y:float; z:float}
let ( *| ) s r = {x = s *. r.x; y = s *. r.y; z = s *. r.z}
let ( +| ) a b = {x = a.x +. b.x; y = a.y +. b.y; z = a.z +. b.z}
let ( -| ) a b = {x = a.x -. b.x; y = a.y -. b.y; z = a.z -. b.z}
let dot a b = a.x *. b.x +. a.y *. b.y +. a.z *. b.z
let length r = sqrt(dot r r)
let unitise r = 1. /. length r *| r
type scene =
Sphere of vec * float
| Group of vec * float * scene * scene * scene * scene * scene
let ray_sphere {x=dx; y=dy; z=dz} {x=vx; y=vy; z=vz} r =
let disc = vx *. vx +. vy *. vy +. vz *. vz -. r *. r in
if disc < 0. then infinity else
let b = vx *. dx +. vy *. dy +. vz *. dz in
let b2 = b *. b in
if b2 < disc then infinity else
let disc = sqrt(b2 -. disc) in
let t1 = b -. disc in
if t1 > 0. then t1 else b +. disc
let ray_sphere' {x=ox; y=oy; z=oz} {x=dx; y=dy; z=dz} {x=cx; y=cy; z=cz} r =
let vx = cx -. ox and vy = cy -. oy and vz = cz -. oz in
let vv = vx *. vx +. vy *. vy +. vz *. vz in
let b = vx *. dx +. vy *. dy +. vz *. dz in
let disc = b *. b -. vv +. r *. r in
disc >= 0. && b +. sqrt disc >= 0.
type hit = {l: float; nx: float; ny: float; nz: float}
let rec intersect ({x=dx; y=dy; z=dz} as dir) hit = function
Sphere ({x=cx; y=cy; z=cz} as center, radius) ->
let l' = ray_sphere dir center radius in
if l' >= hit.l then hit else
let x = l' *. dx -. cx in
let y = l' *. dy -. cy in
let z = l' *. dz -. cz in
let il = 1. /. sqrt(x *. x +. y *. y +. z *. z) in
{l = l'; nx = il *. x; ny = il *. y; nz = il *. z}
| Group (center, radius, a, b, c, d, e) ->
let l' = ray_sphere dir center radius in
if l' >= hit.l then hit else
let f h s = intersect dir h s in
f (f (f (f (f hit a) b) c) d) e
let rec intersect' orig dir = function
Sphere (center, radius) -> ray_sphere' orig dir center radius
| Group (center, radius, a, b, c, d, e) ->
let f s = intersect' orig dir s in
ray_sphere' orig dir center radius && (f a || f b || f c || f d || f e)
let neg_light = unitise { x = 1.; y = 3.; z = -2. }
let rec ray_trace dir scene =
let hit = intersect dir {l=infinity; nx=0.; ny=0.; nz=0.} scene in
if hit.l = infinity then 0. else
let n = {x = hit.nx; y = hit.ny; z = hit.nz} in
let g = dot n neg_light in
if g < 0. then 0. else
if intersect' (hit.l *| dir +| delta *| n) neg_light scene then 0. else g
let fold5 f x a b c d e = f (f (f (f (f x a) b) c) d) e
let rec create level c r =
let obj = Sphere (c, r) in
if level = 1 then obj else
let a = 3. *. r /. sqrt 12. in
let rec bound (c, r) = function
Sphere (c', r') -> c, max r (length (c -| c') +. r')
| Group (_, _, v, w, x, y, z) -> fold5 bound (c, r) v w x y z in
let aux x' z' = create (level - 1) (c +| {x=x'; y=a; z=z'}) (0.5 *. r) in
let w = aux (-.a) (-.a) and x = aux a (-.a) in
let y = aux (-.a) a and z = aux a a in
let c, r = fold5 bound (c +| {x=0.; y=r; z=0.}, 0.) obj w x y z in
Group (c, r, obj, w, x, y, z)
let string_init n f =
if n = 0 then "" else
let s = String.create n in
for i = 0 to n-1 do s.[i] <- f i done;
s
let offset size degree i = i * (size/degree) + (min (size mod degree) i)
let raster scene ss l s d y =
string_init s
(fun x ->
let g = ref 0. in
for dx = 0 to ss - 1 do
for dy = 0 to ss - 1 do
let aux x d = float x -. float s /. 2. +. float d /. float ss in
let dir = unitise {x = aux x dx; y = aux y dy; z = float s } in
g := !g +. ray_trace dir scene
done
done;
let g = 0.5 +. 255. *. !g /. float (ss*ss) in
char_of_int (int_of_float g))
let rasters l s d i =
let scene = create l { x = 0.; y = -1.; z = 4. } 1. and ss = 4 in
let off = offset s d i in
(off, Array.init ((s-i-1)/d + 1) (fun j -> raster scene ss l s d (s-off-j)))
|