1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
/*
Copyright (c) 2006-2010 Trevor Williams
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*!
\file reentrant.c
\author Trevor Williams (phase1geo@gmail.com)
\date 12/11/2006
*/
#include <assert.h>
#include "defines.h"
#include "reentrant.h"
#include "sys_tasks.h"
#include "util.h"
extern const exp_info exp_op_info[EXP_OP_NUM];
/*!
\return Returns the total number of bits in all signals in this functional unit and all parents
within the same reentrant task/function.
Recursively iterates up the functional unit tree keeping track of the total number of bits needed
to store all information in the current reentrant task/function.
*/
static int reentrant_count_afu_bits(
func_unit* funit /*!< Pointer to current function to count the bits of */
) { PROFILE(REENTRANT_COUNT_AFU_BITS);
sig_link* sigl; /* Pointer to current signal link */
exp_link* expl; /* Pointer to current expression link */
int bits = 0; /* Number of bits in this functional unit and all parent functional units in the reentrant task/function */
if( (funit->type == FUNIT_ATASK) || (funit->type == FUNIT_AFUNCTION) || (funit->type == FUNIT_ANAMED_BLOCK) ) {
/* Count the number of signal bits in this functional unit */
sigl = funit->sig_head;
while( sigl != NULL ) {
switch( sigl->sig->value->suppl.part.data_type ) {
case VDATA_UL : bits += (sigl->sig->value->width * 2) + 1; break;
case VDATA_R64 : bits += 64; break;
case VDATA_R32 : bits += 32; break;
default : assert( 0 ); break;
}
sigl = sigl->next;
}
/* Count the number of expression bits in this functional unit */
expl = funit->exp_head;
while( expl != NULL ) {
if( (EXPR_OWNS_VEC( expl->exp->op ) == 1) && (EXPR_IS_STATIC( expl->exp ) == 0) ) {
bits += (expl->exp->value->width * 2);
}
bits += ((ESUPPL_BITS_TO_STORE % 2) == 0) ? ESUPPL_BITS_TO_STORE : (ESUPPL_BITS_TO_STORE + 1);
expl = expl->next;
}
/* If the current functional unit is a named block, gather the bits in the parent functional unit */
if( funit->type == FUNIT_ANAMED_BLOCK ) {
bits += reentrant_count_afu_bits( funit->parent );
}
}
PROFILE_END;
return( bits );
}
/*!
Recursively gathers all signal data bits to store and stores them in the given reentrant
structure.
*/
static void reentrant_store_data_bits(
func_unit* funit, /*!< Pointer to current functional unit to traverse */
reentrant* ren, /*!< Pointer to reentrant structure to populate */
unsigned int curr_bit /*!< Current bit to store (should be started at a value of 0) */
) { PROFILE(REENTRANT_STORE_DATA_BITS);
if( (funit->type == FUNIT_ATASK) || (funit->type == FUNIT_AFUNCTION) || (funit->type == FUNIT_ANAMED_BLOCK) ) {
sig_link* sigl = funit->sig_head;
exp_link* expl = funit->exp_head;
/* Walk through the signal list in the reentrant functional unit, compressing and saving vector values */
while( sigl != NULL ) {
switch( sigl->sig->value->suppl.part.data_type ) {
case VDATA_UL :
{
unsigned int i;
for( i=0; i<sigl->sig->value->width; i++ ) {
ulong* entry = sigl->sig->value->value.ul[UL_DIV(i)];
ren->data[curr_bit>>3] |= (((entry[VTYPE_INDEX_VAL_VALL] >> UL_MOD(i)) & 0x1) << (curr_bit & 0x7));
curr_bit++;
ren->data[curr_bit>>3] |= (((entry[VTYPE_INDEX_VAL_VALH] >> UL_MOD(i)) & 0x1) << (curr_bit & 0x7));
curr_bit++;
}
ren->data[curr_bit>>3] |= sigl->sig->value->suppl.part.set << (curr_bit & 0x7);
curr_bit++;
/* Clear the set bit */
sigl->sig->value->suppl.part.set = 0;
}
break;
case VDATA_R64 :
{
uint64 real_bits = sys_task_realtobits( sigl->sig->value->value.r64->val );
unsigned int i;
for( i=0; i<64; i++ ) {
ren->data[curr_bit>>3] |= (real_bits & 0x1) << (curr_bit & 0x7);
real_bits >>= 1;
curr_bit++;
}
}
break;
case VDATA_R32 :
{
uint64 real_bits = sys_task_realtobits( (double)sigl->sig->value->value.r32->val );
unsigned int i;
for( i=0; i<32; i++ ) {
ren->data[curr_bit>>3] |= (real_bits & 0x1) << (curr_bit & 0x7);
real_bits >>= 1;
curr_bit++;
}
}
break;
default : assert( 0 );
}
sigl = sigl->next;
}
/* Walk through expression list in the reentrant functional unit, compressing and saving vector and supplemental values */
while( expl != NULL ) {
unsigned int i;
if( (EXPR_OWNS_VEC( expl->exp->op ) == 1) && (EXPR_IS_STATIC( expl->exp ) == 0) ) {
switch( expl->exp->value->suppl.part.data_type ) {
case VDATA_UL :
{
for( i=0; i<expl->exp->value->width; i++ ) {
ulong* entry = expl->exp->value->value.ul[UL_DIV(i)];
ren->data[curr_bit>>3] |= (((entry[VTYPE_INDEX_VAL_VALL] >> UL_MOD(i)) & 0x1) << (curr_bit & 0x7));
curr_bit++;
ren->data[curr_bit>>3] |= (((entry[VTYPE_INDEX_VAL_VALH] >> UL_MOD(i)) & 0x1) << (curr_bit & 0x7));
curr_bit++;
}
}
break;
case VDATA_R64 :
{
uint64 real_bits = sys_task_realtobits( expl->exp->value->value.r64->val );
for( i=0; i<64; i++ ) {
ren->data[curr_bit>>3] |= (real_bits & 0x1) << (curr_bit & 0x7);
real_bits >>= 1;
curr_bit++;
}
}
break;
case VDATA_R32 :
{
uint64 real_bits = sys_task_realtobits( (double)expl->exp->value->value.r32->val );
for( i=0; i<32; i++ ) {
ren->data[curr_bit>>3] |= (real_bits & 0x1) << (curr_bit & 0x7);
real_bits >>= 1;
curr_bit++;
}
}
break;
default : assert( 0 ); break;
}
}
for( i=0; i<(((ESUPPL_BITS_TO_STORE % 2) == 0) ? ESUPPL_BITS_TO_STORE : (ESUPPL_BITS_TO_STORE + 1)); i++ ) {
switch( i ) {
case 0 : ren->data[curr_bit>>3] |= (expl->exp->suppl.part.left_changed << (curr_bit & 0x7)); break;
case 1 : ren->data[curr_bit>>3] |= (expl->exp->suppl.part.right_changed << (curr_bit & 0x7)); break;
case 2 : ren->data[curr_bit>>3] |= (expl->exp->suppl.part.eval_t << (curr_bit & 0x7)); break;
case 3 : ren->data[curr_bit>>3] |= (expl->exp->suppl.part.eval_f << (curr_bit & 0x7)); break;
case 4 : ren->data[curr_bit>>3] |= (expl->exp->suppl.part.prev_called << (curr_bit & 0x7)); break;
}
curr_bit++;
}
/* Clear supplemental bits that have been saved off */
expl->exp->suppl.part.left_changed = 0;
expl->exp->suppl.part.right_changed = 0;
expl->exp->suppl.part.eval_t = 0;
expl->exp->suppl.part.eval_f = 0;
expl->exp->suppl.part.prev_called = 0;
expl = expl->next;
}
/* If the current functional unit is a named block, store the bits in the parent functional unit */
if( funit->type == FUNIT_ANAMED_BLOCK ) {
reentrant_store_data_bits( funit->parent, ren, curr_bit );
}
}
PROFILE_END;
}
/*!
Recursively restores the signal and expression values of the functional units in a reentrant task/function.
*/
static void reentrant_restore_data_bits(
func_unit* funit, /*!< Pointer to current functional unit to restore */
reentrant* ren, /*!< Pointer to reentrant structure containing bits to restore */
unsigned int curr_bit, /*!< Current bit in reentrant structure to restore */
expression* expr /*!< Pointer to expression to exclude from updating */
) { PROFILE(REENTRANT_RESTORE_DATA_BITS);
int i; /* Loop iterator */
if( (funit->type == FUNIT_ATASK) || (funit->type == FUNIT_AFUNCTION) || (funit->type == FUNIT_ANAMED_BLOCK) ) {
sig_link* sigl;
exp_link* expl;
/* Walk through each bit in the compressed data array and assign it back to its signal */
sigl = funit->sig_head;
while( sigl != NULL ) {
switch( sigl->sig->value->suppl.part.data_type ) {
case VDATA_UL :
{
unsigned int i;
for( i=0; i<sigl->sig->value->width; i++ ) {
ulong* entry = sigl->sig->value->value.ul[UL_DIV(i)];
if( UL_MOD(i) == 0 ) {
entry[VTYPE_INDEX_VAL_VALL] = 0;
entry[VTYPE_INDEX_VAL_VALH] = 0;
}
entry[VTYPE_INDEX_VAL_VALL] |= (ulong)((ren->data[curr_bit>>3] >> (curr_bit & 0x7)) & 0x1) << UL_MOD(i);
curr_bit++;
entry[VTYPE_INDEX_VAL_VALH] |= (ulong)((ren->data[curr_bit>>3] >> (curr_bit & 0x7)) & 0x1) << UL_MOD(i);
curr_bit++;
}
sigl->sig->value->suppl.part.set = (ren->data[curr_bit>>3] >> (curr_bit & 0x7)) & 0x1;
curr_bit++;
}
break;
case VDATA_R64 :
{
uint64 real_bits = 0;
unsigned int i;
for( i=0; i<64; i++ ) {
real_bits |= (uint64)ren->data[curr_bit>>3] << (i - curr_bit);
curr_bit++;
}
sigl->sig->value->value.r64->val = sys_task_bitstoreal( real_bits );
}
break;
case VDATA_R32 :
{
uint64 real_bits = 0;
unsigned int i;
for( i=0; i<32; i++ ) {
real_bits |= (uint64)ren->data[curr_bit>>3] << (i - curr_bit);
curr_bit++;
}
sigl->sig->value->value.r32->val = (float)sys_task_bitstoreal( real_bits );
}
break;
default : assert( 0 ); break;
}
sigl = sigl->next;
}
/* Walk through each bit in the compressed data array and assign it back to its expression */
expl = funit->exp_head;
while( expl != NULL ) {
if( expl->exp == expr ) {
curr_bit += (expr->value->width * 2);
} else {
if( (EXPR_OWNS_VEC( expl->exp->op ) == 1) && (EXPR_IS_STATIC( expl->exp ) == 0) ) {
switch( expl->exp->value->suppl.part.data_type ) {
case VDATA_UL :
{
unsigned int i;
for( i=0; i<expl->exp->value->width; i++ ) {
ulong* entry = expl->exp->value->value.ul[UL_DIV(i)];
if( UL_MOD(i) == 0 ) {
entry[VTYPE_INDEX_VAL_VALL] = 0;
entry[VTYPE_INDEX_VAL_VALH] = 0;
}
entry[VTYPE_INDEX_VAL_VALL] |= (ulong)((ren->data[curr_bit>>3] >> (curr_bit & 0x7)) & 0x1) << UL_MOD(i);
curr_bit++;
entry[VTYPE_INDEX_VAL_VALH] |= (ulong)((ren->data[curr_bit>>3] >> (curr_bit & 0x7)) & 0x1) << UL_MOD(i);
curr_bit++;
}
}
break;
case VDATA_R64 :
{
uint64 real_bits = 0;
unsigned int i;
for( i=0; i<64; i++ ) {
real_bits |= (uint64)ren->data[curr_bit>>3] << (i - curr_bit);
curr_bit++;
}
expl->exp->value->value.r64->val = sys_task_bitstoreal( real_bits );
}
break;
case VDATA_R32 :
{
uint64 real_bits = 0;
unsigned int i;
for( i=0; i<32; i++ ) {
real_bits |= (uint64)ren->data[curr_bit>>3] << (i - curr_bit);
curr_bit++;
}
expl->exp->value->value.r32->val = (float)sys_task_bitstoreal( real_bits );
}
break;
default : assert( 0 );
}
}
}
for( i=0; i<(((ESUPPL_BITS_TO_STORE % 2) == 0) ? ESUPPL_BITS_TO_STORE : (ESUPPL_BITS_TO_STORE + 1)); i++ ) {
switch( i ) {
case 0 : expl->exp->suppl.part.left_changed = (ren->data[curr_bit>>3] >> (curr_bit & 0x7)); break;
case 1 : expl->exp->suppl.part.right_changed = (ren->data[curr_bit>>3] >> (curr_bit & 0x7)); break;
case 2 : expl->exp->suppl.part.eval_t = (ren->data[curr_bit>>3] >> (curr_bit & 0x7)); break;
case 3 : expl->exp->suppl.part.eval_f = (ren->data[curr_bit>>3] >> (curr_bit & 0x7)); break;
case 4 : expl->exp->suppl.part.prev_called = (ren->data[curr_bit>>3] >> (curr_bit & 0x7)); break;
}
curr_bit++;
}
expl = expl->next;
}
/*
If the current functional unit is a named block, restore the rest of the bits for the parent functional units
in this reentrant task/function.
*/
if( funit->type == FUNIT_ANAMED_BLOCK ) {
reentrant_restore_data_bits( funit->parent, ren, curr_bit, expr );
}
}
PROFILE_END;
}
/*!
\return Returns a pointer to the newly created reentrant structure.
Allocates and initializes the reentrant structure for the given functional unit,
compressing and packing the bits into the given data structure.
*/
reentrant* reentrant_create(
func_unit* funit /*!< Pointer to functional unit to create a new reentrant structure for */
) { PROFILE(REENTRANT_CREATE);
reentrant* ren = NULL; /* Pointer to newly created reentrant structure */
int data_size; /* Number of uint8s needed to store the given functional unit */
unsigned int bits = 0; /* Number of bits needed to store signal values */
int i; /* Loop iterator */
/* Get size needed to store data */
bits = reentrant_count_afu_bits( funit );
/* Calculate data size */
data_size = ((bits & 0x7) == 0) ? (bits >> 3) : ((bits >> 3) + 1);
/* If there is data to store, allocate the needed memory and populate it */
if( data_size > 0 ) {
/* Allocate the structure */
ren = (reentrant*)malloc_safe( sizeof( reentrant ) );
/* Set the data size */
ren->data_size = data_size;
/* Allocate and initialize memory for data */
ren->data = (uint8*)malloc_safe( sizeof( uint8 ) * ren->data_size );
for( i=0; i<data_size; i++ ) {
ren->data[i] = 0;
}
/* Walk through the signal list in the reentrant functional unit, compressing and saving vector values */
reentrant_store_data_bits( funit, ren, 0 );
}
PROFILE_END;
return( ren );
}
/*!
Pops data back into the given functional unit and deallocates all memory associated
with the given reentrant structure.
*/
void reentrant_dealloc(
reentrant* ren, /*!< Pointer to the reentrant structure to deallocate from memory */
func_unit* funit, /*!< Pointer to functional unit associated with this reentrant structure */
expression* expr /*!< Pointer of expression to exclude from updating (optional) */
) { PROFILE(REENTRANT_DEALLOC);
if( ren != NULL ) {
/* If we have data being stored, pop it */
if( ren->data_size > 0 ) {
/* Walk through each bit in the compressed data array and assign it back to its signal */
reentrant_restore_data_bits( funit, ren, 0, expr );
/* Deallocate the data uint8 array */
free_safe( ren->data, (sizeof( uint8 ) * ren->data_size) );
}
/* Deallocate memory allocated for this reentrant structure */
free_safe( ren, sizeof( reentrant ) );
}
PROFILE_END;
}
|