File: blob_analyzer__define.pro

package info (click to toggle)
coyote 2019.01.29-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 6,316 kB
  • sloc: python: 184; makefile: 14; sh: 13
file content (725 lines) | stat: -rw-r--r-- 29,944 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
;+
; NAME:
;       BLOB_ANALYZER__DEFINE
;
; PURPOSE:
;
;       The purpose of this routine is to create a system for analyzing
;       regions of interest (ROIs) or (more commonly) "blobs" inside images.
;       In particular, given a suitable image (this will require judgement on
;       your part), the program will automatically select "blobs" or connected
;       regions in the image and make it possible for you to analyze these
;       blobs. An example program is provided to show you one way the program
;       can be used.
;
;       The code is a wrapper, essentially, for LABEL_REGION and HISTOGRAM, with
;       a couple of my other image processing routines (FIND_BOUNDARY and FIT_ELLIPSE)
;       used in a supporting role.
;
; AUTHOR:
;
;       FANNING SOFTWARE CONSULTING
;       David Fanning, Ph.D.
;       1645 Sheely Drive
;       Fort Collins, CO 80526 USA
;       Phone: 970-221-0438
;       E-mail: david@idlcoyote.com
;       Coyote's Guide to IDL Programming: http://www.idlcoyote.com
;
; CATEGORY:
;
;       Analysis, Image Processing
;
; CALLING SEQUENCE:
;
;       analyzer = Obj_New("BLOB_ANALYZER", image)
;
; INPUTS:
;
;   image:           A two-dimensional image array. To make this program memory efficient,
;                    a copy of the image is *not* stored in the object. You will be responsible
;                    for image operations outside this program.
;
; KEYWORDS:
;
;   ALL_NEIGHBORS:    Set this keyword to look at all eight neighbors when searching
;                     for connectivity. The default is to look for four neighbors on
;                     each side of the starting pixel. Passed directly to LABEL_REGION.
;
;   MASK:             A two-dimensional array, the same size as image, that identifies the
;                     foreground and background pixels in the image. Applying the mask
;                     should result in a bi-level image of 0s and 1s, where 1 identifies the
;                     blobs you wish to analyze. If a mask is not provided, the mask is created
;                     like this:
;
;                     mask = image > 0
;
;   SCALE:            A one- or two-dimensional given the pixel scaling parameters. By default [1.0, 1.0].
;                     If passed a scalar, the scale parameter is applied to both the X and Y directions of
;                     each pixel. Statistical output is reported with scaling unless the NOSCALE keyword
;                     is set. Scaling also effects the data that is output from the various methods.
;
; OBJECT METHODS:
;
;   The following methods are provided. Please see the documentation header for each method for
;   information on arguments and keywords that can be used with the method.
;
;   FitEllipse:       This method fits an ellipse to the blob. It returns information about the fitted
;                     ellipse, including the points that all the ellipse to be drawn.
;
;   GetIndices:       This method returns the indices for a particular blob in the image.
;
;   GetStats:         This method returns a structure containing statistics for a particular blob in the image.
;                     The structure is defined as follows:
;
;                     stats = {INDEX: indexNumber, $                  ; The index number of this blob.
;                              COUNT: N_Elements(indices), $          ; The number of indices in this blob.
;                              PERIMETER_PTS: boundaryPts, $          ; A [2,n] array of points that describe the blob perimeter.
;                              PIXEL_AREA: pixelArea, $               ; The area as calculated by pixels in the blob.
;                              PERIMETER_AREA: perimeterArea, $       ; The area as calculated by the blob perimeter. (Smaller than pixel area.)
;                              CENTER: centroid[0:1], $               ; The [x,y] array that identifies the centroid of the blob.
;                              PERIMETER_LENGTH: perimeter_length, $  ; The perimenter length (scaled unless the NOSCALE keyword is set).
;                              SCALE: scale, $                        ; The [xscale, yscale] array used in scaling.
;                              MINCOL: Min(xyindices[0,*]), $         ; The minimum column index in the blob.
;                              MAXCOL: Max(xyindices[0,*]), $         ; The maximum column index in the blob.
;                              MINROW: Min(xyindices[1,*]), $         ; The minimum row index in the blob.
;                              MAXROW: Max(xyindices[1,*])}           ; The maximum row index in the blob.
;
;   NumberOfBlobs:     The number of blobs identified in the image.
;
;   ReportStats:       This methods reports statistics on every identified blob in the image. The
;                      report can be sent to the display (the default) or to a file. The format for
;                      the report works for most images, but you may have to change the format or override
;                      this method for your particular image. The reported statistics are basically the
;                      output of the GetStats and FitEllipse methods.
;
;    Here is an example of statistical output from the example program below.
;
;  INDEX   NUM_PIXELS   CENTER_X    CENTER_Y   PIXEL_AREA   PERIMETER_AREA   PERIMETER_LENGTH  MAJOR_AXIS   MINOR_AXIS    ANGLE
;     0        426        107.89       9.78       106.50          98.00            37.56          12.15        11.29       -8.05
;     1        580        151.97      10.22       145.00         134.25            49.21          17.49        11.77       -0.99
;     2        812        266.29      15.36       203.00         190.75            52.56          17.88        14.65     -107.48
;     3       1438        204.53      43.29       359.50         344.13            70.23          21.68        21.12      -76.47
;
; RESTRICTIONS:
;
;       Requires programs from the Coyote Library. At the very least, those below are required.
;       It is *highly* recommended that you install the entire library. FIT_ELLIPSE has been
;       changed specifically for this release, so by sure you get a copy of that with this
;       source code.
;
;       The program currently works only with 2D bi-level images.
;
; EXAMPLE:
;
;       To run an example program. Compile the file and type "example" at the IDL command line.
;
;       IDL> .compile blob_analyzer__define
;       IDL> example
;
; MODIFICATION HISTORY:
;
;       Written by David W. Fanning, Fanning Software Consulting, 17 August 2008.
;       Ideas taken from discussion with Ben Tupper and Ben's program HBB_ANALYZER.
;       Example program rewritten to bring up-to-date with Coyote Library routines. 9 March 2015. DWF.
;-
;******************************************************************************************;
;  Copyright (c) 2008, by Fanning Software Consulting, Inc.                                ;
;  All rights reserved.                                                                    ;
;                                                                                          ;
;  Redistribution and use in source and binary forms, with or without                      ;
;  modification, are permitted provided that the following conditions are met:             ;
;                                                                                          ;
;      * Redistributions of source code must retain the above copyright                    ;
;        notice, this list of conditions and the following disclaimer.                     ;
;      * Redistributions in binary form must reproduce the above copyright                 ;
;        notice, this list of conditions and the following disclaimer in the               ;
;        documentation and/or other materials provided with the distribution.              ;
;      * Neither the name of Fanning Software Consulting, Inc. nor the names of its        ;
;        contributors may be used to endorse or promote products derived from this         ;
;        software without specific prior written permission.                               ;
;                                                                                          ;
;  THIS SOFTWARE IS PROVIDED BY FANNING SOFTWARE CONSULTING, INC. ''AS IS'' AND ANY        ;
;  EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES    ;
;  OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT     ;
;  SHALL FANNING SOFTWARE CONSULTING, INC. BE LIABLE FOR ANY DIRECT, INDIRECT,             ;
;  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED    ;
;  TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;         ;
;  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND             ;
;  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT              ;
;  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS           ;
;  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.                            ;
;******************************************************************************************;

;
; NAME:
;  Blob_Analyzer::FitEllipse
;
; PURPOSE:
;
;   This function fits an ellipse to a particular blob and returns information
;   about the fit to the user.
;
; CALLING SEQUENCE:
;
;   ellipsePts = theBlobs -> FitEllipse(indexNumber)
;
; RETURN VALUE:
;
;     ellipsePts:   A [2,n] array containing the XY points of the fitted ellipse. The values
;                   are in scaled units unless the NOSCALE keyword is set, in which case the
;                   values are in DEVICE units.
;
; ARGUMENTS:
;
;    indexNumber:   The index number of the blob. Indices start at 0 and go to n-1.
;
; INPUT KEYWORDS:
;
;    NOSCALE:       Set this keyword if you would prefer that lengths and positions NOT be
;                   scaled in the output of this function. If not scaled, results are in pixel
;                   or device coordinates. The default is to scale all output.
;
;    NPOINTS:       The number of points in the ellipse. By default, 120.
;
; OUTPUT KEYWORDRS:
;
;    AXES:          A two-element array containing the lengths of the major and minor axes,
;                   respectively. Lenghts are scaled unless the NOSCALE keyword is set.
;
;    CENTER:        A two-element array containing the [x,y] values of the center of the ellipse.
;                   Values are scaled unless the NOSCALE keyword is set.
;
;    ORIENTATION:   The orientation of the ellipse. The value is in degrees counter-clockwise of
;                   the postive X direction.  Note that a value of 60 is the same as a value of 240.
;                   In other words, there is no direction associated with this value.
;
;    SEMIAXES:      A two-element array containing the lengths of the semi-major and semi-minor axes,
;                   respectively. Lenghts are scaled unless the NOSCALE keyword is set. (Half the length
;                   of AXES.
;
;
FUNCTION Blob_Analyzer::FitEllipse, indexNumber, $
    AXES=axes, $
    CENTER=center, $
    NOSCALE=noscale, $
    NPOINTS=npoints, $
    ORIENTATION=orientation, $
    SEMIAXES=semiAxes

    Compile_Opt idl2

    ; Error handling.
    Catch, theError
    IF theError NE 0 THEN BEGIN
        Catch, /CANCEL
        void = cgErrorMsg()
        RETURN, -1
    ENDIF

     ; Argument checking.
    IF N_Elements(indexNumber) EQ 0 THEN indexNumber = 0
    IF indexNumber LT 0 THEN Message, 'Required index number must be positive.'
    IF indexNumber GE self.count THEN Message, 'Index number exceeds total number of blobs.'
    IF N_Elements(npoints) EQ 0 THEN npoints = 120
    IF Keyword_Set(noscale) THEN scale = [1.0, 1.0] ELSE scale = self.scale

    ; Get the indices.
    indices = self ->GetIndices(indexNumber, XSIZE=xsize, YSIZE=ysize)

    ellipsePts = Fit_Ellipse(indices, XSIZE=xsize, YSIZE=ysize, NPOINTS=npoints, $
        AXES=axes, SEMIAXES=semiAxes, ORIENTATION=orientation, SCALE=scale)

    RETURN, ellipsePts
END ; ------------------------------------------------------------------------------


;
; NAME:
;  Blob_Analyzer::GetIndices
;
; PURPOSE:
;
;   This function returns the indices of a blob to the caller.
;
; CALLING SEQUENCE:
;
;   indices = theBlobs -> GetIndices(indexNumber)
;
; RETURN VALUE:
;
;     indices:     A vector of blob indices that describes the blob in the original image.
;
; ARGUMENTS:
;
;    indexNumber:   The index number of the blob. Indices start at 0 and go to n-1.
;
; INPUT KEYWORDS:
;
;    None.
;
; OUTPUT KEYWORDRS:
;
;    COUNT:         The number of indices in the indices vector.
;
;    XSIZE:         The X size of the image from which the blob is taken.
;
;    YSIZE:         The Y size of the image from which the blob is taken.
;
;
FUNCTION Blob_Analyzer::GetIndices, indexNumber, COUNT=count, XSIZE=xsize, YSIZE=ysize

    Compile_Opt idl2

    ; Error handling.
    Catch, theError
    IF theError NE 0 THEN BEGIN
        Catch, /CANCEL
        void = cgErrorMsg()
        RETURN, -1
    ENDIF

    ; Argument checking.
    IF N_Elements(indexNumber) EQ 0 THEN indexNumber = 0
    IF indexNumber LT 0 THEN Message, 'Required index number must be positive.'
    IF indexNumber GE self.count THEN Message, 'Index number exceeds total number of blobs.'

    ; Return the size of the image, if the user asked for them.
    IF Arg_Present(xsize) THEN xsize = self.xsize
    IF Arg_Present(ysize) THEN ysize = self.ysize

    ; Get the indices:
    indices = (*self.ri)[(*self.ri)[indexNumber]:(*self.ri)[indexNumber+1]-1]
    IF Arg_Present(count) THEN count = N_Elements(indices)

    ; Return them.
    RETURN, indices

END ; ------------------------------------------------------------------------------


;
; NAME:
;  Blob_Analyzer::GetStats
;
; PURPOSE:
;
;   This function returns statistics of the blob in question.
;
; CALLING SEQUENCE:
;
;   statistics = theBlobs -> GetStats(indexNumber)
;
; RETURN VALUE:
;
;     statistics:   A structure of statistics that is defined like this.
;
;                     stats = {INDEX: indexNumber, $                  ; The index number of this blob.
;                              COUNT: N_Elements(indices), $          ; The number of indices in this blob.
;                              PERIMETER_PTS: boundaryPts, $          ; A [2,n] array of points that describe the blob perimeter.
;                              PIXEL_AREA: pixelArea, $               ; The area as calculated by pixels in the blob.
;                              PERIMETER_AREA: perimeterArea, $       ; The area as calculated by the blob perimeter. (Smaller than pixel area.)
;                              CENTER: centroid[0:1], $               ; The [x,y] array that identifies the centroid of the blob.
;                              PERIMETER_LENGTH: perimeter_length, $  ; The perimenter length (scaled unless the NOSCALE keyword is set).
;                              SCALE: scale, $                        ; The [xscale, yscale] array used in scaling.
;                              MINCOL: Min(xyindices[0,*]), $         ; The minimum column index in the blob.
;                              MAXCOL: Max(xyindices[0,*]), $         ; The maximum column index in the blob.
;                              MINROW: Min(xyindices[1,*]), $         ; The minimum row index in the blob.
;                              MAXROW: Max(xyindices[1,*])}           ; The maximum row index in the blob.
;
; ARGUMENTS:
;
;    indexNumber:   The index number of the blob. Indices start at 0 and go to n-1.
;
; INPUT KEYWORDS:
;
;    NOSCALE:       Set this keyword if you would prefer that lengths and positions NOT be
;                   scaled in the output of this function. If not scaled, results are in pixel
;                   or device coordinates. The default is to scale all output.
;
; OUTPUT KEYWORDRS:
;
;    INDICES:       A vector of blob indices that describes the blob in the original image.
;
;    XYINDICES:     A 2xN array of column/row indices that describes teh blob in the original image.
;
; NOTES:
;
;     The statistics are calculated by calling FIND_BOUNDARY from the Coyote Library. This program
;     uses a chain-code algorithm to calculate the perimeter and report the blob area using either of
;     two methods: a strict pixel area (counts the number of pixels in the blob times the scale factor
;     and takes the total), or it uses the perimeter to calculate an area using the method described in
;     Russ, The Image Processing Handbook, 2nd Edition, pp490+. The perimeter area is almost always less
;     than the pixel area.
;
FUNCTION Blob_Analyzer::GetStats, indexNumber, INDICES=indices, NOSCALE=noscale, XYINDICES=xyindices

    Compile_Opt idl2

    ; Error handling.
    Catch, theError
    IF theError NE 0 THEN BEGIN
        Catch, /CANCEL
        void = cgErrorMsg()
        RETURN, -1
    ENDIF

    ; Argument checking.
    IF N_Elements(indexNumber) EQ 0 THEN indexNumber = 0
    IF indexNumber LT 0 THEN Message, 'Required index number must be positive.'
    IF indexNumber GE self.count THEN Message, 'Index number exceeds total number of blobs.'
    IF Keyword_Set(noscale) THEN scale = [1.0D, 1.0D] ELSE scale = self.scale

    ; Get the indices.
    indices = self ->GetIndices(indexNumber, XSIZE=xsize, YSIZE=ysize)

    ; Calculate the indices in terms of col/row coordinates.
    xyindices = Array_Indices([xsize,ysize], indices, /DIMENSIONS)

    ; Calculate statistics.
    boundaryPts = Find_Boundary(indices, $
        SCALE=scale, $
        XSIZE=xsize, $
        YSIZE=ysize, $
        AREA=pixelArea, $
        PERIM_AREA=perimeterArea, $
        CENTER=centroid, $
        PERIMETER=perimeter_length)

    ; Report them.
    stats = {INDEX: indexNumber, $                   ; The index number of thisblob.
             COUNT: N_Elements(indices), $           ; The number of indices in this blob.
             PERIMETER_PTS: boundaryPts, $           ; A [2,n] array of points that describe the blob perimeter.
             PIXEL_AREA: pixelArea, $                ; The area as calculated by pixels in the blob.
             PERIMETER_AREA: perimeterArea, $        ; The area as calculated by the blob perimeter. (Smaller than pixel area.)
             CENTER: centroid[0:1], $                ; The [x,y] array that identifies the centroid of the blob.
             PERIMETER_LENGTH: perimeter_length, $   ; The perimenter length (scaled unless the NOSCALE keyword is set).
             SCALE: scale, $                         ; The [xscale, yscale] array used in scaling.
             MINCOL: Min(xyindices[0,*]), $          ; The minimum column index in the blob.
             MAXCOL: Max(xyindices[0,*]), $          ; The maximum column index in the blob.
             MINROW: Min(xyindices[1,*]), $          ; The minimum row index in the blob.
             MAXROW: Max(xyindices[1,*])}            ; The maximum row index in the blob.

     RETURN, stats

END ; ------------------------------------------------------------------------------


;
; NAME:
;  Blob_Analyzer::NumberOfBlobs
;
; PURPOSE:
;
;   This function returns the number of blobs in the input image.
;
; CALLING SEQUENCE:
;
;   numBlobs = theBlobs -> NumberOfBlobs()
;
; RETURN VALUE:
;
;     numBlobs:   The number of blobs in the input image.
;
; ARGUMENTS:
;
;    None.
;
; KEYWORDS:
;
;    None.
;
FUNCTION Blob_Analyzer::NumberOfBlobs
    RETURN, self.count
END ; ------------------------------------------------------------------------------


;
; NAME:
;  Blob_Analyzer::ReportStats
;
; PURPOSE:
;
;   This function reports statistics on blobs in the image.
;
; CALLING SEQUENCE:
;
;   theBlobs -> ReportStats
;
; ARGUMENTS:
;
;    None.
;
; INPUT KEYWORDS:
;
;    FILENAME:      The name of a file to contain the statistical output.
;
;    NOSCALE:       Set this keyword if you would prefer that lengths and positions NOT be
;                   scaled in the output of this function. If not scaled, results are in pixel
;                   or device coordinates. The default is to scale all output.
;
;    TOFILE:         Normally the report is sent to standard ouput. If this keyword is set,
;                    the output is sent to a file.
;
; OUTPUT KEYWORDRS:
;
;    None.
;
; EXAMPLE:
;
;    Here is an example of statistical output from the example program below.
;
;  INDEX   NUM_PIXELS   CENTER_X    CENTER_Y   PIXEL_AREA   PERIMETER_AREA   PERIMETER_LENGTH  MAJOR_AXIS   MINOR_AXIS    ANGLE
;     0        426        107.89       9.78       106.50          98.00            37.56          12.15        11.29       -8.05
;     1        580        151.97      10.22       145.00         134.25            49.21          17.49        11.77       -0.99
;     2        812        266.29      15.36       203.00         190.75            52.56          17.88        14.65     -107.48
;     3       1438        204.53      43.29       359.50         344.13            70.23          21.68        21.12      -76.47
;
PRO Blob_Analyzer::ReportStats, NOSCALE=noscale, TOFILE=tofile, FILENAME=filename

    Compile_Opt idl2

    ; Error handling.
    Catch, theError
    IF theError NE 0 THEN BEGIN
        Catch, /CANCEL
        void = cgErrorMsg()
        IF N_Elements(lun) NE 0 THEN Free_Lun, lun
        RETURN
    ENDIF

     ; Argument checking.
     tofile = Keyword_Set(tofile)
     IF tofile THEN BEGIN
        IF N_Elements(filename) EQ 0 THEN BEGIN
            filename = Dialog_Pickfile(Title='Select file for statistical ouput.')
            IF filename EQ "" THEN RETURN
        ENDIF

            ; Open the file for writing.
            OpenW, lun, filename, /GET_LUN, WIDTH=100
     ENDIF

     ; Get the stats and output them to the display or to a file.
     header = '  INDEX   NUM_PIXELS   CENTER_X    CENTER_Y   PIXEL_AREA   PERIMETER_AREA   PERIMETER_LENGTH  MAJOR_AXIS   MINOR_AXIS    ANGLE'

     ; Write the header.
     IF tofile THEN $
        PrintF, lun, header ELSE $
        Print, header

     ; Write the rest of the information.
     format = '(x,I5, 6x,I5, 4x,F10.2, 1x,F10.2, 3x,F10.2, 5x,F10.2, 7x,F10.2, 5x,F10.2, 3x,F10.2, 2x,F10.2)'
     FOR j=0, self.count-1 DO BEGIN
        stats = self -> GetStats(j, NOSCALE=noscale)
        void = self -> FitEllipse(j, AXES=axes, ORIENTATION=angle, NOSCALE=noscale)
         IF tofile THEN BEGIN
            PrintF, lun, StrTrim(j,2), stats.count, stats.center[0], stats.center[1], $
                stats.pixel_area, stats.perimeter_area,  $
                stats.perimeter_length, axes[0], axes[1], angle, FORMAT=format
         ENDIF ELSE BEGIN
            Print, StrTrim(j,2), stats.count, stats.center[0], stats.center[1], $
                stats.pixel_area, stats.perimeter_area,  $
                stats.perimeter_length, axes[0], axes[1], angle, FORMAT=format
         ENDELSE

     ENDFOR

     ; Close the file, if open.
     IF tofile THEN Free_Lun, lun

END ; ------------------------------------------------------------------------------


PRO Blob_Analyzer::CLEANUP
    Ptr_Free, self.ri
END ; ------------------------------------------------------------------------------


;
; NAME:
;  Blob_Analyzer::INIT
;
; PURPOSE:
;
;   This function initializes the Blob_Analyzer object.
;
; CALLING SEQUENCE:
;
;   theBlobs = Obj_New('Blob_Analyzer', image)
;
; ARGUMENTS:
;
;   image:           A two-dimensional image array. To make this program memory efficient,
;                    a copy of the image is *not* stored in the object. You will be responsible
;                    for image operations outside this program.
;
; KEYWORDS:
;
;   ALL_NEIGHBORS:    Set this keyword to look at all eight neighbors when searching
;                     for connectivity. The default is to look for four neighbors on
;                     each side of the starting pixel. Passed directly to LABEL_REGION.
;
;   MASK:             A two-dimensional array, the same size as image, that identifies the
;                     foreground and background pixels in the image. Applying the mask
;                     should result in a bi-level image of 0s and 1s, where 1 identifies the
;                     blobs you wish to analyze. If a mask is not provided, the mask is created
;                     like this:
;
;                     mask = image > 0
;
;   SCALE:            A one- or two-dimensional given the pixel scaling parameters. By default [1.0, 1.0].
;                     If passed a scalar, the scale parameter is applied to both the X and Y directions of
;                     each pixel. Statistical output is reported with scaling unless the NOSCALE keyword
;                     is set. Scaling also effects the data that is output from the various methods.
;
FUNCTION Blob_Analyzer::INIT, inputImage, $
    ALL_NEIGHBORS=all_neighbors, $
    MASK=mask, $
    SCALE=scale

    Compile_Opt idl2

    ; Error handling.
    Catch, theError
    IF theError NE 0 THEN BEGIN
        Catch, /CANCEL
        void = cgErrorMsg()
        RETURN, 0
    ENDIF

    ; Do you have an image. It is required.
    IF N_Elements(inputImage) EQ 0 THEN Message, 'An input image is a required argument.'

    ; Is the image 2D?
    ndims = Size(inputImage, /N_DIMENSIONS)
    IF ndims NE 2 THEN Message, 'The BLOB_ANALYZER only works with 2D images.'

    ; Check keywords.
    IF N_Elements(mask) EQ 0 THEN BEGIN
        image = inputImage GT 0
    ENDIF ELSE BEGIN

        ; Is the mask the same size as the image?
        IF Total(Size(inputImage, /DIMENSIONS) EQ Size(mask, /DIMENSIONS)) NE 2 THEN $
            Message, 'The image mask is not the same size as the input image.'

        ; Apply the mask to the image.
        image = inputImage * mask
    ENDELSE

    ; Check other keywords.
    IF N_Elements(scale) EQ 0 THEN scale = [1.0, 1.0]

    ; Get the size of the image.
    s = Size(image, /DIMENSIONS)
    xsize = s[0]
    ysize = s[1]
    type = Size(image, /TYPE)

    ; Label the regions.
    bigImage = Make_Array(s+2, TYPE=type)
    bigImage[1,1] = Temporary(image)
    labeledImage = Label_Region(bigImage, ALL_NEIGHBORS=Keyword_Set(all_neighbors))
    image = (Temporary(labeledImage))[1:xsize, 1:ysize]

    ; Get the indices of the label image by taking its histogram.
    h = Histogram(image, REVERSE_INDICES=ri, BINSIZE=1.0, MIN=1)
    count = N_Elements(h)

    ; Populate the object.
    self.count = count
    self.ri = Ptr_New(ri, /NO_COPY)
    self.xsize = xsize
    self.ysize = ysize
    self.scale = scale

    RETURN, 1

END ; ------------------------------------------------------------------------------


PRO Blob_Analyzer_Example_Program

  ; Get a file for analysis.
  file = FILEPATH('r_seeberi.jpg', SUBDIRECTORY = ['examples', 'data'])
  READ_JPEG, file, image, /GRAYSCALE

  ; Define a structuring kernal for an opening operation on the image.
  radius = 5
  kernel = SHIFT(DIST(2*radius+1), radius, radius) LE radius

  ; Apply the opening operator to the image.
  openImage = MORPH_OPEN(image, kernel, /GRAY)

  ; Threshold the image to prepare to remove background noise.
  ; Notice that changing this value can produce more or less
  ; artifacts. You will have to decide what you can live with
  ; in your analysis. It requires some judgement on your part.
  mask = openImage GE 150

  ; Do the analysis.
  blobs = Obj_New('blob_analyzer', openImage, MASK=mask)

  ; Display the original image
  s = Size(image, /DIMENSIONS)
  cgDisplay, 800, 800, Aspect=image, Title='Blob Analyzer Example'
  cgLoadCT, 0
  cgImage, image, Position=[0.0, 0.5, 0.5, 1.0]

  ; Display the opened image beside it.
  cgImage, openImage, Position=[0.5, 0.5, 1.0, 1.0], /NoErase

  ; Display the blobs we located with LABEL_REGION.
  count = blobs -> NumberOfBlobs()
  blank = BytArr(s[0], s[1])
  FOR j=0,count-1 DO BEGIN
    blobIndices = blobs -> GetIndices(j)
    blank[blobIndices] = image[blobIndices]
  ENDFOR
  cgImage, blank, Position=[0.0, 0.0, 0.5, 0.5], /NoErase


  ; Display the original image, with blob outlined and labelled.
  cgImage, image, Position=[0.5, 0.0, 1.0, 0.5], /NoErase, $
     /Save, XRange=[0,1], YRange=[0,1]

  FOR j=0,count-1 DO BEGIN

      ; Convert the perimeter points into normalized data coordinates.
      stats = blobs -> GetStats(j, /NoScale)
      xpts = Reform(stats.perimeter_pts[0,*]) / Float(s[0])
      ypts = Reform(stats.perimeter_pts[1,*]) / Float(s[1])
      xcenter = stats.center[0] / Float(s[0])
      ycenter = stats.center[1] / Float(s[1])
      cgPlots, xpts, ypts, COLOR='dodger blue', /DATA
      cgText, xcenter, ycenter, StrTrim(j,2), $
        COLOR='red', ALIGNMENT=0.5, CHARSIZE=0.75, /DATA
  ENDFOR

  ; Add labels for captions.
  cgText, 0.05, 0.95, 'A', FONT=0, ALIGNMENT=0.5, COLOR='Yellow', /NORMAL
  cgText, 0.55, 0.95, 'B', FONT=0, ALIGNMENT=0.5, COLOR='Yellow', /NORMAL
  cgText, 0.05, 0.45, 'C', FONT=0, ALIGNMENT=0.5, COLOR='Yellow', /NORMAL
  cgText, 0.55, 0.45, 'D', FONT=0, ALIGNMENT=0.5, COLOR='Yellow', /NORMAL

  ; Report stats.
  blobs -> ReportStats

  ; Destroy the object.
  Obj_Destroy, blobs

END ; ------------------------------------------------------------------------------


PRO Blob_Analyzer__DEFINE, class

    class = { BLOB_ANALYZER, $
              count: 0L, $        ; The total number of blobs being analyzed.
              ri: Ptr_New(), $    ; The reverse indices from HISTOGRAM. Used to get the blob indices.
              xsize: 0L, $        ; The X size of the image the indices originate in.
              ysize: 0L, $        ; The Y size of the image the indices originate in.
              scale: FltArr(2) $  ; The X and Y pixel scale for the indices. Set to [1,1] by default.
           }

END ; ------------------------------------------------------------------------------