File: cghistogram.pro

package info (click to toggle)
coyote 2019.01.29-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 6,316 kB
  • sloc: python: 184; makefile: 14; sh: 13
file content (299 lines) | stat: -rw-r--r-- 14,283 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
; docformat = 'rst'
;
; NAME:
;   cgHistogram
;
; PURPOSE:
;   This program is used as a wrapper to the Histogram command in IDL. It removes the 
;   very real possibility that the Histogram command will return incorrect values silently.
;
;******************************************************************************************;
;                                                                                          ;
;  Copyright (c) 2013, by Fanning Software Consulting, Inc. All rights reserved.           ;
;                                                                                          ;
;  Redistribution and use in source and binary forms, with or without                      ;
;  modification, are permitted provided that the following conditions are met:             ;
;                                                                                          ;
;      * Redistributions of source code must retain the above copyright                    ;
;        notice, this list of conditions and the following disclaimer.                     ;
;      * Redistributions in binary form must reproduce the above copyright                 ;
;        notice, this list of conditions and the following disclaimer in the               ;
;        documentation and/or other materials provided with the distribution.              ;
;      * Neither the name of Fanning Software Consulting, Inc. nor the names of its        ;
;        contributors may be used to endorse or promote products derived from this         ;
;        software without specific prior written permission.                               ;
;                                                                                          ;
;  THIS SOFTWARE IS PROVIDED BY FANNING SOFTWARE CONSULTING, INC. ''AS IS'' AND ANY        ;
;  EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES    ;
;  OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT     ;
;  SHALL FANNING SOFTWARE CONSULTING, INC. BE LIABLE FOR ANY DIRECT, INDIRECT,             ;
;  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED    ;
;  TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;         ;
;  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND             ;
;  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT              ;
;  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS           ;
;  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.                            ;
;******************************************************************************************;
;
;+
; This program is used as a wrapper to the Histogram command in IDL. It works around a bug
; in the Histogram command when byte data is binned in versions prior to IDL 8.2, and it takes
; care to match the data type of the `BinSize` keyword to the data type of the data being binned.
; If this matching is not done, Histogram silently returns incorrect results. I have added the ability to
; smooth the data (with the `Smooth` keyword) and to return the relative frequency of the histogram,
; rather than the histogram counts (with the `Frequency` keyword). The relative frequency is a 
; number between 0 and 1. I have also added the ability to specify "missing" data that should not be
; binned.
;
; :Categories:
;    General
;    
; :Params:
;    data: in, required, 
;       The data from which the histogram is created.
;       
; :Keywords:
;    binsize: in, optional
;       The binsize of the histogram. By default, Scott's Choice of bin size for histograms is used::
;                         
;           binsize = (3.5 * StdDev(data)) / N_Elements(data)^(0.3333)
;                            
;       If BINSIZE in not defined, and NBINS is defined, the BINSIZE is calcuated as::
;                         
;            binsize = (Max(dataToHistogram) - Min(dataToHistogram)) / (NBINS -1)
;                             
;       While it is pointed out in the HISTOGRAM documentation, it is extremely
;       important that the BINSIZE be of the same data type as the data you are going to
;       calculate the histogram of. If it is not, VERY strange things can happen, but the
;       worst is that HISTOGRAM silently returns incorrect results. I try hard to avoid this
;       result in this program.
;    frequency: in, optional, type=boolean, default=0
;       If this keyword is set, the relative frequency is returned, rather than the 
;       histogram counts. Relative frequency is a number between 0 and 1. The total of
;       all the relative frequencies should equal 1.0.
;    input: in, optional
;       Set this keyword to a named variable that contains an array to be added to the 
;       output of cgHistogram. The density function of `data` is added to the existing 
;       contents of `Input` and returned as the result. The array is converted to 
;       longword type if necessary and must have at least as many elements as are 
;       required to form the histogram. Multiple histograms can be efficiently 
;       accumulated by specifying partial sums via this keyword.
;    l64: in, optional, type=boolean, default=0                       
;       If set, the return value of HISTOGRAM are 64-bit integers, rather than
;       the default 32-bit integers. Set by default if 64-bit integers are passed in.
;    locations: out, optional
;       Starting locations of each bin. `Locations` has the same number of elements as the result, 
;       and has the same data type as the input data array.
;    max: in, optional
;       The maximum value to use in calculating input histogram. 
;    min: in, optional
;       The minimum value to use in calculating input histogram. 
;    missing: in, optional
;       The value that should be represented as "missing" and not used in the histogram.
;       Be aware that if the input data is not of type "float" or "double" that the input
;       data will be converted to floating point prior to calculating the histogram.
;    nan: in, optional, type=boolean, default=0   
;       If set, ignore NAN values in calculating and plotting histogram. Set by default if the
;       `Missing` keyword is used.
;    nbins: in, optional, type=integer
;       The number of output bins in the histogram. The meaning is slightly different from
;       the meaning in the HISTOGRAM command. Used only to calculate BINSIZE when BINSIZE is
;       not specified. In this case, binsize = rangeofData/(nbins-1). When the number of bins
;       is low, the results can be non-intuitive. For this reason, I would discourage the use
;       of `NBins` in favor of the `BinSize` keyword.
;    omax: out, optional
;       The maximum output value used to construct the histogram. (See HISTOGRAM documentation.)
;    omin: out, optional
;       The minimum output value used to construct the histogram. (See HISTOGRAM documentation.)
;    reverse_indices: out, optional
;       The list of reverse indices returned from the HISTOGRAM command. (See HISTOGRAM documentation.)
;    smooth: in, optional, type=integer, default=0
;       Set this keyword to an odd positive integer to smooth the histogram output before plotting.
;       The integer will set the width of a smoothing box to be applied to the histogram data with
;       the Smooth function. This keyword is ignored if the `Frequency` keyword is set.
;          
; :Examples:
;    Create a normal distribution of random numbers and take the histogram::
;    
;       numbers = RandomU(-3L, 1000, /Normal)
;       histResults = cgHistogram(numbers, Binsize=0.25)
;       cgPlot, histResults
;       
;    Additional examples of histogram plots can be found here::
;    
;        http://www.idlcoyote.com/gallery/index.html
;        
; :Author:
;       FANNING SOFTWARE CONSULTING::
;           David W. Fanning 
;           1645 Sheely Drive
;           Fort Collins, CO 80526 USA
;           Phone: 970-221-0438
;           E-mail: david@idlcoyote.com
;           Coyote's Guide to IDL Programming: http://www.idlcoyote.com
;
; :History:
;    Change History::
;       Written by:  David W. Fanning, 7 March 2013.
;        
; :Copyright:
;     Copyright (c) 2013, Fanning Software Consulting, Inc.
;-
FUNCTION cgHistogram, $       ; The program name.
   data, $                    ; The data to draw a histogram of.
   BINSIZE=binsize, $         ; The histogram bin size.
   FREQUENCY=frequency, $     ; Plot relative frequency, rather than density.
   INPUT=input, $             ; Add this array to output of cgHistogram.
   L64=l64, $                 ; Input for HISTOGRAM.
   LOCATIONS=locations, $     ; The starting locations of each bin.
   MAX=max, $                 ; The maximum value to HISTOGRAM.
   MIN=min, $                 ; The minimum value to HISTOGRAM.
   MISSING=missing, $         ; The value that indicates "missing" data to be excluded from the histgram.
   NAN=nan, $                 ; Check for NAN.
   NBINS=nbins, $             ; The number of bins to display.
   OMAX=omax, $               ; The maximum value used to construct the histogram.
   OMIN=omin, $               ; The minimum value used to construct the histogram.
   REVERSE_INDICES=ri, $      ; The vector that identifies indices in each bin.
   SMOOTH=smooth              ; Run a smoothing filter of this width over the histogram data before returning.
    
   Compile_Opt idl2

   ; Catch any error in the cgHistogram program.
   Catch, theError
   IF theError NE 0 THEN BEGIN
      Catch, /Cancel
      ok = cgErrorMsg()
      IF N_Elements(nancount) EQ 0 THEN BEGIN
         IF N_Elements(_data) NE 0 THEN data = Temporary(_data)
      ENDIF ELSE BEGIN
         IF nancount EQ 0 THEN BEGIN
             IF N_Elements(_data) NE 0 THEN data = Temporary(_data)
         ENDIF
      ENDELSE
      RETURN, data
   ENDIF

   ; Check for parameters.
   IF N_Elements(data) EQ 0 THEN Message, 'Must pass data to cgHistogram.'
   frequency = Keyword_Set(frequency)
   l64 = Keyword_Set(l64)
   IF N_Elements(smooth) NE 0 THEN BEGIN
     IF (smooth MOD 2) NE 0 THEN smooth = smooth + 1
   ENDIF
   
   ; What kind of data are we doing a HISTOGRAM on?
   dataType = Size(data, /TYPE)
   
   ; If this is 64-bit integers, set the L64 flag.
   IF dataType GE 14 THEN L64 =1 
      
   ; Check the data for NANs and alert the user if the NAN keyword is not set.
   IF dataType EQ 4 OR datatype EQ 5 THEN BEGIN
        goodIndices = Where(Finite(data), count, NCOMPLEMENT=nancount, COMPLEMENT=nanIndices)
        IF nancount GT 0 THEN BEGIN
           IF ~Keyword_Set(nan) THEN BEGIN
               Message, 'NANs found in the data. NAN keyword is set to 1.', /INFORMATIONAL
               nan = 1
           ENDIF
        ENDIF 
   ENDIF 
   
   ; The only sensible way to proceed is to make a copy of the data. Otherwise, I'll have
   ; a devil of a time putting it back together again at the end. There is a bug in
   ; HISTOGRAM when using BYTE data, so convert that here
   IF N_Elements(_data) EQ 0 THEN BEGIN
      IF Size(data, /TNAME) EQ 'BYTE' THEN BEGIN
          _data = Fix(data) 
       ENDIF ELSE BEGIN
          _data = data
       ENDELSE
   ENDIF
   
   ; If you have any "missing" data, then the data needs to be converted to float
   ; and the missing data set to F_NAN.
   IF N_Elements(missing) NE 0 THEN BEGIN
      missingIndices = Where(_data EQ missing, missingCount)
      IF missingCount GT 0 THEN BEGIN
         CASE datatype OF
            4: _data[missingIndices] = !Values.F_NAN
            5: _data[missingIndices] = !Values.D_NAN
            ELSE: BEGIN
                _data = Float(_data)
                dataType = 4
                _data[missingIndices] = !Values.F_NAN
                END
         ENDCASE
         nan = 1
      ENDIF ELSE BEGIN
        IF missingCount EQ N_Elements(_data) THEN $
            Message, 'All values are "missing"!'
      ENDELSE
   ENDIF
   
   ; Define minimum and maximum input values, if not defined otherwise.
   IF N_Elements(min) EQ 0 THEN min = Min(_data, NAN=nan)
   IF N_Elements(max) EQ 0 THEN max = Max(_data, NAN=nan)

   ; Check for histogram keywords.
   IF N_Elements(binsize) EQ 0 THEN BEGIN
      range = Max(_data < max, /NAN) - Min(_data > min, /NAN)
      IF N_Elements(nbins) EQ 0 THEN BEGIN  ; Scott's Choice
         binsize = (3.5D * StdDev(min > _data < max, /NAN))/N_Elements(_data)^(1./3.0D) 
         IF (dataType LE 3) OR (dataType GE 12) THEN binsize = Round(binsize) > 1
         binsize = Convert_To_Type(binsize, dataType)
      ENDIF ELSE BEGIN
         binsize = range / (nbins -1)
         IF dataType LE 3 THEN binsize = Round(binsize) > 1
         binsize = Convert_To_Type(binsize, dataType)
      ENDELSE
   ENDIF ELSE BEGIN
       IF Size(binsize, /TYPE) NE dataType THEN BEGIN
          binsize_orig = binsize
          IF dataType LE 3 THEN binsize = Round(binsize) > 1
          binsize = Convert_To_Type(binsize, dataType)
       ENDIF
   ENDELSE

   ; Calculate the histogram. Can't use the INPUT keyword unless you actuall
   ; have something in it.
   IF N_Elements(input) EQ 0 THEN BEGIN
        histdata = Histogram(_data, $
          BINSIZE=binsize, $
          MAX=max, $
          MIN=min, $
          NAN=nan, $
          LOCATIONS=locations, $
          OMAX=omax, $
          OMIN=omin, $
          REVERSE_INDICES=ri)
   ENDIF ELSE BEGIN
        histdata = Histogram(_data, $
          BINSIZE=binsize, $
          INPUT=input, $
          MAX=max, $
          MIN=min, $
          NAN=nan, $
          LOCATIONS=locations, $
          OMAX=omax, $
          OMIN=omin, $
          REVERSE_INDICES=ri)
   ENDELSE
   ; Are you returning the frequency rather than the count? You can't smooth the frequency data.
   IF frequency THEN BEGIN
    
       histdata = Float(histdata)/N_Elements(_data)
       
   ENDIF ELSE BEGIN
   
      ; Do you need to smooth the data?
       IF N_Elements(smooth) NE 0 THEN histdata = Smooth(histdata, smooth)
       
   ENDELSE
   
   if (n_elements(binsize_orig) ne 0) then $
     binsize = temporary(binsize_orig)

   ; Return the data.
   RETURN, histdata
   
END