File: newton-x.md

package info (click to toggle)
cp2k 2025.1-1.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 366,832 kB
  • sloc: fortran: 955,049; f90: 21,676; ansic: 18,058; python: 13,378; sh: 12,179; xml: 2,173; makefile: 964; pascal: 845; perl: 492; lisp: 272; cpp: 137; csh: 16
file content (394 lines) | stat: -rw-r--r-- 14,673 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# Surface Hopping with NEWTON-X

This is a short tutorial on how to use the CP2K-NEWTONX interface to a) generate initial conditions
to compute photoabsorption spectra and b) to run non-adiabatic dynamics simulations using orbital
derivative couplings. A more comprehensive tutorial on all NEWTONX features, including a
documentation of the required specifications for the CP2K interface, can be found on the NEWTONX
homepage, <https://newtonx.org/documentation-tutorials/>.

## Brief theory recap

The interface enables to use electronic-structure data from CP2K and combine it with the surface
hopping module of NEWTONX. Excitation energies $\Omega^M$ and excited-state eigenvectors
$\mathbf{X}^M$ to describe the excited state $M$ are provided by CP2K, relying on the Tamm-Dancoff
eigenvalue problem,

$$
\mathbf{A} \mathbf{X}^M &= \Omega^M \mathbf{S} \mathbf{X}^M \, , \\
\sum_{\kappa k} [ F_{\mu \kappa \sigma} \delta_{ik} - F_{ik \sigma} S_{\mu \kappa} ] X^M_{\kappa k \sigma} + \sum_{\lambda} K_{\mu \lambda \sigma} [\mathbf{D}^{{\rm{\tiny{X}}}M}] C_{\lambda i \sigma} &=  \sum_{\kappa} \Omega^M S_{\mu \kappa} X^M_{\kappa i \sigma} \, ,
$$

with $\mathbf{S}$ representing the conventional atomic-orbital overlap matrix, $\mathbf{F}$ the
Kohn-Sham matrix, $\mathbf{K}$ the kernel comprising -- depending on the chosen functional --
Coulomb, exchange and exchange-correlation contributions, and $\mathbf{C}$ the molecular orbital
coefficients. $\mu, \nu, \dots$ denote atomic orbitals, $i, j, \dots$ occupied molecular orbitals.
The corresponding excited-state gradient is obtained setting up a variational Lagrangian and taking
the derivative with respect to the nuclear coordinates $\mathbf{R}$ (see also
[](../properties/optical/tddft)).

By performing a TDDFPT computation, excitation energies $\Omega^M (\mathbf{R}(t))$, excited-state
eigenvectors $\mathbf{X}^M (\mathbf{R}(t))$ and corresponding excited-state gradients
$\nabla \Omega^M (\mathbf{R}(t))$ are provided by CP2K. On the so-defined potential energy surfaces,
the nuclei are propagated classically relying on the surface hopping code of NEWTONX,

$$
\mathbf{R}(t + \Delta t) &= \mathbf{R} (t) + \mathbf{v} (t) \Delta t + \frac{1}{2} \mathbf{a}(t) \Delta t^2  \, ,\\
\mathbf{v} (t + \Delta t) &= \mathbf{v} (t) + \frac{1}{2} (\mathbf{a} (t) + \mathbf{a} (t+ \Delta t) ) \Delta t  \, , \\
\mathbf{a} (t) &= - \frac{1}{m} \nabla \Omega^M (\mathbf{R}(t)) \, .
$$

The coefficients $c^M (t)$ of the total wave function $\Psi (\mathbf{R}(t))$ over all excited states
$M$ are obtained implying hopping probabilities $P_{M\rightarrow N}$ of Tully's surface hopping,

$$
\Psi (\mathbf{R}(t)) &= \sum_{M} c^{M} (t) \Psi^M (\mathbf{R}(t)) \\
i \frac{{\rm{d}} c^M (t)}{{\rm{d}}t} &= \sum_N c^N (t) \left ( \delta_{MN} E_N (\mathbf{R}(t)) - i \sigma_{MN} (t) \right ) \, , \\
P_{M \rightarrow N} &= {\rm{max}} \left [ 0, \frac{-2 \Delta t}{| c^M|^2} {\rm{Re}} (c^M c^{N \ast}) \sigma_{MN} \right ] \, .
$$

The therefore required non-adiabatic time derivative couplings $\sigma_{MN}$ can be obtained relying
on semi-empirical models (Baeck-An; please cite
[Barbatti et al., Open Research Europe 1, 49 (2021)](https://doi.org/10.12688/openreseurope.13624.1).)
or as numerical time derivative couplings (orbital time derivative (OD); please cite
[Ryabinkin et al., J. Phys. Chem. Lett. 6, 4200 (2015)](https://doi.org/10.1021/acs.jpclett.5b02062);
[Barbatti et al., Molecules 21, 1603 (2016)](https://doi.org/10.3390/molecules21111603).), with the
corresponding molecular orbital overlap matrix $\mathbf{S}^{{\rm{\tiny{t-\Delta t,t}}}}$ being
provided by CP2K,

$$
\sigma_{MN}^{{\rm{\tiny{OD}}}} &= \sum_{ia} X_{ia}^{M} \frac{\partial }{\partial t} X_{ia}^N + \sum_{iab} X_{ia}^M X_{ib}^N  S_{ab}^{{\rm{\tiny{t-\Delta t,t}}}} - \sum_{ija} P_{ij} X_{ia}^M X_{ja}^N
 S_{ji}^{{\rm{\tiny{t-\Delta t,t}}}} \\
S_{pq}^{{\rm{\tiny{t - \Delta t , t}}}} &= \frac{\langle \phi_i (\mathbf{R}(t- \Delta t )) | \phi_j (\mathbf{R} (t)) \rangle}{\Delta t} \, .
$$

$a,b, \dots$ denote virtual molecular orbitals.

## General input setup

The input sections for TDDFPT energy and gradient computations are described in
[](../properties/optical/tddft). To furthermore provide the required CP2K output, subsequently read
in by NEWTONX, the following print statements have to be added to the CP2K input files:

- [FORCE_EVAL.PRINT.FORCES](#CP2K_INPUT.FORCE_EVAL.PRINT.FORCES): prints the excited-state forces
- [TDDFPT.PRINT.NAMD_PRINT](#CP2K_INPUT.FORCE_EVAL.PROPERTIES.TDDFPT.PRINT.NAMD_PRINT) with keyword
  option [PRINT_PHASES](#CP2K_INPUT.FORCE_EVAL.PROPERTIES.TDDFPT.PRINT.NAMD_PRINT.PRINT_PHASES):
  prints the excited-state eigenvectors in MO format as well as the corresponding phases.
- [VIBRATIONAL_ANALYSIS.PRINT.NAMD_PRINT](#CP2K_INPUT.VIBRATIONAL_ANALYSIS.PRINT.NAMD_PRINT): prints
  normal modes to generate initial conditions It should furthermore be noted that cartesian
  coordinates have to be provided in terms of the external file `coord.cp2k` and that the number of
  atoms has to be specified in the CP2K input file in the [SUBSYS](#CP2K_INPUT.FORCE_EVAL.SUBSYS)
  section.

## A) Initial conditions and photoabsorption spectra

The following tutorial to obtain photoabsorption spectra is based on section 2 of
<https://vdv.dcf.mybluehost.me/nx/wp-content/uploads/2020/02/tutorial-2_2.pdf>. For the
electronic-structure calculation with CP2K, a `cp2k.inp` and `cp2k.par` file as well as a coordinate
file named `coord.cp2k` has to be provided in a subdirectory called `JOB_AD`. Furthermore, a
vibrational analysis computation has to be performed to provide cartesian normal modes, with the
input file including the corresponding `NAMD print` section.

Examplary input files for computing the absorption spectrum as well as for performing a vibrational
analysis for a single water molecule with CP2K are given below:

```none
&GLOBAL
  PROJECT excited_states_for_h2o 
  RUN_TYPE ENERGY
  PREFERRED_DIAG_LIBRARY SL
  PRINT_LEVEL medium
&END GLOBAL
&FORCE_EVAL
  &PRINT                      # print statement for ground-state or excited-state forces
    &FORCES
    &END FORCES
  &END PRINT
  METHOD Quickstep
  &PROPERTIES
    &TDDFPT                    # TDDFPT input section to compute 10 excited states
      &DIPOLE_MOMENTS
        DIPOLE_FORM LENGTH
      &END DIPOLE_MOMENTS
      KERNEL FULL
      NSTATES 10
      MAX_ITER   100
      MAX_KV 20
      CONVERGENCE [eV] 1.0e-5
      RKS_TRIPLETS F
      &PRINT                     # NAMD print section to print excited-state eigenvectors
        &NAMD_PRINT
          PRINT_VIRTUALS T
          PRINT_PHASES T
        &END NAMD_PRINT
      &END PRINT
    &END TDDFPT
  &END PROPERTIES
  &DFT
    &QS
      METHOD GAPW
      EPS_DEFAULT 1.0E-17
    &END QS
    &SCF
      SCF_GUESS restart
      &OT
        PRECONDITIONER FULL_ALL
        MINIMIZER DIIS
      &END OT
      &OUTER_SCF
        MAX_SCF 900
        EPS_SCF 1.0E-7
      &END OUTER_SCF
      MAX_SCF 10
      EPS_SCF 1.0E-7
    &END SCF
    POTENTIAL_FILE_NAME POTENTIAL
    BASIS_SET_FILE_NAME EMSL_BASIS_SETS
    &MGRID
      CUTOFF 1000
      REL_CUTOFF 100
      NGRIDS 5
    &END MGRID
    &POISSON
      PERIODIC NONE
      PSOLVER MT
    &END
    &XC
      &XC_FUNCTIONAL PBE
      &END XC_FUNCTIONAL
    &END XC
  &END DFT
  &SUBSYS
    &CELL
      ABC 8.0 8.0 8.0
      PERIODIC NONE
    &END CELL
                                    # Coordinates are provided externally for the interface
    &COORD
      @include coord.cp2k
    &END COORD
    &TOPOLOGY
      &CENTER_COORDINATES T
      &END
      NATOMS 3                       # specifying number of atoms for NEWTONX
      CONNECTIVITY OFF
    &END TOPOLOGY
    &KIND H
      BASIS_SET 6-311Gxx
      POTENTIAL ALL
    &END KIND
    &KIND O
      BASIS_SET 6-311Gxx
      POTENTIAL ALL
    &END KIND
  &END SUBSYS
&END FORCE_EVAL
```

```none
&GLOBAL
  PROJECT normal_modes_for_h2o
  RUN_TYPE VIBRATIONAL_ANALYSIS      #computing normal modes to generate initial conditions
  PREFERRED_DIAG_LIBRARY SL
  PRINT_LEVEL medium
&END GLOBAL
&FORCE_EVAL
  &PRINT
    &FORCES
    &END FORCES
  &END PRINT
  METHOD Quickstep
  &DFT
    &QS
      METHOD GAPW                   # GAPW enables comparison with all-electron molecular program codes like Turbomole
      EPS_DEFAULT 1.0E-17
    &END QS
    &SCF
      SCF_GUESS restart
      &OT
        PRECONDITIONER FULL_ALL
        MINIMIZER DIIS
      &END OT
      &OUTER_SCF
        MAX_SCF 900
        EPS_SCF 1.0E-7
      &END OUTER_SCF
      MAX_SCF 10
      EPS_SCF 1.0E-7
    &END SCF
    POTENTIAL_FILE_NAME POTENTIAL
    BASIS_SET_FILE_NAME EMSL_BASIS_SETS
    &MGRID
      CUTOFF 1000
      REL_CUTOFF 100
      NGRIDS 5
    &END MGRID
    &POISSON
      PERIODIC NONE
      PSOLVER MT
    &END
    &XC
      &XC_FUNCTIONAL PBE
      &END XC_FUNCTIONAL
    &END XC
  &END DFT
  &SUBSYS
    &CELL
      ABC 8.0 8.0 8.0
      PERIODIC NONE
    &END CELL
                                    # coordinates must be provided as external file for NEWTONX
    &COORD
      @include coord.cp2k
    &END COORD
    &TOPOLOGY
      &CENTER_COORDINATES T
      &END
      NATOMS 3
      CONNECTIVITY OFF
    &END TOPOLOGY
    &KIND H
      BASIS_SET 6-311Gxx
      POTENTIAL ALL
    &END KIND
    &KIND O
      BASIS_SET 6-311Gxx
      POTENTIAL ALL
    &END KIND
  &END SUBSYS
&END FORCE_EVAL
&VIBRATIONAL_ANALYSIS
  &PRINT
    &NAMD_PRINT                      # keyword to enable printing of cartesian normal modes
    &END NAMD_PRINT
  &END PRINT
  DX 0.001
&END VIBRATIONAL_ANALYSIS
```

The input file `cp2k.par` includes all specifications regarding the executable and parallelization
setup.

```none
 parallel = 16
 exec = cp2k.psmp
```

Furthermore, a `initqp_input` file has to be generated for NEWTONX following the instructions given
in the NEWTONX tutorial. Specifications for CP2K in the `initqp_input` file are the following:

- The file comprising the normal modes of the CP2K frequency computation -- for the above input
  provided as `normal_modes_for_h2o-VIBRATIONS-1.eig`-- has to be specified as
  `file_nmodes = normal_modes_for_h2o-VIBRATIONS-1.eig`.
- The electronic structure program has to be specified as CP2K by defining `iprog = 10`.

```none
&dat
 nact = 2
 iprog = 10
 numat = 3
 npoints = 500
 file_geom = geom
 file_nmodes = normal_modes_for_h2o-VIBRATIONS-1.eig
 anh_f = 1
 rescale = n
 temp = 0
 ics_flg = n
 chk_e = 1
 nis = 1
 nfs = 11
 kvert = 1
 de = 100
 prog = 14
 iseed = 0
 lvprt = 1
/
```

After providing the excited-state CP2K computation based on input file `h2o_cp2k.inp` in the
subdirectory `JOB_AD`, the normal modes `normal_modes_for_h2o-VIBRATIONS-1.eig` of the frequency
computation and the `initqp_input` file for NEWTONX, the script initcond.pl of NEWTONX can be
executed to generate initial conditions. The resulting initcond-output file of NEWTONX, it is first
stated that the read-in cartesian normal modes are transferred to mass-weighted normal modes.

```none
Cartesian normal modes (1/sqrt(amu))

        0.00        0.00        0.00        0.00        0.00        0.00     1523.92     3851.12

      0.0000     -0.0492      0.0001     -0.1268      0.5632     -0.0083      0.0000     -0.0000
     -0.0886      0.0000     -0.0000     -0.0169      0.0047      0.5777      0.0000     -0.0000
     -0.0000     -0.0000     -0.0000      0.5630      0.1269      0.0155     -0.0715      0.0487
      0.0001      0.3905     -0.0004     -0.1267      0.5632     -0.0082     -0.4184     -0.5910
      0.7043      0.0008      0.7071     -0.0162      0.0040      0.5768      0.0000      0.0000
     -0.0001     -0.5885      0.0007      0.5630      0.1270      0.0155      0.5678     -0.3867
      0.0000      0.3905     -0.0004     -0.1267      0.5632     -0.0083      0.4184      0.5910
      0.7043     -0.0009     -0.7071     -0.0170      0.0051      0.5768      0.0000      0.0000
     -0.0000      0.5885     -0.0007      0.5630      0.1269      0.0154      0.5678     -0.3867

     3986.44

      0.0712
     -0.0000
      0.0000
     -0.5650
      0.0000
     -0.4222
     -0.5650
      0.0000
      0.4222

Mass weighted normal modes
Frequencies will be multiplied by ANH_F =    1.00000

        0.00        0.00        0.00        0.00        0.00        0.00     1523.92     3851.12

      0.0001     -0.1967      0.0006     -0.5069      2.2526     -0.0330      0.0000     -0.0000
     -0.3543      0.0000     -0.0000     -0.0677      0.0186      2.3104      0.0000     -0.0000
     -0.0001     -0.0000     -0.0002      2.2517      0.5077      0.0619     -0.2861      0.1949
      0.0001      0.3920     -0.0004     -0.1272      0.5654     -0.0083     -0.4200     -0.5933
      0.7071      0.0008      0.7099     -0.0162      0.0040      0.5791      0.0000      0.0000
     -0.0001     -0.5908      0.0007      0.5652      0.1275      0.0155      0.5700     -0.3882
      0.0000      0.3921     -0.0004     -0.1272      0.5654     -0.0083      0.4200      0.5933
      0.7071     -0.0009     -0.7099     -0.0171      0.0051      0.5790      0.0000      0.0000
     -0.0000      0.5908     -0.0007      0.5652      0.1274      0.0155      0.5700     -0.3882

     3986.44

      0.2847
     -0.0000
      0.0000
     -0.5672
      0.0000
     -0.4238
     -0.5672
      0.0000
      0.4238
```

The thereon based initial conditions are summarized in external output files for each state, dubbed
"final_output_XXX", comprising information on the various geometries and velocities as examplarily
given below:

```none
 Initial condition =     1
 Geometry in COLUMBUS and NX input format:
 o     8.0    5.00630777    5.00000001    4.46399957   15.99491464
 h     1.0    6.37684065    5.00000128    5.50815661    1.00782504
 h     1.0    3.52303474    5.00000149    5.58297278    1.00782504
 Velocity in NX input format:
   -0.000089112    0.000000000   -0.000020915
    0.000417197    0.000000002    0.000694479
    0.000997296    0.000000013   -0.000362483
 Epot of initial state (eV):    0.0865  Epot of final state (eV):     19.0799
 Vertical excitation (eV):     18.9935  Is Ev in the required range? YES
 Ekin of initial state (eV):    0.0479  Etot of initial state (eV):    0.1343
 Oscillator strength:           0.1221
 State:                         10
```

Based on the initial conditions, the broadened photoabsorption spectrum can be computed with the
nxinp script. As outlined in section 2.7 of the cited NEWTONX tutorial, the so-obtained output file
`cross-section.dat` comprises the data points of the computed photoabsorption spectrum as visualized
below:

## B) Non-adiabatic dynamics using orbital determinant derivatives