1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
# Surface Hopping with NEWTON-X
This is a short tutorial on how to use the CP2K-NEWTONX interface to a) generate initial conditions
to compute photoabsorption spectra and b) to run non-adiabatic dynamics simulations using orbital
derivative couplings. A more comprehensive tutorial on all NEWTONX features, including a
documentation of the required specifications for the CP2K interface, can be found on the NEWTONX
homepage, <https://newtonx.org/documentation-tutorials/>.
## Brief theory recap
The interface enables to use electronic-structure data from CP2K and combine it with the surface
hopping module of NEWTONX. Excitation energies $\Omega^M$ and excited-state eigenvectors
$\mathbf{X}^M$ to describe the excited state $M$ are provided by CP2K, relying on the Tamm-Dancoff
eigenvalue problem,
$$
\mathbf{A} \mathbf{X}^M &= \Omega^M \mathbf{S} \mathbf{X}^M \, , \\
\sum_{\kappa k} [ F_{\mu \kappa \sigma} \delta_{ik} - F_{ik \sigma} S_{\mu \kappa} ] X^M_{\kappa k \sigma} + \sum_{\lambda} K_{\mu \lambda \sigma} [\mathbf{D}^{{\rm{\tiny{X}}}M}] C_{\lambda i \sigma} &= \sum_{\kappa} \Omega^M S_{\mu \kappa} X^M_{\kappa i \sigma} \, ,
$$
with $\mathbf{S}$ representing the conventional atomic-orbital overlap matrix, $\mathbf{F}$ the
Kohn-Sham matrix, $\mathbf{K}$ the kernel comprising -- depending on the chosen functional --
Coulomb, exchange and exchange-correlation contributions, and $\mathbf{C}$ the molecular orbital
coefficients. $\mu, \nu, \dots$ denote atomic orbitals, $i, j, \dots$ occupied molecular orbitals.
The corresponding excited-state gradient is obtained setting up a variational Lagrangian and taking
the derivative with respect to the nuclear coordinates $\mathbf{R}$ (see also
[](../properties/optical/tddft)).
By performing a TDDFPT computation, excitation energies $\Omega^M (\mathbf{R}(t))$, excited-state
eigenvectors $\mathbf{X}^M (\mathbf{R}(t))$ and corresponding excited-state gradients
$\nabla \Omega^M (\mathbf{R}(t))$ are provided by CP2K. On the so-defined potential energy surfaces,
the nuclei are propagated classically relying on the surface hopping code of NEWTONX,
$$
\mathbf{R}(t + \Delta t) &= \mathbf{R} (t) + \mathbf{v} (t) \Delta t + \frac{1}{2} \mathbf{a}(t) \Delta t^2 \, ,\\
\mathbf{v} (t + \Delta t) &= \mathbf{v} (t) + \frac{1}{2} (\mathbf{a} (t) + \mathbf{a} (t+ \Delta t) ) \Delta t \, , \\
\mathbf{a} (t) &= - \frac{1}{m} \nabla \Omega^M (\mathbf{R}(t)) \, .
$$
The coefficients $c^M (t)$ of the total wave function $\Psi (\mathbf{R}(t))$ over all excited states
$M$ are obtained implying hopping probabilities $P_{M\rightarrow N}$ of Tully's surface hopping,
$$
\Psi (\mathbf{R}(t)) &= \sum_{M} c^{M} (t) \Psi^M (\mathbf{R}(t)) \\
i \frac{{\rm{d}} c^M (t)}{{\rm{d}}t} &= \sum_N c^N (t) \left ( \delta_{MN} E_N (\mathbf{R}(t)) - i \sigma_{MN} (t) \right ) \, , \\
P_{M \rightarrow N} &= {\rm{max}} \left [ 0, \frac{-2 \Delta t}{| c^M|^2} {\rm{Re}} (c^M c^{N \ast}) \sigma_{MN} \right ] \, .
$$
The therefore required non-adiabatic time derivative couplings $\sigma_{MN}$ can be obtained relying
on semi-empirical models (Baeck-An; please cite
[Barbatti et al., Open Research Europe 1, 49 (2021)](https://doi.org/10.12688/openreseurope.13624.1).)
or as numerical time derivative couplings (orbital time derivative (OD); please cite
[Ryabinkin et al., J. Phys. Chem. Lett. 6, 4200 (2015)](https://doi.org/10.1021/acs.jpclett.5b02062);
[Barbatti et al., Molecules 21, 1603 (2016)](https://doi.org/10.3390/molecules21111603).), with the
corresponding molecular orbital overlap matrix $\mathbf{S}^{{\rm{\tiny{t-\Delta t,t}}}}$ being
provided by CP2K,
$$
\sigma_{MN}^{{\rm{\tiny{OD}}}} &= \sum_{ia} X_{ia}^{M} \frac{\partial }{\partial t} X_{ia}^N + \sum_{iab} X_{ia}^M X_{ib}^N S_{ab}^{{\rm{\tiny{t-\Delta t,t}}}} - \sum_{ija} P_{ij} X_{ia}^M X_{ja}^N
S_{ji}^{{\rm{\tiny{t-\Delta t,t}}}} \\
S_{pq}^{{\rm{\tiny{t - \Delta t , t}}}} &= \frac{\langle \phi_i (\mathbf{R}(t- \Delta t )) | \phi_j (\mathbf{R} (t)) \rangle}{\Delta t} \, .
$$
$a,b, \dots$ denote virtual molecular orbitals.
## General input setup
The input sections for TDDFPT energy and gradient computations are described in
[](../properties/optical/tddft). To furthermore provide the required CP2K output, subsequently read
in by NEWTONX, the following print statements have to be added to the CP2K input files:
- [FORCE_EVAL.PRINT.FORCES](#CP2K_INPUT.FORCE_EVAL.PRINT.FORCES): prints the excited-state forces
- [TDDFPT.PRINT.NAMD_PRINT](#CP2K_INPUT.FORCE_EVAL.PROPERTIES.TDDFPT.PRINT.NAMD_PRINT) with keyword
option [PRINT_PHASES](#CP2K_INPUT.FORCE_EVAL.PROPERTIES.TDDFPT.PRINT.NAMD_PRINT.PRINT_PHASES):
prints the excited-state eigenvectors in MO format as well as the corresponding phases.
- [VIBRATIONAL_ANALYSIS.PRINT.NAMD_PRINT](#CP2K_INPUT.VIBRATIONAL_ANALYSIS.PRINT.NAMD_PRINT): prints
normal modes to generate initial conditions It should furthermore be noted that cartesian
coordinates have to be provided in terms of the external file `coord.cp2k` and that the number of
atoms has to be specified in the CP2K input file in the [SUBSYS](#CP2K_INPUT.FORCE_EVAL.SUBSYS)
section.
## A) Initial conditions and photoabsorption spectra
The following tutorial to obtain photoabsorption spectra is based on section 2 of
<https://vdv.dcf.mybluehost.me/nx/wp-content/uploads/2020/02/tutorial-2_2.pdf>. For the
electronic-structure calculation with CP2K, a `cp2k.inp` and `cp2k.par` file as well as a coordinate
file named `coord.cp2k` has to be provided in a subdirectory called `JOB_AD`. Furthermore, a
vibrational analysis computation has to be performed to provide cartesian normal modes, with the
input file including the corresponding `NAMD print` section.
Examplary input files for computing the absorption spectrum as well as for performing a vibrational
analysis for a single water molecule with CP2K are given below:
```none
&GLOBAL
PROJECT excited_states_for_h2o
RUN_TYPE ENERGY
PREFERRED_DIAG_LIBRARY SL
PRINT_LEVEL medium
&END GLOBAL
&FORCE_EVAL
&PRINT # print statement for ground-state or excited-state forces
&FORCES
&END FORCES
&END PRINT
METHOD Quickstep
&PROPERTIES
&TDDFPT # TDDFPT input section to compute 10 excited states
&DIPOLE_MOMENTS
DIPOLE_FORM LENGTH
&END DIPOLE_MOMENTS
KERNEL FULL
NSTATES 10
MAX_ITER 100
MAX_KV 20
CONVERGENCE [eV] 1.0e-5
RKS_TRIPLETS F
&PRINT # NAMD print section to print excited-state eigenvectors
&NAMD_PRINT
PRINT_VIRTUALS T
PRINT_PHASES T
&END NAMD_PRINT
&END PRINT
&END TDDFPT
&END PROPERTIES
&DFT
&QS
METHOD GAPW
EPS_DEFAULT 1.0E-17
&END QS
&SCF
SCF_GUESS restart
&OT
PRECONDITIONER FULL_ALL
MINIMIZER DIIS
&END OT
&OUTER_SCF
MAX_SCF 900
EPS_SCF 1.0E-7
&END OUTER_SCF
MAX_SCF 10
EPS_SCF 1.0E-7
&END SCF
POTENTIAL_FILE_NAME POTENTIAL
BASIS_SET_FILE_NAME EMSL_BASIS_SETS
&MGRID
CUTOFF 1000
REL_CUTOFF 100
NGRIDS 5
&END MGRID
&POISSON
PERIODIC NONE
PSOLVER MT
&END
&XC
&XC_FUNCTIONAL PBE
&END XC_FUNCTIONAL
&END XC
&END DFT
&SUBSYS
&CELL
ABC 8.0 8.0 8.0
PERIODIC NONE
&END CELL
# Coordinates are provided externally for the interface
&COORD
@include coord.cp2k
&END COORD
&TOPOLOGY
&CENTER_COORDINATES T
&END
NATOMS 3 # specifying number of atoms for NEWTONX
CONNECTIVITY OFF
&END TOPOLOGY
&KIND H
BASIS_SET 6-311Gxx
POTENTIAL ALL
&END KIND
&KIND O
BASIS_SET 6-311Gxx
POTENTIAL ALL
&END KIND
&END SUBSYS
&END FORCE_EVAL
```
```none
&GLOBAL
PROJECT normal_modes_for_h2o
RUN_TYPE VIBRATIONAL_ANALYSIS #computing normal modes to generate initial conditions
PREFERRED_DIAG_LIBRARY SL
PRINT_LEVEL medium
&END GLOBAL
&FORCE_EVAL
&PRINT
&FORCES
&END FORCES
&END PRINT
METHOD Quickstep
&DFT
&QS
METHOD GAPW # GAPW enables comparison with all-electron molecular program codes like Turbomole
EPS_DEFAULT 1.0E-17
&END QS
&SCF
SCF_GUESS restart
&OT
PRECONDITIONER FULL_ALL
MINIMIZER DIIS
&END OT
&OUTER_SCF
MAX_SCF 900
EPS_SCF 1.0E-7
&END OUTER_SCF
MAX_SCF 10
EPS_SCF 1.0E-7
&END SCF
POTENTIAL_FILE_NAME POTENTIAL
BASIS_SET_FILE_NAME EMSL_BASIS_SETS
&MGRID
CUTOFF 1000
REL_CUTOFF 100
NGRIDS 5
&END MGRID
&POISSON
PERIODIC NONE
PSOLVER MT
&END
&XC
&XC_FUNCTIONAL PBE
&END XC_FUNCTIONAL
&END XC
&END DFT
&SUBSYS
&CELL
ABC 8.0 8.0 8.0
PERIODIC NONE
&END CELL
# coordinates must be provided as external file for NEWTONX
&COORD
@include coord.cp2k
&END COORD
&TOPOLOGY
&CENTER_COORDINATES T
&END
NATOMS 3
CONNECTIVITY OFF
&END TOPOLOGY
&KIND H
BASIS_SET 6-311Gxx
POTENTIAL ALL
&END KIND
&KIND O
BASIS_SET 6-311Gxx
POTENTIAL ALL
&END KIND
&END SUBSYS
&END FORCE_EVAL
&VIBRATIONAL_ANALYSIS
&PRINT
&NAMD_PRINT # keyword to enable printing of cartesian normal modes
&END NAMD_PRINT
&END PRINT
DX 0.001
&END VIBRATIONAL_ANALYSIS
```
The input file `cp2k.par` includes all specifications regarding the executable and parallelization
setup.
```none
parallel = 16
exec = cp2k.psmp
```
Furthermore, a `initqp_input` file has to be generated for NEWTONX following the instructions given
in the NEWTONX tutorial. Specifications for CP2K in the `initqp_input` file are the following:
- The file comprising the normal modes of the CP2K frequency computation -- for the above input
provided as `normal_modes_for_h2o-VIBRATIONS-1.eig`-- has to be specified as
`file_nmodes = normal_modes_for_h2o-VIBRATIONS-1.eig`.
- The electronic structure program has to be specified as CP2K by defining `iprog = 10`.
```none
&dat
nact = 2
iprog = 10
numat = 3
npoints = 500
file_geom = geom
file_nmodes = normal_modes_for_h2o-VIBRATIONS-1.eig
anh_f = 1
rescale = n
temp = 0
ics_flg = n
chk_e = 1
nis = 1
nfs = 11
kvert = 1
de = 100
prog = 14
iseed = 0
lvprt = 1
/
```
After providing the excited-state CP2K computation based on input file `h2o_cp2k.inp` in the
subdirectory `JOB_AD`, the normal modes `normal_modes_for_h2o-VIBRATIONS-1.eig` of the frequency
computation and the `initqp_input` file for NEWTONX, the script initcond.pl of NEWTONX can be
executed to generate initial conditions. The resulting initcond-output file of NEWTONX, it is first
stated that the read-in cartesian normal modes are transferred to mass-weighted normal modes.
```none
Cartesian normal modes (1/sqrt(amu))
0.00 0.00 0.00 0.00 0.00 0.00 1523.92 3851.12
0.0000 -0.0492 0.0001 -0.1268 0.5632 -0.0083 0.0000 -0.0000
-0.0886 0.0000 -0.0000 -0.0169 0.0047 0.5777 0.0000 -0.0000
-0.0000 -0.0000 -0.0000 0.5630 0.1269 0.0155 -0.0715 0.0487
0.0001 0.3905 -0.0004 -0.1267 0.5632 -0.0082 -0.4184 -0.5910
0.7043 0.0008 0.7071 -0.0162 0.0040 0.5768 0.0000 0.0000
-0.0001 -0.5885 0.0007 0.5630 0.1270 0.0155 0.5678 -0.3867
0.0000 0.3905 -0.0004 -0.1267 0.5632 -0.0083 0.4184 0.5910
0.7043 -0.0009 -0.7071 -0.0170 0.0051 0.5768 0.0000 0.0000
-0.0000 0.5885 -0.0007 0.5630 0.1269 0.0154 0.5678 -0.3867
3986.44
0.0712
-0.0000
0.0000
-0.5650
0.0000
-0.4222
-0.5650
0.0000
0.4222
Mass weighted normal modes
Frequencies will be multiplied by ANH_F = 1.00000
0.00 0.00 0.00 0.00 0.00 0.00 1523.92 3851.12
0.0001 -0.1967 0.0006 -0.5069 2.2526 -0.0330 0.0000 -0.0000
-0.3543 0.0000 -0.0000 -0.0677 0.0186 2.3104 0.0000 -0.0000
-0.0001 -0.0000 -0.0002 2.2517 0.5077 0.0619 -0.2861 0.1949
0.0001 0.3920 -0.0004 -0.1272 0.5654 -0.0083 -0.4200 -0.5933
0.7071 0.0008 0.7099 -0.0162 0.0040 0.5791 0.0000 0.0000
-0.0001 -0.5908 0.0007 0.5652 0.1275 0.0155 0.5700 -0.3882
0.0000 0.3921 -0.0004 -0.1272 0.5654 -0.0083 0.4200 0.5933
0.7071 -0.0009 -0.7099 -0.0171 0.0051 0.5790 0.0000 0.0000
-0.0000 0.5908 -0.0007 0.5652 0.1274 0.0155 0.5700 -0.3882
3986.44
0.2847
-0.0000
0.0000
-0.5672
0.0000
-0.4238
-0.5672
0.0000
0.4238
```
The thereon based initial conditions are summarized in external output files for each state, dubbed
"final_output_XXX", comprising information on the various geometries and velocities as examplarily
given below:
```none
Initial condition = 1
Geometry in COLUMBUS and NX input format:
o 8.0 5.00630777 5.00000001 4.46399957 15.99491464
h 1.0 6.37684065 5.00000128 5.50815661 1.00782504
h 1.0 3.52303474 5.00000149 5.58297278 1.00782504
Velocity in NX input format:
-0.000089112 0.000000000 -0.000020915
0.000417197 0.000000002 0.000694479
0.000997296 0.000000013 -0.000362483
Epot of initial state (eV): 0.0865 Epot of final state (eV): 19.0799
Vertical excitation (eV): 18.9935 Is Ev in the required range? YES
Ekin of initial state (eV): 0.0479 Etot of initial state (eV): 0.1343
Oscillator strength: 0.1221
State: 10
```
Based on the initial conditions, the broadened photoabsorption spectrum can be computed with the
nxinp script. As outlined in section 2.7 of the cited NEWTONX tutorial, the so-obtained output file
`cross-section.dat` comprises the data points of the computed photoabsorption spectrum as visualized
below:
## B) Non-adiabatic dynamics using orbital determinant derivatives
|