1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
|
!-----------------------------------------------------------------------
SUBROUTINE WRITE_DOCUMENTATION()
write(6,'(A)') &
" scriptmini : a fortran program to minimise a script ", &
" or external program. ", &
" ", &
" Written by Joost VandeVondele ", &
" ", &
" the script is treated as a black box, that given an ", &
" input vector x returns the function value f. ", &
" ", &
" usage : ", &
" ", &
" ./scriptmini ", &
" ", &
" inputs : ", &
" ", &
" -) the script should be called scriptmini_eval ", &
" -) the script should read the n real variables ", &
" from scriptmini_eval.in ", &
" -) the script should write the function value (1 real number) ", &
" to 'scriptmini_eval.out' ", &
" -) input of scriptmini is 'scriptmini.in' with the format: ", &
" N ", &
" rhobeg rhoend ", &
" maxfun ", &
" iprint ", &
" x[1] x[2] x[3] ... x[N] ", &
" ", &
" where: ", &
" N : integer : is the number of variables ", &
" rhobeg : real : initial trust region radius, +- 10% of the ", &
" largest expected change in the variables ", &
" rhoend : real : final trust region radius, +- the final ", &
" uncertainty in the variables ", &
" maxfun : integer : the maximum number of calls to ", &
" scriptmini_eval [O(10*N**2)] ", &
" iprint : integer : output level (0-3) ", &
" 0 : no output at all (!) ", &
" ... ", &
" 3 : info at every step (recommended) ", &
" x[...] : real : the initial values of the variables "
END SUBROUTINE WRITE_DOCUMENTATION
!-------------------------------------------------------------------------------
MODULE Powell_Optimize
! Code converted using TO_F90 by Alan Miller
! Date: 2002-11-09 Time: 16:58:08
IMPLICIT NONE
INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12, 60)
PRIVATE
PUBLIC :: uobyqa
CONTAINS
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uobyqa.f %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SUBROUTINE uobyqa(n, x, rhobeg, rhoend, iprint, maxfun)
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN OUT) :: x(:)
REAL (dp), INTENT(IN) :: rhobeg
REAL (dp), INTENT(IN) :: rhoend
INTEGER, INTENT(IN) :: iprint
INTEGER, INTENT(IN) :: maxfun
! This subroutine seeks the least value of a function of many variables,
! by a trust region method that forms quadratic models by interpolation.
! The algorithm is described in "UOBYQA: unconstrained optimization by
! quadratic approximation" by M.J.D. Powell, Report DAMTP 2000/NA14,
! University of Cambridge. The arguments of the subroutine are as follows.
! N must be set to the number of variables and must be at least two.
! Initial values of the variables must be set in X(1),X(2),...,X(N). They
! will be changed to the values that give the least calculated F.
! RHOBEG and RHOEND must be set to the initial and final values of a trust
! region radius, so both must be positive with RHOEND<=RHOBEG. Typically
! RHOBEG should be about one tenth of the greatest expected change to a
! variable, and RHOEND should indicate the accuracy that is required in
! the final values of the variables.
! The value of IPRINT should be set to 0, 1, 2 or 3, which controls the
! amount of printing. Specifically, there is no output if IPRINT=0 and
! there is output only at the return if IPRINT=1. Otherwise, each new
! value of RHO is printed, with the best vector of variables so far and
! the corresponding value of the objective function. Further, each new
! value of F with its variables are output if IPRINT=3.
! MAXFUN must be set to an upper bound on the number of calls of CALFUN.
! The array W will be used for working space. Its length must be at least
! ( N**4 + 8*N**3 + 23*N**2 + 42*N + max [ 2*N**2 + 4, 18*N ] ) / 4.
! SUBROUTINE CALFUN (N,X,F) must be provided by the user. It must set F to
! the value of the objective function for the variables X(1),X(2),...,X(N).
INTEGER :: npt
! Partition the working space array, so that different parts of it can be
! treated separately by the subroutine that performs the main calculation.
npt = (n*n + 3*n + 2) / 2
CALL uobyqb(n, x, rhobeg, rhoend, iprint, maxfun, npt)
RETURN
END SUBROUTINE uobyqa
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uobyqb.f %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SUBROUTINE uobyqb(n, x, rhobeg, rhoend, iprint, maxfun, npt)
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN OUT) :: x(:)
REAL (dp), INTENT(IN) :: rhobeg
REAL (dp), INTENT(IN) :: rhoend
INTEGER, INTENT(IN) :: iprint
INTEGER, INTENT(IN) :: maxfun
INTEGER, INTENT(IN) :: npt
INTERFACE
SUBROUTINE calfun(n, x, f)
IMPLICIT NONE
INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12, 60)
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN) :: x(:)
REAL (dp), INTENT(OUT) :: f
END SUBROUTINE calfun
END INTERFACE
! The following arrays were previously passed as arguments:
REAL (dp) :: xbase(n), xopt(n), xnew(n), xpt(npt,n), pq(npt-1)
REAL (dp) :: pl(npt,npt-1), h(n,n), g(n), d(n), vlag(npt), w(npt)
! The arguments N, X, RHOBEG, RHOEND, IPRINT and MAXFUN are identical to
! the corresponding arguments in SUBROUTINE UOBYQA.
! NPT is set by UOBYQA to (N*N+3*N+2)/2 for the above dimension statement.
! XBASE will contain a shift of origin that reduces the contributions from
! rounding errors to values of the model and Lagrange functions.
! XOPT will be set to the displacement from XBASE of the vector of
! variables that provides the least calculated F so far.
! XNEW will be set to the displacement from XBASE of the vector of
! variables for the current calculation of F.
! XPT will contain the interpolation point coordinates relative to XBASE.
! PQ will contain the parameters of the quadratic model.
! PL will contain the parameters of the Lagrange functions.
! H will provide the second derivatives that TRSTEP and LAGMAX require.
! G will provide the first derivatives that TRSTEP and LAGMAX require.
! D is reserved for trial steps from XOPT, except that it will contain
! diagonal second derivatives during the initialization procedure.
! VLAG will contain the values of the Lagrange functions at a new point X.
! The array W will be used for working space.
REAL (dp) :: half = 0.5_dp, one = 1.0_dp, tol = 0.01_dp, two = 2.0_dp
REAL (dp) :: zero = 0.0_dp
REAL (dp) :: ddknew, delta, detrat, diff, distest, dnorm, errtol, estim
REAL (dp) :: evalue, f, fbase, fopt, fsave, ratio, rho, rhosq, sixthm
REAL (dp) :: sum, sumg, sumh, temp, tempa, tworsq, vmax, vquad, wmult
INTEGER :: i, ih, ip, iq, iw, j, jswitch, k, knew, kopt, ksave, ktemp
INTEGER :: nf, nftest, nnp, nptm
! Set some constants.
nnp = n + n + 1
nptm = npt - 1
nftest = MAX(maxfun,1)
! Initialization. NF is the number of function calculations so far.
rho = rhobeg
rhosq = rho * rho
nf = 0
DO i = 1, n
xbase(i) = x(i)
xpt(1:npt,i) = zero
END DO
pl(1:npt,1:nptm) = zero
! The branch to label 120 obtains a new value of the objective function
! and then there is a branch back to label 50, because the new function
! value is needed to form the initial quadratic model. The least function
! value so far and its index are noted below.
50 x(1:n) = xbase(1:n) + xpt(nf+1,1:n)
GO TO 150
70 IF (nf == 1) THEN
fopt = f
kopt = nf
fbase = f
j = 0
jswitch = -1
ih = n
ELSE
IF (f < fopt) THEN
fopt = f
kopt = nf
END IF
END IF
! Form the gradient and diagonal second derivatives of the initial
! quadratic model and Lagrange functions.
IF (nf <= nnp) THEN
jswitch = -jswitch
IF (jswitch > 0) THEN
IF (j >= 1) THEN
ih = ih + j
IF (w(j) < zero) THEN
d(j) = (fsave+f-two*fbase) / rhosq
pq(j) = (fsave-f) / (two*rho)
pl(1,ih) = -two / rhosq
pl(nf-1,j) = half / rho
pl(nf-1,ih) = one / rhosq
ELSE
pq(j) = (4.0D0*fsave-3.0D0*fbase-f) / (two*rho)
d(j) = (fbase+f-two*fsave) / rhosq
pl(1,j) = -1.5D0 / rho
pl(1,ih) = one / rhosq
pl(nf-1,j) = two / rho
pl(nf-1,ih) = -two / rhosq
END IF
pq(ih) = d(j)
pl(nf,j) = -half / rho
pl(nf,ih) = one / rhosq
END IF
! Pick the shift from XBASE to the next initial interpolation point
! that provides diagonal second derivatives.
IF (j < n) THEN
j = j + 1
xpt(nf+1,j) = rho
END IF
ELSE
fsave = f
IF (f < fbase) THEN
w(j) = rho
xpt(nf+1,j) = two * rho
ELSE
w(j) = -rho
xpt(nf+1,j) = -rho
END IF
END IF
IF (nf < nnp) GO TO 50
! Form the off-diagonal second derivatives of the initial quadratic model.
ih = n
ip = 1
iq = 2
END IF
ih = ih + 1
IF (nf > nnp) THEN
temp = one / (w(ip)*w(iq))
tempa = f - fbase - w(ip) * pq(ip) - w(iq) * pq(iq)
pq(ih) = (tempa - half*rhosq*(d(ip)+d(iq))) * temp
pl(1,ih) = temp
iw = ip + ip
IF (w(ip) < zero) iw = iw + 1
pl(iw,ih) = -temp
iw = iq + iq
IF (w(iq) < zero) iw = iw + 1
pl(iw,ih) = -temp
pl(nf,ih) = temp
! Pick the shift from XBASE to the next initial interpolation point
! that provides off-diagonal second derivatives.
ip = ip + 1
END IF
IF (ip == iq) THEN
ih = ih + 1
ip = 1
iq = iq + 1
END IF
IF (nf < npt) THEN
xpt(nf+1,ip) = w(ip)
xpt(nf+1,iq) = w(iq)
GO TO 50
END IF
! Set parameters to begin the iterations for the current RHO.
sixthm = zero
delta = rho
80 tworsq = (two*rho) ** 2
rhosq = rho * rho
! Form the gradient of the quadratic model at the trust region centre.
90 knew = 0
ih = n
DO j = 1, n
xopt(j) = xpt(kopt,j)
g(j) = pq(j)
DO i = 1, j
ih = ih + 1
g(i) = g(i) + pq(ih) * xopt(j)
IF (i < j) g(j) = g(j) + pq(ih) * xopt(i)
h(i,j) = pq(ih)
END DO
END DO
! Generate the next trust region step and test its length. Set KNEW
! to -1 if the purpose of the next F will be to improve conditioning,
! and also calculate a lower bound on the Hessian term of the model Q.
CALL trstep(n, g, h, delta, tol, d, evalue)
temp = zero
DO i = 1, n
temp = temp + d(i)**2
END DO
dnorm = MIN(delta,SQRT(temp))
errtol = -one
IF (dnorm < half*rho) THEN
knew = -1
errtol = half * evalue * rho * rho
IF (nf <= npt+9) errtol = zero
GO TO 290
END IF
! Calculate the next value of the objective function.
130 DO i = 1, n
xnew(i) = xopt(i) + d(i)
x(i) = xbase(i) + xnew(i)
END DO
150 IF (nf >= nftest) THEN
IF (iprint > 0) WRITE(*, 5000)
GO TO 420
END IF
nf = nf + 1
CALL calfun(n, x, f)
IF (iprint == 3) THEN
WRITE(*, 5100) nf, f, x(1:n)
END IF
IF (nf <= npt) GO TO 70
IF (knew == -1) GO TO 420
! Use the quadratic model to predict the change in F due to the step D,
! and find the values of the Lagrange functions at the new point.
vquad = zero
ih = n
DO j = 1, n
w(j) = d(j)
vquad = vquad + w(j) * pq(j)
DO i = 1, j
ih = ih + 1
w(ih) = d(i) * xnew(j) + d(j) * xopt(i)
IF (i == j) w(ih) = half * w(ih)
vquad = vquad + w(ih) * pq(ih)
END DO
END DO
DO k = 1, npt
temp = zero
DO j = 1, nptm
temp = temp + w(j) * pl(k,j)
END DO
vlag(k) = temp
END DO
vlag(kopt) = vlag(kopt) + one
! Update SIXTHM, which is a lower bound on one sixth of the greatest
! third derivative of F.
diff = f - fopt - vquad
sum = zero
DO k = 1, npt
temp = zero
DO i = 1, n
temp = temp + (xpt(k,i)-xnew(i)) ** 2
END DO
temp = SQRT(temp)
sum = sum + ABS(temp*temp*temp*vlag(k))
END DO
sixthm = MAX(sixthm, ABS(diff)/sum)
! Update FOPT and XOPT if the new F is the least value of the objective
! function so far. Then branch if D is not a trust region step.
fsave = fopt
IF (f < fopt) THEN
fopt = f
xopt(1:n) = xnew(1:n)
END IF
ksave = knew
IF (knew <= 0) THEN
! Pick the next value of DELTA after a trust region step.
IF (vquad >= zero) THEN
IF (iprint > 0) WRITE(*, 5200)
GO TO 420
END IF
ratio = (f-fsave) / vquad
IF (ratio <= 0.1D0) THEN
delta = half * dnorm
ELSE IF (ratio <= 0.7D0) THEN
delta = MAX(half*delta,dnorm)
ELSE
delta = MAX(delta, 1.25D0*dnorm, dnorm+rho)
END IF
IF (delta <= 1.5D0*rho) delta = rho
! Set KNEW to the index of the next interpolation point to be deleted.
ktemp = 0
detrat = zero
IF (f >= fsave) THEN
ktemp = kopt
detrat = one
END IF
DO k = 1, npt
sum = zero
DO i = 1, n
sum = sum + (xpt(k,i)-xopt(i)) ** 2
END DO
temp = ABS(vlag(k))
IF (sum > rhosq) temp = temp * (sum/rhosq) ** 1.5D0
IF (temp > detrat .AND. k /= ktemp) THEN
detrat = temp
ddknew = sum
knew = k
END IF
END DO
IF (knew == 0) GO TO 290
END IF
! Replace the interpolation point that has index KNEW by the point XNEW,
! and also update the Lagrange functions and the quadratic model.
DO i = 1, n
xpt(knew,i) = xnew(i)
END DO
temp = one / vlag(knew)
DO j = 1, nptm
pl(knew,j) = temp * pl(knew,j)
pq(j) = pq(j) + diff * pl(knew,j)
END DO
DO k = 1, npt
IF (k /= knew) THEN
temp = vlag(k)
DO j = 1, nptm
pl(k,j) = pl(k,j) - temp * pl(knew,j)
END DO
END IF
END DO
! Update KOPT if F is the least calculated value of the objective function.
! Then branch for another trust region calculation. The case KSAVE > 0
! indicates that a model step has just been taken.
IF (f < fsave) THEN
kopt = knew
GO TO 90
END IF
IF (ksave > 0) GO TO 90
IF (dnorm > two*rho) GO TO 90
IF (ddknew > tworsq) GO TO 90
! Alternatively, find out if the interpolation points are close
! enough to the best point so far.
290 DO k = 1, npt
w(k) = zero
DO i = 1, n
w(k) = w(k) + (xpt(k,i)-xopt(i)) ** 2
END DO
END DO
320 knew = -1
distest = tworsq
DO k = 1, npt
IF (w(k) > distest) THEN
knew = k
distest = w(k)
END IF
END DO
! If a point is sufficiently far away, then set the gradient and Hessian
! of its Lagrange function at the centre of the trust region, and find
! half the sum of squares of components of the Hessian.
IF (knew > 0) THEN
ih = n
sumh = zero
DO j = 1, n
g(j) = pl(knew,j)
DO i = 1, j
ih = ih + 1
temp = pl(knew,ih)
g(j) = g(j) + temp * xopt(i)
IF (i < j) THEN
g(i) = g(i) + temp * xopt(j)
sumh = sumh + temp * temp
END IF
h(i,j) = temp
END DO
sumh = sumh + half * temp * temp
END DO
! If ERRTOL is positive, test whether to replace the interpolation point
! with index KNEW, using a bound on the maximum modulus of its Lagrange
! function in the trust region.
IF (errtol > zero) THEN
w(knew) = zero
sumg = zero
DO i = 1, n
sumg = sumg + g(i) ** 2
END DO
estim = rho * (SQRT(sumg)+rho*SQRT(half*sumh))
wmult = sixthm * distest ** 1.5D0
IF (wmult*estim <= errtol) GO TO 320
END IF
! If the KNEW-th point may be replaced, then pick a D that gives a large
! value of the modulus of its Lagrange function within the trust region.
! Here the vector XNEW is used as temporary working space.
CALL lagmax(n, g, h, rho, d, xnew, vmax)
IF (errtol > zero) THEN
IF (wmult*vmax <= errtol) GO TO 320
END IF
GO TO 130
END IF
IF (dnorm > rho) GO TO 90
! Prepare to reduce RHO by shifting XBASE to the best point so far,
! and make the corresponding changes to the gradients of the Lagrange
! functions and the quadratic model.
IF (rho > rhoend) THEN
ih = n
DO j = 1, n
xbase(j) = xbase(j) + xopt(j)
DO k = 1, npt
xpt(k,j) = xpt(k,j) - xopt(j)
END DO
DO i = 1, j
ih = ih + 1
pq(i) = pq(i) + pq(ih) * xopt(j)
IF (i < j) THEN
pq(j) = pq(j) + pq(ih) * xopt(i)
DO k = 1, npt
pl(k,j) = pl(k,j) + pl(k,ih) * xopt(i)
END DO
END IF
DO k = 1, npt
pl(k,i) = pl(k,i) + pl(k,ih) * xopt(j)
END DO
END DO
END DO
! Pick the next values of RHO and DELTA.
delta = half * rho
ratio = rho / rhoend
IF (ratio <= 16.0D0) THEN
rho = rhoend
ELSE IF (ratio <= 250.0D0) THEN
rho = SQRT(ratio) * rhoend
ELSE
rho = 0.1D0 * rho
END IF
delta = MAX(delta,rho)
IF (iprint >= 2) THEN
IF (iprint >= 3) WRITE(*, 5300)
WRITE(*, 5400) rho, nf
WRITE(*, 5500) fopt, xbase(1:n)
END IF
GO TO 80
END IF
! Return from the calculation, after another Newton-Raphson step, if
! it is too short to have been tried before.
IF (errtol >= zero) GO TO 130
420 IF (fopt <= f) THEN
DO i = 1, n
x(i) = xbase(i) + xopt(i)
END DO
f = fopt
END IF
IF (iprint >= 1) THEN
WRITE(*, 5600) nf
WRITE(*, 5500) f, x(1:n)
END IF
RETURN
5000 FORMAT (/T5, 'Return from UOBYQA because CALFUN has been', &
' called MAXFUN times')
5100 FORMAT (/T5, 'Function number',i6,' F =', g18.10, &
' The corresponding X is:'/ (t3, 5g15.6))
5200 FORMAT (/T5, 'Return from UOBYQA because a trust', &
' region step has failed to reduce Q')
5300 FORMAT (' ')
5400 FORMAT (/T5, 'New RHO =', g11.4, ' Number of function values =',i6)
5500 FORMAT (T5, 'Least value of F =', g23.15, &
' The corresponding X is:'/ (t3, 5g15.6))
5600 FORMAT (/T5, 'At the return from UOBYQA', &
' Number of function values =', i6)
END SUBROUTINE uobyqb
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% trstep.f %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SUBROUTINE trstep(n, g, h, delta, tol, d, evalue)
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN) :: g(:)
REAL (dp), INTENT(IN OUT) :: h(:,:)
REAL (dp), INTENT(IN) :: delta
REAL (dp), INTENT(IN) :: tol
REAL (dp), INTENT(OUT) :: d(:)
REAL (dp), INTENT(OUT) :: evalue
! N is the number of variables of a quadratic objective function, Q say.
! G is the gradient of Q at the origin.
! H is the Hessian matrix of Q. Only the upper triangular and diagonal
! parts need be set. The lower triangular part is used to store the
! elements of a Householder similarity transformation.
! DELTA is the trust region radius, and has to be positive.
! TOL is the value of a tolerance from the open interval (0,1).
! D will be set to the calculated vector of variables.
! EVALUE will be set to the least eigenvalue of H if and only if D is a
! Newton-Raphson step. Then EVALUE will be positive, but otherwise it
! will be set to zero.
! Let MAXRED be the maximum of Q(0)-Q(D) subject to ||D|| <= DELTA,
! and let ACTRED be the value of Q(0)-Q(D) that is actually calculated.
! We take the view that any D is acceptable if it has the properties
! ||D|| <= DELTA and ACTRED <= (1-TOL)*MAXRED.
! The calculation of D is done by the method of Section 2 of the paper
! by MJDP in the 1997 Dundee Numerical Analysis Conference Proceedings,
! after transforming H to tridiagonal form.
! The arrays GG, TD, TN, W, PIV and Z will be used for working space.
REAL (dp) :: gg(n), td(n), tn(n), w(n), piv(n), z(n)
REAL (dp) :: delsq, dhd, dnorm, dsq, dtg, dtz, gam, gnorm, gsq, hnorm
REAL (dp) :: par, parl, parlest, paru, paruest, phi, phil, phiu, pivksv
REAL (dp) :: pivot, posdef, scale, shfmax, shfmin, shift, slope, sum
REAL (dp) :: tdmin, temp, tempa, tempb, wsq, wwsq, wz, zsq
INTEGER :: i, iterc, j, jp, k, kp, kpp, ksav, ksave, nm
REAL (dp) :: one = 1.0_dp, two = 2.0_dp, zero = 0.0_dp
! Initialization.
delsq = delta * delta
evalue = zero
nm = n - 1
DO i = 1, n
d(i) = zero
td(i) = h(i,i)
DO j = 1, i
h(i,j) = h(j,i)
END DO
END DO
! Apply Householder transformations to obtain a tridiagonal matrix that
! is similar to H, and put the elements of the Householder vectors in
! the lower triangular part of H. Further, TD and TN will contain the
! diagonal and other nonzero elements of the tridiagonal matrix.
DO k = 1, nm
kp = k + 1
sum = zero
IF (kp < n) THEN
kpp = kp + 1
DO i = kpp, n
sum = sum + h(i,k) ** 2
END DO
END IF
IF (sum == zero) THEN
tn(k) = h(kp,k)
h(kp,k) = zero
ELSE
temp = h(kp,k)
tn(k) = SIGN(SQRT(sum+temp*temp),temp)
h(kp,k) = -sum / (temp+tn(k))
temp = SQRT(two/(sum+h(kp,k)**2))
DO i = kp, n
w(i) = temp * h(i,k)
h(i,k) = w(i)
z(i) = td(i) * w(i)
END DO
wz = zero
DO j = kp, nm
jp = j + 1
DO i = jp, n
z(i) = z(i) + h(i,j) * w(j)
z(j) = z(j) + h(i,j) * w(i)
END DO
wz = wz + w(j) * z(j)
END DO
wz = wz + w(n) * z(n)
DO j = kp, n
td(j) = td(j) + w(j) * (wz*w(j)-two*z(j))
IF (j < n) THEN
jp = j + 1
DO i = jp, n
h(i,j) = h(i,j) - w(i) * z(j) - w(j) * (z(i)-wz*w(i))
END DO
END IF
END DO
END IF
END DO
! Form GG by applying the similarity transformation to G.
gsq = zero
DO i = 1, n
gg(i) = g(i)
gsq = gsq + g(i) ** 2
END DO
gnorm = SQRT(gsq)
DO k = 1, nm
kp = k + 1
sum = zero
DO i = kp, n
sum = sum + gg(i) * h(i,k)
END DO
DO i = kp, n
gg(i) = gg(i) - sum * h(i,k)
END DO
END DO
! Begin the trust region calculation with a tridiagonal matrix by
! calculating the norm of H. Then treat the case when H is zero.
hnorm = ABS(td(1)) + ABS(tn(1))
tdmin = td(1)
tn(n) = zero
DO i = 2, n
temp = ABS(tn(i-1)) + ABS(td(i)) + ABS(tn(i))
hnorm = MAX(hnorm,temp)
tdmin = MIN(tdmin,td(i))
END DO
IF (hnorm == zero) THEN
IF (gnorm == zero) GO TO 420
scale = delta / gnorm
DO i = 1, n
d(i) = -scale * gg(i)
END DO
GO TO 380
END IF
! Set the initial values of PAR and its bounds.
parl = MAX(zero, -tdmin, gnorm/delta-hnorm)
parlest = parl
par = parl
paru = zero
paruest = zero
posdef = zero
iterc = 0
! Calculate the pivots of the Cholesky factorization of (H+PAR*I).
160 iterc = iterc + 1
ksav = 0
piv(1) = td(1) + par
k = 1
170 IF (piv(k) > zero) THEN
piv(k+1) = td(k+1) + par - tn(k) ** 2 / piv(k)
ELSE
IF (piv(k) < zero .OR. tn(k) /= zero) GO TO 180
ksav = k
piv(k+1) = td(k+1) + par
END IF
k = k + 1
IF (k < n) GO TO 170
IF (piv(k) >= zero) THEN
IF (piv(k) == zero) ksav = k
! Branch if all the pivots are positive, allowing for the case when
! G is zero.
IF (ksav == 0 .AND. gsq > zero) GO TO 250
IF (gsq == zero) THEN
IF (par == zero) GO TO 380
paru = par
paruest = par
IF (ksav == 0) GO TO 210
END IF
k = ksav
END IF
! Set D to a direction of nonpositive curvature of the given tridiagonal
! matrix, and thus revise PARLEST.
180 d(k) = one
IF (ABS(tn(k)) <= ABS(piv(k))) THEN
dsq = one
dhd = piv(k)
ELSE
temp = td(k+1) + par
IF (temp <= ABS(piv(k))) THEN
d(k+1) = SIGN(one,-tn(k))
dhd = piv(k) + temp - two * ABS(tn(k))
ELSE
d(k+1) = -tn(k) / temp
dhd = piv(k) + tn(k) * d(k+1)
END IF
dsq = one + d(k+1) ** 2
END IF
190 IF (k > 1) THEN
k = k - 1
IF (tn(k) /= zero) THEN
d(k) = -tn(k) * d(k+1) / piv(k)
dsq = dsq + d(k) ** 2
GO TO 190
END IF
d(1:k) = zero
END IF
parl = par
parlest = par - dhd / dsq
! Terminate with D set to a multiple of the current D if the following
! test suggests that it suitable to do so.
210 temp = paruest
IF (gsq == zero) temp = temp * (one-tol)
IF (paruest > zero .AND. parlest >= temp) THEN
dtg = DOT_PRODUCT( d(1:n), gg(1:n) )
scale = -SIGN(delta/SQRT(dsq),dtg)
d(1:n) = scale * d(1:n)
GO TO 380
END IF
! Pick the value of PAR for the next iteration.
240 IF (paru == zero) THEN
par = two * parlest + gnorm / delta
ELSE
par = 0.5D0 * (parl+paru)
par = MAX(par,parlest)
END IF
IF (paruest > zero) par = MIN(par,paruest)
GO TO 160
! Calculate D for the current PAR in the positive definite case.
250 w(1) = -gg(1) / piv(1)
DO i = 2, n
w(i) = (-gg(i)-tn(i-1)*w(i-1)) / piv(i)
END DO
d(n) = w(n)
DO i = nm, 1, -1
d(i) = w(i) - tn(i) * d(i+1) / piv(i)
END DO
! Branch if a Newton-Raphson step is acceptable.
dsq = zero
wsq = zero
DO i = 1, n
dsq = dsq + d(i) ** 2
wsq = wsq + piv(i) * w(i) ** 2
END DO
IF (par /= zero .OR. dsq > delsq) THEN
! Make the usual test for acceptability of a full trust region step.
dnorm = SQRT(dsq)
phi = one / dnorm - one / delta
temp = tol * (one+par*dsq/wsq) - dsq * phi * phi
IF (temp >= zero) THEN
scale = delta / dnorm
DO i = 1, n
d(i) = scale * d(i)
END DO
GO TO 380
END IF
IF (iterc >= 2 .AND. par <= parl) GO TO 380
IF (paru > zero .AND. par >= paru) GO TO 380
! Complete the iteration when PHI is negative.
IF (phi < zero) THEN
parlest = par
IF (posdef == one) THEN
IF (phi <= phil) GO TO 380
slope = (phi-phil) / (par-parl)
parlest = par - phi / slope
END IF
slope = one / gnorm
IF (paru > zero) slope = (phiu-phi) / (paru-par)
temp = par - phi / slope
IF (paruest > zero) temp = MIN(temp,paruest)
paruest = temp
posdef = one
parl = par
phil = phi
GO TO 240
END IF
! If required, calculate Z for the alternative test for convergence.
IF (posdef == zero) THEN
w(1) = one / piv(1)
DO i = 2, n
temp = -tn(i-1) * w(i-1)
w(i) = (SIGN(one,temp)+temp) / piv(i)
END DO
z(n) = w(n)
DO i = nm, 1, -1
z(i) = w(i) - tn(i) * z(i+1) / piv(i)
END DO
wwsq = zero
zsq = zero
dtz = zero
DO i = 1, n
wwsq = wwsq + piv(i) * w(i) ** 2
zsq = zsq + z(i) ** 2
dtz = dtz + d(i) * z(i)
END DO
! Apply the alternative test for convergence.
tempa = ABS(delsq-dsq)
tempb = SQRT(dtz*dtz+tempa*zsq)
gam = tempa / (SIGN(tempb,dtz)+dtz)
temp = tol * (wsq+par*delsq) - gam * gam * wwsq
IF (temp >= zero) THEN
DO i = 1, n
d(i) = d(i) + gam * z(i)
END DO
GO TO 380
END IF
parlest = MAX(parlest,par-wwsq/zsq)
END IF
! Complete the iteration when PHI is positive.
slope = one / gnorm
IF (paru > zero) THEN
IF (phi >= phiu) GO TO 380
slope = (phiu-phi) / (paru-par)
END IF
parlest = MAX(parlest,par-phi/slope)
paruest = par
IF (posdef == one) THEN
slope = (phi-phil) / (par-parl)
paruest = par - phi / slope
END IF
paru = par
phiu = phi
GO TO 240
END IF
! Set EVALUE to the least eigenvalue of the second derivative matrix if
! D is a Newton-Raphson step. SHFMAX will be an upper bound on EVALUE.
shfmin = zero
pivot = td(1)
shfmax = pivot
DO k = 2, n
pivot = td(k) - tn(k-1) ** 2 / pivot
shfmax = MIN(shfmax,pivot)
END DO
! Find EVALUE by a bisection method, but occasionally SHFMAX may be
! adjusted by the rule of false position.
ksave = 0
350 shift = 0.5D0 * (shfmin+shfmax)
k = 1
temp = td(1) - shift
360 IF (temp > zero) THEN
piv(k) = temp
IF (k < n) THEN
temp = td(k+1) - shift - tn(k) ** 2 / temp
k = k + 1
GO TO 360
END IF
shfmin = shift
ELSE
IF (k < ksave) GO TO 370
IF (k == ksave) THEN
IF (pivksv == zero) GO TO 370
IF (piv(k)-temp < temp-pivksv) THEN
pivksv = temp
shfmax = shift
ELSE
pivksv = zero
shfmax = (shift*piv(k) - shfmin*temp) / (piv(k)-temp)
END IF
ELSE
ksave = k
pivksv = temp
shfmax = shift
END IF
END IF
IF (shfmin <= 0.99D0*shfmax) GO TO 350
370 evalue = shfmin
! Apply the inverse Householder transformations to D.
380 nm = n - 1
DO k = nm, 1, -1
kp = k + 1
sum = zero
DO i = kp, n
sum = sum + d(i) * h(i,k)
END DO
DO i = kp, n
d(i) = d(i) - sum * h(i,k)
END DO
END DO
! Return from the subroutine.
420 RETURN
END SUBROUTINE trstep
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lagmax.f %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SUBROUTINE lagmax(n, g, h, rho, d, v, vmax)
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN) :: g(:)
REAL (dp), INTENT(OUT) :: h(:,:)
REAL (dp), INTENT(IN) :: rho
REAL (dp), INTENT(OUT) :: d(:)
REAL (dp), INTENT(OUT) :: v(:)
REAL (dp), INTENT(OUT) :: vmax
! N is the number of variables of a quadratic objective function, Q say.
! G is the gradient of Q at the origin.
! H is the symmetric Hessian matrix of Q. Only the upper triangular and
! diagonal parts need be set.
! RHO is the trust region radius, and has to be positive.
! D will be set to the calculated vector of variables.
! The array V will be used for working space.
! VMAX will be set to |Q(0)-Q(D)|.
! Calculating the D that maximizes |Q(0)-Q(D)| subject to ||D|| <= RHO
! requires of order N**3 operations, but sometimes it is adequate if
! |Q(0)-Q(D)| is within about 0.9 of its greatest possible value. This
! subroutine provides such a solution in only of order N**2 operations,
! where the claim of accuracy has been tested by numerical experiments.
REAL (dp) :: half = 0.5_dp, one = 1.0_dp, zero = 0.0_dp
REAL (dp) :: dd, dhd, dlin, dsq, gd, gg, ghg, gnorm, halfrt, hmax, ratio
REAL (dp) :: scale, sum, sumv, temp, tempa, tempb, tempc, tempd, tempv
REAL (dp) :: vhg, vhv, vhw, vlin, vmu, vnorm, vsq, vv, wcos, whw, wsin, wsq
INTEGER :: i, j, k
! Preliminary calculations.
halfrt = SQRT(half)
! Pick V such that ||HV|| / ||V|| is large.
hmax = zero
DO i = 1, n
sum = zero
DO j = 1, n
h(j,i) = h(i,j)
sum = sum + h(i,j) ** 2
END DO
IF (sum > hmax) THEN
hmax = sum
k = i
END IF
END DO
DO j = 1, n
v(j) = h(k,j)
END DO
! Set D to a vector in the subspace spanned by V and HV that maximizes
! |(D,HD)|/(D,D), except that we set D=HV if V and HV are nearly parallel.
! The vector that has the name D at label 60 used to be the vector W.
vsq = zero
vhv = zero
dsq = zero
DO i = 1, n
vsq = vsq + v(i) ** 2
d(i) = DOT_PRODUCT( h(i,1:n), v(1:n) )
vhv = vhv + v(i) * d(i)
dsq = dsq + d(i) ** 2
END DO
IF (vhv*vhv <= 0.9999D0*dsq*vsq) THEN
temp = vhv / vsq
wsq = zero
DO i = 1, n
d(i) = d(i) - temp * v(i)
wsq = wsq + d(i) ** 2
END DO
whw = zero
ratio = SQRT(wsq/vsq)
DO i = 1, n
temp = DOT_PRODUCT( h(i,1:n), d(1:n) )
whw = whw + temp * d(i)
v(i) = ratio * v(i)
END DO
vhv = ratio * ratio * vhv
vhw = ratio * wsq
temp = half * (whw-vhv)
temp = temp + SIGN(SQRT(temp**2+vhw**2),whw+vhv)
DO i = 1, n
d(i) = vhw * v(i) + temp * d(i)
END DO
END IF
! We now turn our attention to the subspace spanned by G and D. A multiple
! of the current D is returned if that choice seems to be adequate.
gg = zero
gd = zero
dd = zero
dhd = zero
DO i = 1, n
gg = gg + g(i) ** 2
gd = gd + g(i) * d(i)
dd = dd + d(i) ** 2
sum = DOT_PRODUCT( h(i,1:n), d(1:n) )
dhd = dhd + sum * d(i)
END DO
temp = gd / gg
vv = zero
scale = SIGN(rho/SQRT(dd),gd*dhd)
DO i = 1, n
v(i) = d(i) - temp * g(i)
vv = vv + v(i) ** 2
d(i) = scale * d(i)
END DO
gnorm = SQRT(gg)
IF (gnorm*dd <= 0.5D-2*rho*ABS(dhd) .OR. vv/dd <= 1.0D-4) THEN
vmax = ABS(scale*(gd + half*scale*dhd))
GO TO 170
END IF
! G and V are now orthogonal in the subspace spanned by G and D. Hence
! we generate an orthonormal basis of this subspace such that (D,HV) is
! negligible or zero, where D and V will be the basis vectors.
ghg = zero
vhg = zero
vhv = zero
DO i = 1, n
sum = DOT_PRODUCT( h(i,1:n), g(1:n) )
sumv = DOT_PRODUCT( h(i,1:n), v(1:n) )
ghg = ghg + sum * g(i)
vhg = vhg + sumv * g(i)
vhv = vhv + sumv * v(i)
END DO
vnorm = SQRT(vv)
ghg = ghg / gg
vhg = vhg / (vnorm*gnorm)
vhv = vhv / vv
IF (ABS(vhg) <= 0.01D0*MAX(ABS(ghg),ABS(vhv))) THEN
vmu = ghg - vhv
wcos = one
wsin = zero
ELSE
temp = half * (ghg-vhv)
vmu = temp + SIGN(SQRT(temp**2+vhg**2),temp)
temp = SQRT(vmu**2+vhg**2)
wcos = vmu / temp
wsin = vhg / temp
END IF
tempa = wcos / gnorm
tempb = wsin / vnorm
tempc = wcos / vnorm
tempd = wsin / gnorm
DO i = 1, n
d(i) = tempa * g(i) + tempb * v(i)
v(i) = tempc * v(i) - tempd * g(i)
END DO
! The final D is a multiple of the current D, V, D+V or D-V. We make the
! choice from these possibilities that is optimal.
dlin = wcos * gnorm / rho
vlin = -wsin * gnorm / rho
tempa = ABS(dlin) + half * ABS(vmu+vhv)
tempb = ABS(vlin) + half * ABS(ghg-vmu)
tempc = halfrt * (ABS(dlin)+ABS(vlin)) + 0.25D0 * ABS(ghg+vhv)
IF (tempa >= tempb .AND. tempa >= tempc) THEN
tempd = SIGN(rho,dlin*(vmu+vhv))
tempv = zero
ELSE IF (tempb >= tempc) THEN
tempd = zero
tempv = SIGN(rho,vlin*(ghg-vmu))
ELSE
tempd = SIGN(halfrt*rho,dlin*(ghg+vhv))
tempv = SIGN(halfrt*rho,vlin*(ghg+vhv))
END IF
DO i = 1, n
d(i) = tempd * d(i) + tempv * v(i)
END DO
vmax = rho * rho * MAX(tempa,tempb,tempc)
170 RETURN
END SUBROUTINE lagmax
END MODULE Powell_Optimize
!-------------------------------------------------------------------------------
!
! Main program scriptmini
!
! reads input and starts optimisation
!
!-------------------------------------------------------------------------------
PROGRAM scriptmini
USE Powell_Optimize
IMPLICIT NONE
INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12, 60)
REAL (dp) :: rhobeg, rhoend
REAL(dp), DIMENSION(:), ALLOCATABLE :: x
INTEGER :: iprint, maxfun, n,istat
OPEN(UNIT=17,FILE="scriptmini.in",FORM="FORMATTED",STATUS="OLD",IOSTAT=ISTAT)
IF (ISTAT.NE.0) THEN
CALL write_documentation()
STOP " Unable to open scriptmini.in "
END IF
READ(17,*,IOSTAT=ISTAT) N
IF (ISTAT.NE.0) THEN
CALL write_documentation()
STOP " Unable to read N in scriptmini.in "
END IF
ALLOCATE(x(N))
READ(17,*,IOSTAT=ISTAT) rhobeg,rhoend
IF (ISTAT.NE.0) THEN
CALL write_documentation()
STOP " Unable to read rhobeg,rhoend in scriptmini.in "
END IF
READ(17,*,IOSTAT=ISTAT) maxfun
IF (ISTAT.NE.0) THEN
CALL write_documentation()
STOP " Unable to read maxfun in scriptmini.in "
END IF
READ(17,*,IOSTAT=ISTAT) iprint
IF (ISTAT.NE.0) THEN
CALL write_documentation()
STOP " Unable to read iprint in scriptmini.in "
END IF
READ(17,*,IOSTAT=ISTAT) x
IF (ISTAT.NE.0) THEN
CALL write_documentation()
STOP " Unable to read x in scriptmini.in "
END IF
IF (.FALSE.) THEN
CALL uobyqa (n, x, rhobeg, rhoend, iprint, maxfun)
ELSE
CALL newuoa (n, x, rhobeg, rhoend, iprint, maxfun)
ENDIF
DEALLOCATE(x)
END PROGRAM scriptmini
!-------------------------------------------------------------------------------
!
! calfun: the actual evaluation of the script
!
!
!-------------------------------------------------------------------------------
SUBROUTINE calfun(n, x, f)
IMPLICIT NONE
INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12, 60)
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN) :: x(:)
REAL (dp), INTENT(OUT) :: f
character(LEN=40) :: format
! write variables on a single line in the file
WRITE(format,'(A1,I4.4,A12)') '(',n,'(1X,F30.20))'
OPEN(UNIT=17,FILE="scriptmini_eval.in")
WRITE(UNIT=17,FMT=format) x(1:n)
CLOSE(UNIT=17)
! execute scriptmini_eval
CALL system("./scriptmini_eval")
! read value of the energy back
OPEN(UNIT=17,FILE="scriptmini_eval.out")
READ(UNIT=17,FMT=*) f
CLOSE(UNIT=17)
END SUBROUTINE calfun
!
!
!
!
!
SUBROUTINE NEWUOA (N,X,RHOBEG,RHOEND,IPRINT,MAXFUN)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION X(*)
REAL*8, DIMENSION(:), ALLOCATABLE :: W
NPT=2*N+1
ALLOCATE(W((NPT+13)*(NPT+N)+3*N*(N+3)/2))
!
! This subroutine seeks the least value of a function of many variab
! by a trust region method that forms quadratic models by interpolat
! There can be some freedom in the interpolation conditions, which i
! taken up by minimizing the Frobenius norm of the change to the sec
! derivative of the quadratic model, beginning with a zero matrix. T
! arguments of the subroutine are as follows.
!
! N must be set to the number of variables and must be at least two.
! NPT is the number of interpolation conditions. Its value must be i
! interval [N+2,(N+1)(N+2)/2].
! Initial values of the variables must be set in X(1),X(2),...,X(N).
! will be changed to the values that give the least calculated F.
! RHOBEG and RHOEND must be set to the initial and final values of a
! region radius, so both must be positive with RHOEND<=RHOBEG. Typ
! RHOBEG should be about one tenth of the greatest expected change
! variable, and RHOEND should indicate the accuracy that is requir
! the final values of the variables.
! The value of IPRINT should be set to 0, 1, 2 or 3, which controls
! amount of printing. Specifically, there is no output if IPRINT=0
! there is output only at the return if IPRINT=1. Otherwise, each
! value of RHO is printed, with the best vector of variables so fa
! the corresponding value of the objective function. Further, each
! value of F with its variables are output if IPRINT=3.
! MAXFUN must be set to an upper bound on the number of calls of CAL
! The array W will be used for working space. Its length must be at
! (NPT+13)*(NPT+N)+3*N*(N+3)/2.
!
! SUBROUTINE CALFUN (N,X,F) must be provided by the user. It must se
! the value of the objective function for the variables X(1),X(2),..
!
! Partition the working space array, so that different parts of it c
! treated separately by the subroutine that performs the main calcul
!
NP=N+1
NPTM=NPT-NP
IF (NPT .LT. N+2 .OR. NPT .GT. ((N+2)*NP)/2) THEN
PRINT 10
10 FORMAT (/4X,'Return from NEWUOA because NPT is not in', &
& ' the required interval')
GO TO 20
END IF
NDIM=NPT+N
IXB=1
IXO=IXB+N
IXN=IXO+N
IXP=IXN+N
IFV=IXP+N*NPT
IGQ=IFV+NPT
IHQ=IGQ+N
IPQ=IHQ+(N*NP)/2
IBMAT=IPQ+NPT
IZMAT=IBMAT+NDIM*N
ID=IZMAT+NPT*NPTM
IVL=ID+N
IW=IVL+NDIM
!
! The above settings provide a partition of W for subroutine NEWUOB.
! The partition requires the first NPT*(NPT+N)+5*N*(N+3)/2 elements
! W plus the space that is needed by the last array of NEWUOB.
!
CALL NEWUOB (N,NPT,X,RHOBEG,RHOEND,IPRINT,MAXFUN,W(IXB), &
& W(IXO),W(IXN),W(IXP),W(IFV),W(IGQ),W(IHQ),W(IPQ),W(IBMAT), &
& W(IZMAT),NDIM,W(ID),W(IVL),W(IW))
20 RETURN
END
SUBROUTINE NEWUOB (N,NPT,X,RHOBEG,RHOEND,IPRINT,MAXFUN,XBASE, &
& XOPT,XNEW,XPT,FVAL,GQ,HQ,PQ,BMAT,ZMAT,NDIM,D,VLAG,W)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION X(1:N),XBASE(*),XOPT(*),XNEW(*),XPT(NPT,*),FVAL(*), &
& GQ(*),HQ(*),PQ(*),BMAT(NDIM,*),ZMAT(NPT,*),D(*),VLAG(*),W(*)
!
! The arguments N, NPT, X, RHOBEG, RHOEND, IPRINT and MAXFUN are ide
! to the corresponding arguments in SUBROUTINE NEWUOA.
! XBASE will hold a shift of origin that should reduce the contribut
! from rounding errors to values of the model and Lagrange functio
! XOPT will be set to the displacement from XBASE of the vector of
! variables that provides the least calculated F so far.
! XNEW will be set to the displacement from XBASE of the vector of
! variables for the current calculation of F.
! XPT will contain the interpolation point coordinates relative to X
! FVAL will hold the values of F at the interpolation points.
! GQ will hold the gradient of the quadratic model at XBASE.
! HQ will hold the explicit second derivatives of the quadratic mode
! PQ will contain the parameters of the implicit second derivatives
! the quadratic model.
! BMAT will hold the last N columns of H.
! ZMAT will hold the factorization of the leading NPT by NPT submatr
! H, this factorization being ZMAT times Diag(DZ) times ZMAT^T, wh
! the elements of DZ are plus or minus one, as specified by IDZ.
! NDIM is the first dimension of BMAT and has the value NPT+N.
! D is reserved for trial steps from XOPT.
! VLAG will contain the values of the Lagrange functions at a new po
! They are part of a product that requires VLAG to be of length ND
! The array W will be used for working space. Its length must be at
! 10*NDIM = 10*(NPT+N).
!
! Set some constants.
!
INTERFACE
SUBROUTINE calfun(n, x, f)
IMPLICIT NONE
INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12, 60)
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN) :: x(:)
REAL (dp), INTENT(OUT) :: f
END SUBROUTINE calfun
END INTERFACE
HALF=0.5D0
ONE=1.0D0
TENTH=0.1D0
ZERO=0.0D0
NP=N+1
NH=(N*NP)/2
NPTM=NPT-NP
NFTEST=MAX0(MAXFUN,1)
!
! Set the initial elements of XPT, BMAT, HQ, PQ and ZMAT to zero.
!
DO 20 J=1,N
XBASE(J)=X(J)
DO 10 K=1,NPT
10 XPT(K,J)=ZERO
DO 20 I=1,NDIM
20 BMAT(I,J)=ZERO
DO 30 IH=1,NH
30 HQ(IH)=ZERO
DO 40 K=1,NPT
PQ(K)=ZERO
DO 40 J=1,NPTM
40 ZMAT(K,J)=ZERO
!
! Begin the initialization procedure. NF becomes one more than the n
! of function values so far. The coordinates of the displacement of
! next initial interpolation point from XBASE are set in XPT(NF,.).
!
RHOSQ=RHOBEG*RHOBEG
RECIP=ONE/RHOSQ
RECIQ=DSQRT(HALF)/RHOSQ
NF=0
50 NFM=NF
NFMM=NF-N
NF=NF+1
IF (NFM .LE. 2*N) THEN
IF (NFM .GE. 1 .AND. NFM .LE. N) THEN
XPT(NF,NFM)=RHOBEG
ELSE IF (NFM .GT. N) THEN
XPT(NF,NFMM)=-RHOBEG
END IF
ELSE
ITEMP=(NFMM-1)/N
JPT=NFM-ITEMP*N-N
IPT=JPT+ITEMP
IF (IPT .GT. N) THEN
ITEMP=JPT
JPT=IPT-N
IPT=ITEMP
END IF
XIPT=RHOBEG
IF (FVAL(IPT+NP) .LT. FVAL(IPT+1)) XIPT=-XIPT
XJPT=RHOBEG
IF (FVAL(JPT+NP) .LT. FVAL(JPT+1)) XJPT=-XJPT
XPT(NF,IPT)=XIPT
XPT(NF,JPT)=XJPT
END IF
!
! Calculate the next value of F, label 70 being reached immediately
! after this calculation. The least function value so far and its in
! are required.
!
DO 60 J=1,N
60 X(J)=XPT(NF,J)+XBASE(J)
GOTO 310
70 FVAL(NF)=F
IF (NF .EQ. 1) THEN
FBEG=F
FOPT=F
KOPT=1
ELSE IF (F .LT. FOPT) THEN
FOPT=F
KOPT=NF
END IF
!
! Set the nonzero initial elements of BMAT and the quadratic model i
! the cases when NF is at most 2*N+1.
!
IF (NFM .LE. 2*N) THEN
IF (NFM .GE. 1 .AND. NFM .LE. N) THEN
GQ(NFM)=(F-FBEG)/RHOBEG
IF (NPT .LT. NF+N) THEN
BMAT(1,NFM)=-ONE/RHOBEG
BMAT(NF,NFM)=ONE/RHOBEG
BMAT(NPT+NFM,NFM)=-HALF*RHOSQ
END IF
ELSE IF (NFM .GT. N) THEN
BMAT(NF-N,NFMM)=HALF/RHOBEG
BMAT(NF,NFMM)=-HALF/RHOBEG
ZMAT(1,NFMM)=-RECIQ-RECIQ
ZMAT(NF-N,NFMM)=RECIQ
ZMAT(NF,NFMM)=RECIQ
IH=(NFMM*(NFMM+1))/2
TEMP=(FBEG-F)/RHOBEG
HQ(IH)=(GQ(NFMM)-TEMP)/RHOBEG
GQ(NFMM)=HALF*(GQ(NFMM)+TEMP)
END IF
!
! Set the off-diagonal second derivatives of the Lagrange functions
! the initial quadratic model.
!
ELSE
IH=(IPT*(IPT-1))/2+JPT
IF (XIPT .LT. ZERO) IPT=IPT+N
IF (XJPT .LT. ZERO) JPT=JPT+N
ZMAT(1,NFMM)=RECIP
ZMAT(NF,NFMM)=RECIP
ZMAT(IPT+1,NFMM)=-RECIP
ZMAT(JPT+1,NFMM)=-RECIP
HQ(IH)=(FBEG-FVAL(IPT+1)-FVAL(JPT+1)+F)/(XIPT*XJPT)
END IF
IF (NF .LT. NPT) GOTO 50
!
! Begin the iterative procedure, because the initial model is comple
!
RHO=RHOBEG
DELTA=RHO
IDZ=1
DIFFA=ZERO
DIFFB=ZERO
ITEST=0
XOPTSQ=ZERO
DO 80 I=1,N
XOPT(I)=XPT(KOPT,I)
80 XOPTSQ=XOPTSQ+XOPT(I)**2
90 NFSAV=NF
!
! Generate the next trust region step and test its length. Set KNEW
! to -1 if the purpose of the next F will be to improve the model.
!
100 KNEW=0
CALL TRSAPP (N,NPT,XOPT,XPT,GQ,HQ,PQ,DELTA,D,W,W(NP), &
& W(NP+N),W(NP+2*N),CRVMIN)
DSQ=ZERO
DO 110 I=1,N
110 DSQ=DSQ+D(I)**2
DNORM=DMIN1(DELTA,DSQRT(DSQ))
IF (DNORM .LT. HALF*RHO) THEN
KNEW=-1
DELTA=TENTH*DELTA
RATIO=-1.0D0
IF (DELTA .LE. 1.5D0*RHO) DELTA=RHO
IF (NF .LE. NFSAV+2) GOTO 460
TEMP=0.125D0*CRVMIN*RHO*RHO
IF (TEMP .LE. DMAX1(DIFFA,DIFFB,DIFFC)) GOTO 460
GOTO 490
END IF
!
! Shift XBASE if XOPT may be too far from XBASE. First make the chan
! to BMAT that do not depend on ZMAT.
!
120 IF (DSQ .LE. 1.0D-3*XOPTSQ) THEN
TEMPQ=0.25D0*XOPTSQ
DO 140 K=1,NPT
SUM=ZERO
DO 130 I=1,N
130 SUM=SUM+XPT(K,I)*XOPT(I)
TEMP=PQ(K)*SUM
SUM=SUM-HALF*XOPTSQ
W(NPT+K)=SUM
DO 140 I=1,N
GQ(I)=GQ(I)+TEMP*XPT(K,I)
XPT(K,I)=XPT(K,I)-HALF*XOPT(I)
VLAG(I)=BMAT(K,I)
W(I)=SUM*XPT(K,I)+TEMPQ*XOPT(I)
IP=NPT+I
DO 140 J=1,I
140 BMAT(IP,J)=BMAT(IP,J)+VLAG(I)*W(J)+W(I)*VLAG(J)
!
! Then the revisions of BMAT that depend on ZMAT are calculated.
!
DO 180 K=1,NPTM
SUMZ=ZERO
DO 150 I=1,NPT
SUMZ=SUMZ+ZMAT(I,K)
150 W(I)=W(NPT+I)*ZMAT(I,K)
DO 170 J=1,N
SUM=TEMPQ*SUMZ*XOPT(J)
DO 160 I=1,NPT
160 SUM=SUM+W(I)*XPT(I,J)
VLAG(J)=SUM
IF (K .LT. IDZ) SUM=-SUM
DO 170 I=1,NPT
170 BMAT(I,J)=BMAT(I,J)+SUM*ZMAT(I,K)
DO 180 I=1,N
IP=I+NPT
TEMP=VLAG(I)
IF (K .LT. IDZ) TEMP=-TEMP
DO 180 J=1,I
180 BMAT(IP,J)=BMAT(IP,J)+TEMP*VLAG(J)
!
! The following instructions complete the shift of XBASE, including
! the changes to the parameters of the quadratic model.
!
IH=0
DO 200 J=1,N
W(J)=ZERO
DO 190 K=1,NPT
W(J)=W(J)+PQ(K)*XPT(K,J)
190 XPT(K,J)=XPT(K,J)-HALF*XOPT(J)
DO 200 I=1,J
IH=IH+1
IF (I .LT. J) GQ(J)=GQ(J)+HQ(IH)*XOPT(I)
GQ(I)=GQ(I)+HQ(IH)*XOPT(J)
HQ(IH)=HQ(IH)+W(I)*XOPT(J)+XOPT(I)*W(J)
200 BMAT(NPT+I,J)=BMAT(NPT+J,I)
DO 210 J=1,N
XBASE(J)=XBASE(J)+XOPT(J)
210 XOPT(J)=ZERO
XOPTSQ=ZERO
END IF
!
! Pick the model step if KNEW is positive. A different choice of D
! may be made later, if the choice of D by BIGLAG causes substantial
! cancellation in DENOM.
!
IF (KNEW .GT. 0) THEN
CALL BIGLAG (N,NPT,XOPT,XPT,BMAT,ZMAT,IDZ,NDIM,KNEW,DSTEP, &
& D,ALPHA,VLAG,VLAG(NPT+1),W,W(NP),W(NP+N))
END IF
!
! Calculate VLAG and BETA for the current choice of D. The first NPT
! components of W_check will be held in W.
!
DO 230 K=1,NPT
SUMA=ZERO
SUMB=ZERO
SUM=ZERO
DO 220 J=1,N
SUMA=SUMA+XPT(K,J)*D(J)
SUMB=SUMB+XPT(K,J)*XOPT(J)
220 SUM=SUM+BMAT(K,J)*D(J)
W(K)=SUMA*(HALF*SUMA+SUMB)
230 VLAG(K)=SUM
BETA=ZERO
DO 250 K=1,NPTM
SUM=ZERO
DO 240 I=1,NPT
240 SUM=SUM+ZMAT(I,K)*W(I)
IF (K .LT. IDZ) THEN
BETA=BETA+SUM*SUM
SUM=-SUM
ELSE
BETA=BETA-SUM*SUM
END IF
DO 250 I=1,NPT
250 VLAG(I)=VLAG(I)+SUM*ZMAT(I,K)
BSUM=ZERO
DX=ZERO
DO 280 J=1,N
SUM=ZERO
DO 260 I=1,NPT
260 SUM=SUM+W(I)*BMAT(I,J)
BSUM=BSUM+SUM*D(J)
JP=NPT+J
DO 270 K=1,N
270 SUM=SUM+BMAT(JP,K)*D(K)
VLAG(JP)=SUM
BSUM=BSUM+SUM*D(J)
280 DX=DX+D(J)*XOPT(J)
BETA=DX*DX+DSQ*(XOPTSQ+DX+DX+HALF*DSQ)+BETA-BSUM
VLAG(KOPT)=VLAG(KOPT)+ONE
!
! If KNEW is positive and if the cancellation in DENOM is unacceptab
! then BIGDEN calculates an alternative model step, XNEW being used
! working space.
!
IF (KNEW .GT. 0) THEN
TEMP=ONE+ALPHA*BETA/VLAG(KNEW)**2
IF (DABS(TEMP) .LE. 0.8D0) THEN
CALL BIGDEN (N,NPT,XOPT,XPT,BMAT,ZMAT,IDZ,NDIM,KOPT, &
& KNEW,D,W,VLAG,BETA,XNEW,W(NDIM+1),W(6*NDIM+1))
END IF
END IF
!
! Calculate the next value of the objective function.
!
290 DO 300 I=1,N
XNEW(I)=XOPT(I)+D(I)
300 X(I)=XBASE(I)+XNEW(I)
NF=NF+1
310 IF (NF .GT. NFTEST) THEN
NF=NF-1
IF (IPRINT .GT. 0) PRINT 320
320 FORMAT (/4X,'Return from NEWUOA because CALFUN has been', &
& ' called MAXFUN times.')
GOTO 530
END IF
CALL CALFUN (N,X,F)
IF (IPRINT .EQ. 3) THEN
PRINT 330, NF,F,(X(I),I=1,N)
330 FORMAT (/4X,'Function number',I6,' F =',1PD18.10, &
& ' The corresponding X is:'/(2X,5D15.6))
END IF
IF (NF .LE. NPT) GOTO 70
IF (KNEW .EQ. -1) GOTO 530
!
! Use the quadratic model to predict the change in F due to the step
! and set DIFF to the error of this prediction.
!
VQUAD=ZERO
IH=0
DO 340 J=1,N
VQUAD=VQUAD+D(J)*GQ(J)
DO 340 I=1,J
IH=IH+1
TEMP=D(I)*XNEW(J)+D(J)*XOPT(I)
IF (I .EQ. J) TEMP=HALF*TEMP
340 VQUAD=VQUAD+TEMP*HQ(IH)
DO 350 K=1,NPT
350 VQUAD=VQUAD+PQ(K)*W(K)
DIFF=F-FOPT-VQUAD
DIFFC=DIFFB
DIFFB=DIFFA
DIFFA=DABS(DIFF)
IF (DNORM .GT. RHO) NFSAV=NF
!
! Update FOPT and XOPT if the new F is the least value of the object
! function so far. The branch when KNEW is positive occurs if D is n
! a trust region step.
!
FSAVE=FOPT
IF (F .LT. FOPT) THEN
FOPT=F
XOPTSQ=ZERO
DO 360 I=1,N
XOPT(I)=XNEW(I)
360 XOPTSQ=XOPTSQ+XOPT(I)**2
END IF
KSAVE=KNEW
IF (KNEW .GT. 0) GOTO 410
!
! Pick the next value of DELTA after a trust region step.
!
IF (VQUAD .GE. ZERO) THEN
IF (IPRINT .GT. 0) PRINT 370
370 FORMAT (/4X,'Return from NEWUOA because a trust', &
& ' region step has failed to reduce Q.')
GOTO 530
END IF
RATIO=(F-FSAVE)/VQUAD
IF (RATIO .LE. TENTH) THEN
DELTA=HALF*DNORM
ELSE IF (RATIO .LE. 0.7D0) THEN
DELTA=DMAX1(HALF*DELTA,DNORM)
ELSE
DELTA=DMAX1(HALF*DELTA,DNORM+DNORM)
END IF
IF (DELTA .LE. 1.5D0*RHO) DELTA=RHO
!
! Set KNEW to the index of the next interpolation point to be delete
!
RHOSQ=DMAX1(TENTH*DELTA,RHO)**2
KTEMP=0
DETRAT=ZERO
IF (F .GE. FSAVE) THEN
KTEMP=KOPT
DETRAT=ONE
END IF
DO 400 K=1,NPT
HDIAG=ZERO
DO 380 J=1,NPTM
TEMP=ONE
IF (J .LT. IDZ) TEMP=-ONE
380 HDIAG=HDIAG+TEMP*ZMAT(K,J)**2
TEMP=DABS(BETA*HDIAG+VLAG(K)**2)
DISTSQ=ZERO
DO 390 J=1,N
390 DISTSQ=DISTSQ+(XPT(K,J)-XOPT(J))**2
IF (DISTSQ .GT. RHOSQ) TEMP=TEMP*(DISTSQ/RHOSQ)**3
IF (TEMP .GT. DETRAT .AND. K .NE. KTEMP) THEN
DETRAT=TEMP
KNEW=K
END IF
400 END DO
IF (KNEW .EQ. 0) GOTO 460
!
! Update BMAT, ZMAT and IDZ, so that the KNEW-th interpolation point
! can be moved. Begin the updating of the quadratic model, starting
! with the explicit second derivative term.
!
410 CALL UPDATE (N,NPT,BMAT,ZMAT,IDZ,NDIM,VLAG,BETA,KNEW,W)
FVAL(KNEW)=F
IH=0
DO 420 I=1,N
TEMP=PQ(KNEW)*XPT(KNEW,I)
DO 420 J=1,I
IH=IH+1
420 HQ(IH)=HQ(IH)+TEMP*XPT(KNEW,J)
PQ(KNEW)=ZERO
!
! Update the other second derivative parameters, and then the gradie
! vector of the model. Also include the new interpolation point.
!
DO 440 J=1,NPTM
TEMP=DIFF*ZMAT(KNEW,J)
IF (J .LT. IDZ) TEMP=-TEMP
DO 440 K=1,NPT
440 PQ(K)=PQ(K)+TEMP*ZMAT(K,J)
GQSQ=ZERO
DO 450 I=1,N
GQ(I)=GQ(I)+DIFF*BMAT(KNEW,I)
GQSQ=GQSQ+GQ(I)**2
450 XPT(KNEW,I)=XNEW(I)
!
! If a trust region step makes a small change to the objective funct
! then calculate the gradient of the least Frobenius norm interpolan
! XBASE, and store it in W, using VLAG for a vector of right hand si
!
IF (KSAVE .EQ. 0 .AND. DELTA .EQ. RHO) THEN
IF (DABS(RATIO) .GT. 1.0D-2) THEN
ITEST=0
ELSE
DO 700 K=1,NPT
700 VLAG(K)=FVAL(K)-FVAL(KOPT)
GISQ=ZERO
DO 720 I=1,N
SUM=ZERO
DO 710 K=1,NPT
710 SUM=SUM+BMAT(K,I)*VLAG(K)
GISQ=GISQ+SUM*SUM
720 W(I)=SUM
!
! Test whether to replace the new quadratic model by the least Frobe
! norm interpolant, making the replacement if the test is satisfied.
!
ITEST=ITEST+1
IF (GQSQ .LT. 1.0D2*GISQ) ITEST=0
IF (ITEST .GE. 3) THEN
DO 730 I=1,N
730 GQ(I)=W(I)
DO 740 IH=1,NH
740 HQ(IH)=ZERO
DO 760 J=1,NPTM
W(J)=ZERO
DO 750 K=1,NPT
750 W(J)=W(J)+VLAG(K)*ZMAT(K,J)
760 IF (J .LT. IDZ) W(J)=-W(J)
DO 770 K=1,NPT
PQ(K)=ZERO
DO 770 J=1,NPTM
770 PQ(K)=PQ(K)+ZMAT(K,J)*W(J)
ITEST=0
END IF
END IF
END IF
IF (F .LT. FSAVE) KOPT=KNEW
!
! If a trust region step has provided a sufficient decrease in F, th
! branch for another trust region calculation. The case KSAVE>0 occu
! when the new function value was calculated by a model step.
!
IF (F .LE. FSAVE+TENTH*VQUAD) GOTO 100
IF (KSAVE .GT. 0) GOTO 100
!
! Alternatively, find out if the interpolation points are close enou
! to the best point so far.
!
KNEW=0
460 DISTSQ=4.0D0*DELTA*DELTA
DO 480 K=1,NPT
SUM=ZERO
DO 470 J=1,N
470 SUM=SUM+(XPT(K,J)-XOPT(J))**2
IF (SUM .GT. DISTSQ) THEN
KNEW=K
DISTSQ=SUM
END IF
480 END DO
!
! If KNEW is positive, then set DSTEP, and branch back for the next
! iteration, which will generate a "model step".
!
IF (KNEW .GT. 0) THEN
DSTEP=DMAX1(DMIN1(TENTH*DSQRT(DISTSQ),HALF*DELTA),RHO)
DSQ=DSTEP*DSTEP
GOTO 120
END IF
IF (RATIO .GT. ZERO) GOTO 100
IF (DMAX1(DELTA,DNORM) .GT. RHO) GOTO 100
!
! The calculations with the current value of RHO are complete. Pick
! next values of RHO and DELTA.
!
490 IF (RHO .GT. RHOEND) THEN
DELTA=HALF*RHO
RATIO=RHO/RHOEND
IF (RATIO .LE. 16.0D0) THEN
RHO=RHOEND
ELSE IF (RATIO .LE. 250.0D0) THEN
RHO=DSQRT(RATIO)*RHOEND
ELSE
RHO=TENTH*RHO
END IF
DELTA=DMAX1(DELTA,RHO)
IF (IPRINT .GE. 2) THEN
IF (IPRINT .GE. 3) PRINT 500
500 FORMAT (5X)
PRINT 510, RHO,NF
510 FORMAT (/4X,'New RHO =',1PD11.4,5X,'Number of', &
& ' function values =',I6)
PRINT 520, FOPT,(XBASE(I)+XOPT(I),I=1,N)
520 FORMAT (4X,'Least value of F =',1PD23.15,9X, &
& 'The corresponding X is:'/(2X,5D15.6))
END IF
GOTO 90
END IF
!
! Return from the calculation, after another Newton-Raphson step, if
! it is too short to have been tried before.
!
IF (KNEW .EQ. -1) GOTO 290
530 IF (FOPT .LE. F) THEN
DO 540 I=1,N
540 X(I)=XBASE(I)+XOPT(I)
F=FOPT
END IF
IF (IPRINT .GE. 1) THEN
PRINT 550, NF
550 FORMAT (/4X,'At the return from NEWUOA',5X, &
& 'Number of function values =',I6)
PRINT 520, F,(X(I),I=1,N)
END IF
RETURN
END
SUBROUTINE BIGDEN (N,NPT,XOPT,XPT,BMAT,ZMAT,IDZ,NDIM,KOPT, &
& KNEW,D,W,VLAG,BETA,S,WVEC,PROD)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION XOPT(*),XPT(NPT,*),BMAT(NDIM,*),ZMAT(NPT,*),D(*), &
& W(*),VLAG(*),S(*),WVEC(NDIM,*),PROD(NDIM,*)
DIMENSION DEN(9),DENEX(9),PAR(9)
!
! N is the number of variables.
! NPT is the number of interpolation equations.
! XOPT is the best interpolation point so far.
! XPT contains the coordinates of the current interpolation points.
! BMAT provides the last N columns of H.
! ZMAT and IDZ give a factorization of the first NPT by NPT submatri
! NDIM is the first dimension of BMAT and has the value NPT+N.
! KOPT is the index of the optimal interpolation point.
! KNEW is the index of the interpolation point that is going to be m
! D will be set to the step from XOPT to the new point, and on entry
! should be the D that was calculated by the last call of BIGLAG.
! length of the initial D provides a trust region bound on the fin
! W will be set to Wcheck for the final choice of D.
! VLAG will be set to Theta*Wcheck+e_b for the final choice of D.
! BETA will be set to the value that will occur in the updating form
! when the KNEW-th interpolation point is moved to its new positio
! S, WVEC, PROD and the private arrays DEN, DENEX and PAR will be us
! for working space.
!
! D is calculated in a way that should provide a denominator with a
! modulus in the updating formula when the KNEW-th interpolation poi
! shifted to the new position XOPT+D.
!
! Set some constants.
!
HALF=0.5D0
ONE=1.0D0
QUART=0.25D0
TWO=2.0D0
ZERO=0.0D0
TWOPI=8.0D0*DATAN(ONE)
NPTM=NPT-N-1
!
! Store the first NPT elements of the KNEW-th column of H in W(N+1)
! to W(N+NPT).
!
DO 10 K=1,NPT
10 W(N+K)=ZERO
DO 20 J=1,NPTM
TEMP=ZMAT(KNEW,J)
IF (J .LT. IDZ) TEMP=-TEMP
DO 20 K=1,NPT
20 W(N+K)=W(N+K)+TEMP*ZMAT(K,J)
ALPHA=W(N+KNEW)
!
! The initial search direction D is taken from the last call of BIGL
! and the initial S is set below, usually to the direction from X_OP
! to X_KNEW, but a different direction to an interpolation point may
! be chosen, in order to prevent S from being nearly parallel to D.
!
DD=ZERO
DS=ZERO
SS=ZERO
XOPTSQ=ZERO
DO 30 I=1,N
DD=DD+D(I)**2
S(I)=XPT(KNEW,I)-XOPT(I)
DS=DS+D(I)*S(I)
SS=SS+S(I)**2
30 XOPTSQ=XOPTSQ+XOPT(I)**2
IF (DS*DS .GT. 0.99D0*DD*SS) THEN
KSAV=KNEW
DTEST=DS*DS/SS
DO 50 K=1,NPT
IF (K .NE. KOPT) THEN
DSTEMP=ZERO
SSTEMP=ZERO
DO 40 I=1,N
DIFF=XPT(K,I)-XOPT(I)
DSTEMP=DSTEMP+D(I)*DIFF
40 SSTEMP=SSTEMP+DIFF*DIFF
IF (DSTEMP*DSTEMP/SSTEMP .LT. DTEST) THEN
KSAV=K
DTEST=DSTEMP*DSTEMP/SSTEMP
DS=DSTEMP
SS=SSTEMP
END IF
END IF
50 CONTINUE
DO 60 I=1,N
60 S(I)=XPT(KSAV,I)-XOPT(I)
END IF
SSDEN=DD*SS-DS*DS
ITERC=0
DENSAV=ZERO
!
! Begin the iteration by overwriting S with a vector that has the
! required length and direction.
!
70 ITERC=ITERC+1
TEMP=ONE/DSQRT(SSDEN)
XOPTD=ZERO
XOPTS=ZERO
DO 80 I=1,N
S(I)=TEMP*(DD*S(I)-DS*D(I))
XOPTD=XOPTD+XOPT(I)*D(I)
80 XOPTS=XOPTS+XOPT(I)*S(I)
!
! Set the coefficients of the first two terms of BETA.
!
TEMPA=HALF*XOPTD*XOPTD
TEMPB=HALF*XOPTS*XOPTS
DEN(1)=DD*(XOPTSQ+HALF*DD)+TEMPA+TEMPB
DEN(2)=TWO*XOPTD*DD
DEN(3)=TWO*XOPTS*DD
DEN(4)=TEMPA-TEMPB
DEN(5)=XOPTD*XOPTS
DO 90 I=6,9
90 DEN(I)=ZERO
!
! Put the coefficients of Wcheck in WVEC.
!
DO 110 K=1,NPT
TEMPA=ZERO
TEMPB=ZERO
TEMPC=ZERO
DO 100 I=1,N
TEMPA=TEMPA+XPT(K,I)*D(I)
TEMPB=TEMPB+XPT(K,I)*S(I)
100 TEMPC=TEMPC+XPT(K,I)*XOPT(I)
WVEC(K,1)=QUART*(TEMPA*TEMPA+TEMPB*TEMPB)
WVEC(K,2)=TEMPA*TEMPC
WVEC(K,3)=TEMPB*TEMPC
WVEC(K,4)=QUART*(TEMPA*TEMPA-TEMPB*TEMPB)
110 WVEC(K,5)=HALF*TEMPA*TEMPB
DO 120 I=1,N
IP=I+NPT
WVEC(IP,1)=ZERO
WVEC(IP,2)=D(I)
WVEC(IP,3)=S(I)
WVEC(IP,4)=ZERO
120 WVEC(IP,5)=ZERO
!
! Put the coefficients of THETA*Wcheck in PROD.
!
DO 190 JC=1,5
NW=NPT
IF (JC .EQ. 2 .OR. JC .EQ. 3) NW=NDIM
DO 130 K=1,NPT
130 PROD(K,JC)=ZERO
DO 150 J=1,NPTM
SUM=ZERO
DO 140 K=1,NPT
140 SUM=SUM+ZMAT(K,J)*WVEC(K,JC)
IF (J .LT. IDZ) SUM=-SUM
DO 150 K=1,NPT
150 PROD(K,JC)=PROD(K,JC)+SUM*ZMAT(K,J)
IF (NW .EQ. NDIM) THEN
DO 170 K=1,NPT
SUM=ZERO
DO 160 J=1,N
160 SUM=SUM+BMAT(K,J)*WVEC(NPT+J,JC)
170 PROD(K,JC)=PROD(K,JC)+SUM
END IF
DO 190 J=1,N
SUM=ZERO
DO 180 I=1,NW
180 SUM=SUM+BMAT(I,J)*WVEC(I,JC)
190 PROD(NPT+J,JC)=SUM
!
! Include in DEN the part of BETA that depends on THETA.
!
DO 210 K=1,NDIM
SUM=ZERO
DO 200 I=1,5
PAR(I)=HALF*PROD(K,I)*WVEC(K,I)
200 SUM=SUM+PAR(I)
DEN(1)=DEN(1)-PAR(1)-SUM
TEMPA=PROD(K,1)*WVEC(K,2)+PROD(K,2)*WVEC(K,1)
TEMPB=PROD(K,2)*WVEC(K,4)+PROD(K,4)*WVEC(K,2)
TEMPC=PROD(K,3)*WVEC(K,5)+PROD(K,5)*WVEC(K,3)
DEN(2)=DEN(2)-TEMPA-HALF*(TEMPB+TEMPC)
DEN(6)=DEN(6)-HALF*(TEMPB-TEMPC)
TEMPA=PROD(K,1)*WVEC(K,3)+PROD(K,3)*WVEC(K,1)
TEMPB=PROD(K,2)*WVEC(K,5)+PROD(K,5)*WVEC(K,2)
TEMPC=PROD(K,3)*WVEC(K,4)+PROD(K,4)*WVEC(K,3)
DEN(3)=DEN(3)-TEMPA-HALF*(TEMPB-TEMPC)
DEN(7)=DEN(7)-HALF*(TEMPB+TEMPC)
TEMPA=PROD(K,1)*WVEC(K,4)+PROD(K,4)*WVEC(K,1)
DEN(4)=DEN(4)-TEMPA-PAR(2)+PAR(3)
TEMPA=PROD(K,1)*WVEC(K,5)+PROD(K,5)*WVEC(K,1)
TEMPB=PROD(K,2)*WVEC(K,3)+PROD(K,3)*WVEC(K,2)
DEN(5)=DEN(5)-TEMPA-HALF*TEMPB
DEN(8)=DEN(8)-PAR(4)+PAR(5)
TEMPA=PROD(K,4)*WVEC(K,5)+PROD(K,5)*WVEC(K,4)
210 DEN(9)=DEN(9)-HALF*TEMPA
!
! Extend DEN so that it holds all the coefficients of DENOM.
!
SUM=ZERO
DO 220 I=1,5
PAR(I)=HALF*PROD(KNEW,I)**2
220 SUM=SUM+PAR(I)
DENEX(1)=ALPHA*DEN(1)+PAR(1)+SUM
TEMPA=TWO*PROD(KNEW,1)*PROD(KNEW,2)
TEMPB=PROD(KNEW,2)*PROD(KNEW,4)
TEMPC=PROD(KNEW,3)*PROD(KNEW,5)
DENEX(2)=ALPHA*DEN(2)+TEMPA+TEMPB+TEMPC
DENEX(6)=ALPHA*DEN(6)+TEMPB-TEMPC
TEMPA=TWO*PROD(KNEW,1)*PROD(KNEW,3)
TEMPB=PROD(KNEW,2)*PROD(KNEW,5)
TEMPC=PROD(KNEW,3)*PROD(KNEW,4)
DENEX(3)=ALPHA*DEN(3)+TEMPA+TEMPB-TEMPC
DENEX(7)=ALPHA*DEN(7)+TEMPB+TEMPC
TEMPA=TWO*PROD(KNEW,1)*PROD(KNEW,4)
DENEX(4)=ALPHA*DEN(4)+TEMPA+PAR(2)-PAR(3)
TEMPA=TWO*PROD(KNEW,1)*PROD(KNEW,5)
DENEX(5)=ALPHA*DEN(5)+TEMPA+PROD(KNEW,2)*PROD(KNEW,3)
DENEX(8)=ALPHA*DEN(8)+PAR(4)-PAR(5)
DENEX(9)=ALPHA*DEN(9)+PROD(KNEW,4)*PROD(KNEW,5)
!
! Seek the value of the angle that maximizes the modulus of DENOM.
!
SUM=DENEX(1)+DENEX(2)+DENEX(4)+DENEX(6)+DENEX(8)
DENOLD=SUM
DENMAX=SUM
ISAVE=0
IU=49
TEMP=TWOPI/DBLE(IU+1)
PAR(1)=ONE
DO 250 I=1,IU
ANGLE=DBLE(I)*TEMP
PAR(2)=DCOS(ANGLE)
PAR(3)=DSIN(ANGLE)
DO 230 J=4,8,2
PAR(J)=PAR(2)*PAR(J-2)-PAR(3)*PAR(J-1)
230 PAR(J+1)=PAR(2)*PAR(J-1)+PAR(3)*PAR(J-2)
SUMOLD=SUM
SUM=ZERO
DO 240 J=1,9
240 SUM=SUM+DENEX(J)*PAR(J)
IF (DABS(SUM) .GT. DABS(DENMAX)) THEN
DENMAX=SUM
ISAVE=I
TEMPA=SUMOLD
ELSE IF (I .EQ. ISAVE+1) THEN
TEMPB=SUM
END IF
250 END DO
IF (ISAVE .EQ. 0) TEMPA=SUM
IF (ISAVE .EQ. IU) TEMPB=DENOLD
STEP=ZERO
IF (TEMPA .NE. TEMPB) THEN
TEMPA=TEMPA-DENMAX
TEMPB=TEMPB-DENMAX
STEP=HALF*(TEMPA-TEMPB)/(TEMPA+TEMPB)
END IF
ANGLE=TEMP*(DBLE(ISAVE)+STEP)
!
! Calculate the new parameters of the denominator, the new VLAG vect
! and the new D. Then test for convergence.
!
PAR(2)=DCOS(ANGLE)
PAR(3)=DSIN(ANGLE)
DO 260 J=4,8,2
PAR(J)=PAR(2)*PAR(J-2)-PAR(3)*PAR(J-1)
260 PAR(J+1)=PAR(2)*PAR(J-1)+PAR(3)*PAR(J-2)
BETA=ZERO
DENMAX=ZERO
DO 270 J=1,9
BETA=BETA+DEN(J)*PAR(J)
270 DENMAX=DENMAX+DENEX(J)*PAR(J)
DO 280 K=1,NDIM
VLAG(K)=ZERO
DO 280 J=1,5
280 VLAG(K)=VLAG(K)+PROD(K,J)*PAR(J)
TAU=VLAG(KNEW)
DD=ZERO
TEMPA=ZERO
TEMPB=ZERO
DO 290 I=1,N
D(I)=PAR(2)*D(I)+PAR(3)*S(I)
W(I)=XOPT(I)+D(I)
DD=DD+D(I)**2
TEMPA=TEMPA+D(I)*W(I)
290 TEMPB=TEMPB+W(I)*W(I)
IF (ITERC .GE. N) GOTO 340
IF (ITERC .GT. 1) DENSAV=DMAX1(DENSAV,DENOLD)
IF (DABS(DENMAX) .LE. 1.1D0*DABS(DENSAV)) GOTO 340
DENSAV=DENMAX
!
! Set S to half the gradient of the denominator with respect to D.
! Then branch for the next iteration.
!
DO 300 I=1,N
TEMP=TEMPA*XOPT(I)+TEMPB*D(I)-VLAG(NPT+I)
300 S(I)=TAU*BMAT(KNEW,I)+ALPHA*TEMP
DO 320 K=1,NPT
SUM=ZERO
DO 310 J=1,N
310 SUM=SUM+XPT(K,J)*W(J)
TEMP=(TAU*W(N+K)-ALPHA*VLAG(K))*SUM
DO 320 I=1,N
320 S(I)=S(I)+TEMP*XPT(K,I)
SS=ZERO
DS=ZERO
DO 330 I=1,N
SS=SS+S(I)**2
330 DS=DS+D(I)*S(I)
SSDEN=DD*SS-DS*DS
IF (SSDEN .GE. 1.0D-8*DD*SS) GOTO 70
!
! Set the vector W before the RETURN from the subroutine.
!
340 DO 350 K=1,NDIM
W(K)=ZERO
DO 350 J=1,5
350 W(K)=W(K)+WVEC(K,J)*PAR(J)
VLAG(KOPT)=VLAG(KOPT)+ONE
RETURN
END
SUBROUTINE BIGLAG (N,NPT,XOPT,XPT,BMAT,ZMAT,IDZ,NDIM,KNEW, &
& DELTA,D,ALPHA,HCOL,GC,GD,S,W)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION XOPT(*),XPT(NPT,*),BMAT(NDIM,*),ZMAT(NPT,*),D(*), &
& HCOL(*),GC(*),GD(*),S(*),W(*)
!
! N is the number of variables.
! NPT is the number of interpolation equations.
! XOPT is the best interpolation point so far.
! XPT contains the coordinates of the current interpolation points.
! BMAT provides the last N columns of H.
! ZMAT and IDZ give a factorization of the first NPT by NPT submatri
! NDIM is the first dimension of BMAT and has the value NPT+N.
! KNEW is the index of the interpolation point that is going to be m
! DELTA is the current trust region bound.
! D will be set to the step from XOPT to the new point.
! ALPHA will be set to the KNEW-th diagonal element of the H matrix.
! HCOL, GC, GD, S and W will be used for working space.
!
! The step D is calculated in a way that attempts to maximize the mo
! of LFUNC(XOPT+D), subject to the bound ||D|| .LE. DELTA, where LFU
! the KNEW-th Lagrange function.
!
! Set some constants.
!
HALF=0.5D0
ONE=1.0D0
ZERO=0.0D0
TWOPI=8.0D0*DATAN(ONE)
DELSQ=DELTA*DELTA
NPTM=NPT-N-1
!
! Set the first NPT components of HCOL to the leading elements of th
! KNEW-th column of H.
!
ITERC=0
DO 10 K=1,NPT
10 HCOL(K)=ZERO
DO 20 J=1,NPTM
TEMP=ZMAT(KNEW,J)
IF (J .LT. IDZ) TEMP=-TEMP
DO 20 K=1,NPT
20 HCOL(K)=HCOL(K)+TEMP*ZMAT(K,J)
ALPHA=HCOL(KNEW)
!
! Set the unscaled initial direction D. Form the gradient of LFUNC a
! XOPT, and multiply D by the second derivative matrix of LFUNC.
!
DD=ZERO
DO 30 I=1,N
D(I)=XPT(KNEW,I)-XOPT(I)
GC(I)=BMAT(KNEW,I)
GD(I)=ZERO
30 DD=DD+D(I)**2
DO 50 K=1,NPT
TEMP=ZERO
SUM=ZERO
DO 40 J=1,N
TEMP=TEMP+XPT(K,J)*XOPT(J)
40 SUM=SUM+XPT(K,J)*D(J)
TEMP=HCOL(K)*TEMP
SUM=HCOL(K)*SUM
DO 50 I=1,N
GC(I)=GC(I)+TEMP*XPT(K,I)
50 GD(I)=GD(I)+SUM*XPT(K,I)
!
! Scale D and GD, with a sign change if required. Set S to another
! vector in the initial two dimensional subspace.
!
GG=ZERO
SP=ZERO
DHD=ZERO
DO 60 I=1,N
GG=GG+GC(I)**2
SP=SP+D(I)*GC(I)
60 DHD=DHD+D(I)*GD(I)
SCALE=DELTA/DSQRT(DD)
IF (SP*DHD .LT. ZERO) SCALE=-SCALE
TEMP=ZERO
IF (SP*SP .GT. 0.99D0*DD*GG) TEMP=ONE
TAU=SCALE*(DABS(SP)+HALF*SCALE*DABS(DHD))
IF (GG*DELSQ .LT. 0.01D0*TAU*TAU) TEMP=ONE
DO 70 I=1,N
D(I)=SCALE*D(I)
GD(I)=SCALE*GD(I)
70 S(I)=GC(I)+TEMP*GD(I)
!
! Begin the iteration by overwriting S with a vector that has the
! required length and direction, except that termination occurs if
! the given D and S are nearly parallel.
!
80 ITERC=ITERC+1
DD=ZERO
SP=ZERO
SS=ZERO
DO 90 I=1,N
DD=DD+D(I)**2
SP=SP+D(I)*S(I)
90 SS=SS+S(I)**2
TEMP=DD*SS-SP*SP
IF (TEMP .LE. 1.0D-8*DD*SS) GOTO 160
DENOM=DSQRT(TEMP)
DO 100 I=1,N
S(I)=(DD*S(I)-SP*D(I))/DENOM
100 W(I)=ZERO
!
! Calculate the coefficients of the objective function on the circle
! beginning with the multiplication of S by the second derivative ma
!
DO 120 K=1,NPT
SUM=ZERO
DO 110 J=1,N
110 SUM=SUM+XPT(K,J)*S(J)
SUM=HCOL(K)*SUM
DO 120 I=1,N
120 W(I)=W(I)+SUM*XPT(K,I)
CF1=ZERO
CF2=ZERO
CF3=ZERO
CF4=ZERO
CF5=ZERO
DO 130 I=1,N
CF1=CF1+S(I)*W(I)
CF2=CF2+D(I)*GC(I)
CF3=CF3+S(I)*GC(I)
CF4=CF4+D(I)*GD(I)
130 CF5=CF5+S(I)*GD(I)
CF1=HALF*CF1
CF4=HALF*CF4-CF1
!
! Seek the value of the angle that maximizes the modulus of TAU.
!
TAUBEG=CF1+CF2+CF4
TAUMAX=TAUBEG
TAUOLD=TAUBEG
ISAVE=0
IU=49
TEMP=TWOPI/DBLE(IU+1)
DO 140 I=1,IU
ANGLE=DBLE(I)*TEMP
CTH=DCOS(ANGLE)
STH=DSIN(ANGLE)
TAU=CF1+(CF2+CF4*CTH)*CTH+(CF3+CF5*CTH)*STH
IF (DABS(TAU) .GT. DABS(TAUMAX)) THEN
TAUMAX=TAU
ISAVE=I
TEMPA=TAUOLD
ELSE IF (I .EQ. ISAVE+1) THEN
TEMPB=TAU
END IF
140 TAUOLD=TAU
IF (ISAVE .EQ. 0) TEMPA=TAU
IF (ISAVE .EQ. IU) TEMPB=TAUBEG
STEP=ZERO
IF (TEMPA .NE. TEMPB) THEN
TEMPA=TEMPA-TAUMAX
TEMPB=TEMPB-TAUMAX
STEP=HALF*(TEMPA-TEMPB)/(TEMPA+TEMPB)
END IF
ANGLE=TEMP*(DBLE(ISAVE)+STEP)
!
! Calculate the new D and GD. Then test for convergence.
!
CTH=DCOS(ANGLE)
STH=DSIN(ANGLE)
TAU=CF1+(CF2+CF4*CTH)*CTH+(CF3+CF5*CTH)*STH
DO 150 I=1,N
D(I)=CTH*D(I)+STH*S(I)
GD(I)=CTH*GD(I)+STH*W(I)
150 S(I)=GC(I)+GD(I)
IF (DABS(TAU) .LE. 1.1D0*DABS(TAUBEG)) GOTO 160
IF (ITERC .LT. N) GOTO 80
160 RETURN
END
SUBROUTINE TRSAPP (N,NPT,XOPT,XPT,GQ,HQ,PQ,DELTA,STEP, &
& D,G,HD,HS,CRVMIN)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION XOPT(*),XPT(NPT,*),GQ(*),HQ(*),PQ(*),STEP(*), &
& D(*),G(*),HD(*),HS(*)
!
! N is the number of variables of a quadratic objective function, Q
! The arguments NPT, XOPT, XPT, GQ, HQ and PQ have their usual meani
! in order to define the current quadratic model Q.
! DELTA is the trust region radius, and has to be positive.
! STEP will be set to the calculated trial step.
! The arrays D, G, HD and HS will be used for working space.
! CRVMIN will be set to the least curvature of H along the conjugate
! directions that occur, except that it is set to zero if STEP goe
! all the way to the trust region boundary.
!
! The calculation of STEP begins with the truncated conjugate gradie
! method. If the boundary of the trust region is reached, then furth
! changes to STEP may be made, each one being in the 2D space spanne
! by the current STEP and the corresponding gradient of Q. Thus STEP
! should provide a substantial reduction to Q within the trust regio
!
! Initialization, which includes setting HD to H times XOPT.
!
HALF=0.5D0
ZERO=0.0D0
TWOPI=8.0D0*DATAN(1.0D0)
DELSQ=DELTA*DELTA
ITERC=0
ITERMAX=N
ITERSW=ITERMAX
DO 10 I=1,N
10 D(I)=XOPT(I)
GOTO 170
!
! Prepare for the first line search.
!
20 QRED=ZERO
DD=ZERO
DO 30 I=1,N
STEP(I)=ZERO
HS(I)=ZERO
G(I)=GQ(I)+HD(I)
D(I)=-G(I)
30 DD=DD+D(I)**2
CRVMIN=ZERO
IF (DD .EQ. ZERO) GOTO 160
DS=ZERO
SS=ZERO
GG=DD
GGBEG=GG
!
! Calculate the step to the trust region boundary and the product HD
!
40 ITERC=ITERC+1
TEMP=DELSQ-SS
BSTEP=TEMP/(DS+DSQRT(DS*DS+DD*TEMP))
GOTO 170
50 DHD=ZERO
DO 60 J=1,N
60 DHD=DHD+D(J)*HD(J)
!
! Update CRVMIN and set the step-length ALPHA.
!
ALPHA=BSTEP
IF (DHD .GT. ZERO) THEN
TEMP=DHD/DD
IF (ITERC .EQ. 1) CRVMIN=TEMP
CRVMIN=DMIN1(CRVMIN,TEMP)
ALPHA=DMIN1(ALPHA,GG/DHD)
END IF
QADD=ALPHA*(GG-HALF*ALPHA*DHD)
QRED=QRED+QADD
!
! Update STEP and HS.
!
GGSAV=GG
GG=ZERO
DO 70 I=1,N
STEP(I)=STEP(I)+ALPHA*D(I)
HS(I)=HS(I)+ALPHA*HD(I)
70 GG=GG+(G(I)+HS(I))**2
!
! Begin another conjugate direction iteration if required.
!
IF (ALPHA .LT. BSTEP) THEN
IF (QADD .LE. 0.01D0*QRED) GOTO 160
IF (GG .LE. 1.0D-4*GGBEG) GOTO 160
IF (ITERC .EQ. ITERMAX) GOTO 160
TEMP=GG/GGSAV
DD=ZERO
DS=ZERO
SS=ZERO
DO 80 I=1,N
D(I)=TEMP*D(I)-G(I)-HS(I)
DD=DD+D(I)**2
DS=DS+D(I)*STEP(I)
80 SS=SS+STEP(I)**2
IF (DS .LE. ZERO) GOTO 160
IF (SS .LT. DELSQ) GOTO 40
END IF
CRVMIN=ZERO
ITERSW=ITERC
!
! Test whether an alternative iteration is required.
!
90 IF (GG .LE. 1.0D-4*GGBEG) GOTO 160
SG=ZERO
SHS=ZERO
DO 100 I=1,N
SG=SG+STEP(I)*G(I)
100 SHS=SHS+STEP(I)*HS(I)
SGK=SG+SHS
ANGTEST=SGK/DSQRT(GG*DELSQ)
IF (ANGTEST .LE. -0.99D0) GOTO 160
!
! Begin the alternative iteration by calculating D and HD and some
! scalar products.
!
ITERC=ITERC+1
TEMP=DSQRT(DELSQ*GG-SGK*SGK)
TEMPA=DELSQ/TEMP
TEMPB=SGK/TEMP
DO 110 I=1,N
110 D(I)=TEMPA*(G(I)+HS(I))-TEMPB*STEP(I)
GOTO 170
120 DG=ZERO
DHD=ZERO
DHS=ZERO
DO 130 I=1,N
DG=DG+D(I)*G(I)
DHD=DHD+HD(I)*D(I)
130 DHS=DHS+HD(I)*STEP(I)
!
! Seek the value of the angle that minimizes Q.
!
CF=HALF*(SHS-DHD)
QBEG=SG+CF
QSAV=QBEG
QMIN=QBEG
ISAVE=0
IU=49
TEMP=TWOPI/DBLE(IU+1)
DO 140 I=1,IU
ANGLE=DBLE(I)*TEMP
CTH=DCOS(ANGLE)
STH=DSIN(ANGLE)
QNEW=(SG+CF*CTH)*CTH+(DG+DHS*CTH)*STH
IF (QNEW .LT. QMIN) THEN
QMIN=QNEW
ISAVE=I
TEMPA=QSAV
ELSE IF (I .EQ. ISAVE+1) THEN
TEMPB=QNEW
END IF
140 QSAV=QNEW
IF (ISAVE .EQ. ZERO) TEMPA=QNEW
IF (ISAVE .EQ. IU) TEMPB=QBEG
ANGLE=ZERO
IF (TEMPA .NE. TEMPB) THEN
TEMPA=TEMPA-QMIN
TEMPB=TEMPB-QMIN
ANGLE=HALF*(TEMPA-TEMPB)/(TEMPA+TEMPB)
END IF
ANGLE=TEMP*(DBLE(ISAVE)+ANGLE)
!
! Calculate the new STEP and HS. Then test for convergence.
!
CTH=DCOS(ANGLE)
STH=DSIN(ANGLE)
REDUC=QBEG-(SG+CF*CTH)*CTH-(DG+DHS*CTH)*STH
GG=ZERO
DO 150 I=1,N
STEP(I)=CTH*STEP(I)+STH*D(I)
HS(I)=CTH*HS(I)+STH*HD(I)
150 GG=GG+(G(I)+HS(I))**2
QRED=QRED+REDUC
RATIO=REDUC/QRED
IF (ITERC .LT. ITERMAX .AND. RATIO .GT. 0.01D0) GOTO 90
160 RETURN
!
! The following instructions act as a subroutine for setting the vec
! HD to the vector D multiplied by the second derivative matrix of Q
! They are called from three different places, which are distinguish
! by the value of ITERC.
!
170 DO 180 I=1,N
180 HD(I)=ZERO
DO 200 K=1,NPT
TEMP=ZERO
DO 190 J=1,N
190 TEMP=TEMP+XPT(K,J)*D(J)
TEMP=TEMP*PQ(K)
DO 200 I=1,N
200 HD(I)=HD(I)+TEMP*XPT(K,I)
IH=0
DO 210 J=1,N
DO 210 I=1,J
IH=IH+1
IF (I .LT. J) HD(J)=HD(J)+HQ(IH)*D(I)
210 HD(I)=HD(I)+HQ(IH)*D(J)
IF (ITERC .EQ. 0) GOTO 20
IF (ITERC .LE. ITERSW) GOTO 50
GOTO 120
END
SUBROUTINE UPDATE (N,NPT,BMAT,ZMAT,IDZ,NDIM,VLAG,BETA,KNEW,W)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION BMAT(NDIM,*),ZMAT(NPT,*),VLAG(*),W(*)
!
! The arrays BMAT and ZMAT with IDZ are updated, in order to shift t
! interpolation point that has index KNEW. On entry, VLAG contains t
! components of the vector Theta*Wcheck+e_b of the updating formula
! (6.11), and BETA holds the value of the parameter that has this na
! The vector W is used for working space.
!
! Set some constants.
!
ONE=1.0D0
ZERO=0.0D0
NPTM=NPT-N-1
!
! Apply the rotations that put zeros in the KNEW-th row of ZMAT.
!
JL=1
DO 20 J=2,NPTM
IF (J .EQ. IDZ) THEN
JL=IDZ
ELSE IF (ZMAT(KNEW,J) .NE. ZERO) THEN
TEMP=DSQRT(ZMAT(KNEW,JL)**2+ZMAT(KNEW,J)**2)
TEMPA=ZMAT(KNEW,JL)/TEMP
TEMPB=ZMAT(KNEW,J)/TEMP
DO 10 I=1,NPT
TEMP=TEMPA*ZMAT(I,JL)+TEMPB*ZMAT(I,J)
ZMAT(I,J)=TEMPA*ZMAT(I,J)-TEMPB*ZMAT(I,JL)
10 ZMAT(I,JL)=TEMP
ZMAT(KNEW,J)=ZERO
END IF
20 END DO
!
! Put the first NPT components of the KNEW-th column of HLAG into W,
! and calculate the parameters of the updating formula.
!
TEMPA=ZMAT(KNEW,1)
IF (IDZ .GE. 2) TEMPA=-TEMPA
IF (JL .GT. 1) TEMPB=ZMAT(KNEW,JL)
DO 30 I=1,NPT
W(I)=TEMPA*ZMAT(I,1)
IF (JL .GT. 1) W(I)=W(I)+TEMPB*ZMAT(I,JL)
30 END DO
ALPHA=W(KNEW)
TAU=VLAG(KNEW)
TAUSQ=TAU*TAU
DENOM=ALPHA*BETA+TAUSQ
VLAG(KNEW)=VLAG(KNEW)-ONE
!
! Complete the updating of ZMAT when there is only one nonzero eleme
! in the KNEW-th row of the new matrix ZMAT, but, if IFLAG is set to
! then the first column of ZMAT will be exchanged with another one l
!
IFLAG=0
IF (JL .EQ. 1) THEN
TEMP=DSQRT(DABS(DENOM))
TEMPB=TEMPA/TEMP
TEMPA=TAU/TEMP
DO 40 I=1,NPT
40 ZMAT(I,1)=TEMPA*ZMAT(I,1)-TEMPB*VLAG(I)
IF (IDZ .EQ. 1 .AND. TEMP .LT. ZERO) IDZ=2
IF (IDZ .GE. 2 .AND. TEMP .GE. ZERO) IFLAG=1
ELSE
!
! Complete the updating of ZMAT in the alternative case.
!
JA=1
IF (BETA .GE. ZERO) JA=JL
JB=JL+1-JA
TEMP=ZMAT(KNEW,JB)/DENOM
TEMPA=TEMP*BETA
TEMPB=TEMP*TAU
TEMP=ZMAT(KNEW,JA)
SCALA=ONE/DSQRT(DABS(BETA)*TEMP*TEMP+TAUSQ)
SCALB=SCALA*DSQRT(DABS(DENOM))
DO 50 I=1,NPT
ZMAT(I,JA)=SCALA*(TAU*ZMAT(I,JA)-TEMP*VLAG(I))
50 ZMAT(I,JB)=SCALB*(ZMAT(I,JB)-TEMPA*W(I)-TEMPB*VLAG(I))
IF (DENOM .LE. ZERO) THEN
IF (BETA .LT. ZERO) IDZ=IDZ+1
IF (BETA .GE. ZERO) IFLAG=1
END IF
END IF
!
! IDZ is reduced in the following case, and usually the first column
! of ZMAT is exchanged with a later one.
!
IF (IFLAG .EQ. 1) THEN
IDZ=IDZ-1
DO 60 I=1,NPT
TEMP=ZMAT(I,1)
ZMAT(I,1)=ZMAT(I,IDZ)
60 ZMAT(I,IDZ)=TEMP
END IF
!
! Finally, update the matrix BMAT.
!
DO 70 J=1,N
JP=NPT+J
W(JP)=BMAT(KNEW,J)
TEMPA=(ALPHA*VLAG(JP)-TAU*W(JP))/DENOM
TEMPB=(-BETA*W(JP)-TAU*VLAG(JP))/DENOM
DO 70 I=1,JP
BMAT(I,J)=BMAT(I,J)+TEMPA*VLAG(I)+TEMPB*W(I)
IF (I .GT. NPT) BMAT(JP,I-NPT)=BMAT(I,J)
70 CONTINUE
RETURN
END
|