1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
#!/usr/bin/env python3
# author: BSG
import numpy as np
import matplotlib.pyplot as plt
import argparse
def parse_args():
parser = argparse.ArgumentParser(description="Run RIXS convolution script.")
parser.add_argument(
"--filename", type=str, help="Input data file from cp2k (*.rixs)"
)
parser.add_argument("--v_states", type=int, help="Number of valence excited states")
parser.add_argument(
"--gamma", type=float, default=0.075, help="Broadening width in eV"
)
parser.add_argument(
"--kappa", type=float, default=60.0, help="Scattering angle in degrees"
)
return parser.parse_args()
# hbar = 6.6260689 * 10**-34 / (2 * np.pi)
hbar = 1 # a.u.
dirs = ["x", "y", "z"]
ndirs = len(dirs)
def get_sigma_tensor(f_state, w_in, w_out, w_0i, w_if, mu_0i, mu_if, Gamma):
"""
Calculate absorption cross-section tensor of final valence state f:
sigma_{alpha beta gamma delta}^f(w)
Parameters:
- f_index: int, index of the final valence state
- w_in: float, incident photon frequency
- w_out: float, outgoing photon frequency
- w_0i: array (c_states,)
- w_if: array (v_states,)
- mu_0i: array (3) dipole moments (i->0)
- mu_if: array (c_states, v_states, 3) dipole moments (i->f)
- Gamma: float, broadening parameter
Returns:
- sigma: array (3,3,3,3) tensor
"""
sigma = np.zeros((ndirs, ndirs, ndirs, ndirs), dtype=np.float64)
c_states = len(w_0i)
for i in range(c_states):
denom = (w_in - w_0i[i]) ** 2 + Gamma**2
prefac = (w_if[f] ** 2 * w_0i[i] ** 2) / denom
for alpha in range(ndirs):
for beta in range(ndirs):
for gamma in range(ndirs):
for delta in range(ndirs):
sigma[alpha, beta, gamma, delta] += (
mu_if[i, f_state, alpha]
* mu_if[i, f_state, beta]
* mu_0i[i, gamma]
* mu_0i[i, delta]
)
sigma *= prefac
return sigma
def parse_spectrum_file(filename, v_states):
"""
Parameters:
- filename: str, path to the spectrum file
- v_states: int, number of valence excited states
"""
w_0i = []
mu_0i = []
w_if = []
mu_if = []
w_f0 = []
with open(filename, "r") as f:
lines = f.readlines()
in_core_block = False
in_valence_block = False
count = 0
for line in lines:
line = line.strip()
if "Excitation from ground-state" in line:
in_core_block = True
in_valence_block = False
continue
elif "Emission from core-excited state" in line:
in_core_block = False
in_valence_block = True
continue
elif line.startswith("=") or line.startswith("w_0i") or not line:
continue
tokens = line.split()
if in_core_block and len(tokens) >= 5:
e0i, mu_x, mu_y, mu_z = map(float, tokens[0:4])
w_0i.append(e0i / hbar)
mu_0i.append([mu_x, mu_y, mu_z])
elif in_valence_block and len(tokens) >= 6:
count += 1
ei, ef = map(float, tokens[0:2])
mu_x, mu_y, mu_z = map(float, tokens[2:5])
mu_if.append((mu_x, mu_y, mu_z))
w_if.append((ef - ei) / hbar)
if count <= v_states:
w_f0.append(ef / hbar)
xas_w_0i = np.array(w_0i)
xas_mu_0i = np.array(mu_0i)
rixs_w_if = np.array(w_if)
tddft_w_f0 = np.array(w_f0)
c_states = len(mu_0i)
# sanity check
expected_total = c_states * v_states
if len(mu_if) != expected_total:
raise ValueError(
f"Expected {expected_total} spectrum lines, but found {len(mu_if)}"
)
rixs_mu_if = np.zeros((c_states, v_states, 3))
for idx, (mx, my, mz) in enumerate(mu_if):
i = idx // v_states
f = idx % v_states
if i < c_states and f < v_states:
rixs_mu_if[i, f] = [mx, my, mz]
return xas_w_0i, xas_mu_0i, rixs_w_if, rixs_mu_if, tddft_w_f0
def convolve_sigma_averaged_tensor(
sigma_tensor, v_states, w_f0, w_0i, w_in_window, kappa_rad, Gamma
):
"""
Compute the RIXS spectrum with custom broadening.
Parameters:
- sigma_tensor: shape (v_states, 3, 3, 3, 3)
- v_states: int, number of valence excited states
- w_f0: (v_states,) energy loss values (valence excitation energies)
- w_0i: (N,) array of incident photon energies (XAS axis)
- kappa_rad: float, scattering angle in radians
- Gamma: float, broadening width
Returns:
- 2D array representing the RIXS spectrum
"""
ndirs = 3
A = 3 + np.cos(kappa_rad) ** 2
B = 0.5 * (1 - 3 * np.cos(kappa_rad) ** 2)
w_out_window = np.linspace(0, np.max(w_f0), len(w_in_window))
N_incident = len(w_in_window)
N_loss = len(w_out_window)
spectrum = np.zeros((N_incident, N_loss))
W_IN, W_LOSS = np.meshgrid(w_in_window, w_out_window, indexing="ij")
W_OUT = W_IN - W_LOSS
for f in range(v_states):
denom = (W_IN - w_0i) ** 2 + Gamma**2
prefac = (w_if[f] ** 2 * w_0i**2) / denom
Omega = W_OUT + w_f0[f] - W_IN
Delta = Gamma / np.pi / (Omega**2 + Gamma**2)
val = 0.0
for alpha in range(ndirs):
for beta in range(ndirs):
val += A * sigma_tensor[f, alpha, alpha, beta, beta]
val += B * (
sigma_tensor[f, alpha, beta, alpha, beta]
+ sigma_tensor[f, alpha, beta, beta, alpha]
)
spectrum += prefac * val * Delta / 30.0
return spectrum / np.max(spectrum)
if __name__ == "__main__":
args = parse_args()
filename = args.filename
v_states = args.v_states
kappa_deg = args.kappa
kappa_rad = np.radians(kappa_deg)
Gamma = args.gamma
molecule = filename.split(".")[0]
w_0i, mu_0i, w_if, mu_if, w_f0 = parse_spectrum_file(filename, v_states)
print(np.shape(w_if), np.shape(mu_if), np.shape(w_f0))
w_in = w_0i[0]
w_out = w_if[0]
sigma_tensor = np.zeros((v_states, 3, 3, 3, 3), dtype=np.float64)
for f in range(v_states):
sigma_tensor[f] = get_sigma_tensor(
f, w_in, w_out, w_0i, w_if, mu_0i, mu_if, Gamma
)
w_in = w_0i[0] # incident photon energy = first xas energy
e_window = 0.2
n_points = 50
w_in_window = np.linspace(w_in - e_window, w_in + e_window, n_points)
spectrum_2d = convolve_sigma_averaged_tensor(
sigma_tensor, v_states, w_f0, w_0i[0], w_in_window, kappa_rad, Gamma
)
project_name = filename.split(".")[0]
np.savetxt(f"{project_name}_rixs.dat", spectrum_2d, fmt="%.6f")
|