File: mao_wfn_analysis.F

package info (click to toggle)
cp2k 6.1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 204,532 kB
  • sloc: fortran: 835,196; f90: 59,605; python: 9,861; sh: 7,882; cpp: 4,868; ansic: 2,807; xml: 2,185; lisp: 733; pascal: 612; perl: 547; makefile: 497; csh: 16
file content (879 lines) | stat: -rw-r--r-- 44,397 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
!--------------------------------------------------------------------------------------------------!
!   CP2K: A general program to perform molecular dynamics simulations                              !
!   Copyright (C) 2000 - 2018  CP2K developers group                                               !
!--------------------------------------------------------------------------------------------------!

! **************************************************************************************************
!> \brief Calculate MAO's and analyze wavefunctions
!> \par History
!>      03.2016 created [JGH]
!>      12.2016 split into four modules [JGH]
!> \author JGH
! **************************************************************************************************
MODULE mao_wfn_analysis
   USE atomic_kind_types,               ONLY: get_atomic_kind
   USE basis_set_types,                 ONLY: gto_basis_set_p_type
   USE bibliography,                    ONLY: Ehrhardt1985,&
                                              Heinzmann1976,&
                                              cite_reference
   USE cp_blacs_env,                    ONLY: cp_blacs_env_type
   USE cp_control_types,                ONLY: dft_control_type
   USE cp_dbcsr_cholesky,               ONLY: cp_dbcsr_cholesky_decompose,&
                                              cp_dbcsr_cholesky_restore
   USE cp_dbcsr_cp2k_link,              ONLY: cp_dbcsr_alloc_block_from_nbl
   USE cp_para_types,                   ONLY: cp_para_env_type
   USE dbcsr_api,                       ONLY: &
        dbcsr_allocate_matrix_set, dbcsr_copy, dbcsr_create, dbcsr_deallocate_matrix_set, &
        dbcsr_desymmetrize, dbcsr_distribution_type, dbcsr_get_block_diag, dbcsr_get_block_p, &
        dbcsr_get_info, dbcsr_iterator_blocks_left, dbcsr_iterator_next_block, &
        dbcsr_iterator_start, dbcsr_iterator_stop, dbcsr_iterator_type, dbcsr_multiply, &
        dbcsr_p_type, dbcsr_release, dbcsr_replicate_all, dbcsr_reserve_diag_blocks, dbcsr_trace, &
        dbcsr_type, dbcsr_type_no_symmetry, dbcsr_type_symmetric
   USE input_section_types,             ONLY: section_vals_get,&
                                              section_vals_type,&
                                              section_vals_val_get
   USE iterate_matrix,                  ONLY: invert_Hotelling
   USE kinds,                           ONLY: dp
   USE kpoint_types,                    ONLY: kpoint_type
   USE mao_methods,                     ONLY: mao_basis_analysis,&
                                              mao_build_q,&
                                              mao_reference_basis
   USE mao_optimizer,                   ONLY: mao_optimize
   USE mathlib,                         ONLY: invmat_symm
   USE message_passing,                 ONLY: mp_sum
   USE particle_methods,                ONLY: get_particle_set
   USE particle_types,                  ONLY: particle_type
   USE qs_environment_types,            ONLY: get_qs_env,&
                                              qs_environment_type
   USE qs_kind_types,                   ONLY: get_qs_kind,&
                                              qs_kind_type
   USE qs_ks_types,                     ONLY: get_ks_env,&
                                              qs_ks_env_type
   USE qs_neighbor_list_types,          ONLY: deallocate_neighbor_list_set,&
                                              get_iterator_info,&
                                              neighbor_list_iterate,&
                                              neighbor_list_iterator_create,&
                                              neighbor_list_iterator_p_type,&
                                              neighbor_list_iterator_release,&
                                              neighbor_list_set_p_type
   USE qs_neighbor_lists,               ONLY: setup_neighbor_list
   USE qs_overlap,                      ONLY: build_overlap_matrix_simple
   USE qs_rho_types,                    ONLY: qs_rho_get,&
                                              qs_rho_type
#include "./base/base_uses.f90"

   IMPLICIT NONE
   PRIVATE

   TYPE block_type
      REAL(KIND=dp), DIMENSION(:, :), ALLOCATABLE  :: mat
   END TYPE block_type

   CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'mao_wfn_analysis'

   PUBLIC ::  mao_analysis

! **************************************************************************************************

CONTAINS

! **************************************************************************************************
!> \brief ...
!> \param qs_env ...
!> \param input_section ...
!> \param unit_nr ...
! **************************************************************************************************
   SUBROUTINE mao_analysis(qs_env, input_section, unit_nr)
      TYPE(qs_environment_type), POINTER                 :: qs_env
      TYPE(section_vals_type), POINTER                   :: input_section
      INTEGER, INTENT(IN)                                :: unit_nr

      CHARACTER(len=*), PARAMETER :: routineN = 'mao_analysis', routineP = moduleN//':'//routineN

      CHARACTER(len=2)                                   :: element_symbol, esa, esb, esc
      INTEGER :: fall, handle, ia, iab, iabc, iatom, ib, ic, icol, ikind, irow, ispin, jatom, &
         mao_basis, max_iter, me, na, nab, nabc, natom, nb, nc, nimages, nspin, ssize
      INTEGER, DIMENSION(:), POINTER                     :: col_blk_sizes, mao_blk, mao_blk_sizes, &
                                                            orb_blk, row_blk_sizes
      LOGICAL                                            :: analyze_ua, explicit, fo, for, fos, &
                                                            found, neglect_abc, print_basis
      REAL(KIND=dp) :: deltaq, electra(2), eps_ab, eps_abc, eps_filter, eps_fun, eps_grad, epsx, &
         senabc, senmax, threshold, total_charge, total_spin, ua_charge(2), zeff
      REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: occnumA, occnumABC, qab, qmatab, qmatac, &
                                                            qmatbc, raq, sab, selnABC, sinv, &
                                                            smatab, smatac, smatbc, uaq
      REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: occnumAB, selnAB
      REAL(KIND=dp), DIMENSION(:, :), POINTER            :: block, cmao, diag, qblka, qblkb, qblkc, &
                                                            rblkl, rblku, sblk, sblka, sblkb, sblkc
      TYPE(block_type), ALLOCATABLE, DIMENSION(:)        :: rowblock
      TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
      TYPE(cp_para_env_type), POINTER                    :: para_env
      TYPE(dbcsr_distribution_type), POINTER             :: dbcsr_dist
      TYPE(dbcsr_iterator_type)                          :: dbcsr_iter
      TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: mao_coef, mao_dmat, mao_qmat, mao_smat, &
                                                            matrix_q, matrix_smm, matrix_smo
      TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: matrix_ks, matrix_p, matrix_s
      TYPE(dbcsr_type)                                   :: amat, axmat, cgmat, cholmat, crumat, &
                                                            qmat, qmat_diag, rumat, smat_diag, &
                                                            sumat, tmat
      TYPE(dft_control_type), POINTER                    :: dft_control
      TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER  :: mao_basis_set_list, orb_basis_set_list
      TYPE(kpoint_type), POINTER                         :: kpoints
      TYPE(neighbor_list_iterator_p_type), &
         DIMENSION(:), POINTER                           :: nl_iterator
      TYPE(neighbor_list_set_p_type), DIMENSION(:), &
         POINTER                                         :: sab_all, sab_orb, smm_list, smo_list
      TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
      TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
      TYPE(qs_ks_env_type), POINTER                      :: ks_env
      TYPE(qs_rho_type), POINTER                         :: rho

! only do MAO analysis if explicitely requested

      CALL section_vals_get(input_section, explicit=explicit)
      IF (.NOT. explicit) RETURN

      CALL timeset(routineN, handle)

      IF (unit_nr > 0) THEN
         WRITE (unit_nr, '(/,T2,A)') '!-----------------------------------------------------------------------------!'
         WRITE (UNIT=unit_nr, FMT="(T36,A)") "MAO ANALYSIS"
         WRITE (UNIT=unit_nr, FMT="(T12,A)") "Claus Ehrhardt and Reinhart Ahlrichs, TCA 68:231-245 (1985)"
         WRITE (unit_nr, '(T2,A)') '!-----------------------------------------------------------------------------!'
      END IF
      CALL cite_reference(Heinzmann1976)
      CALL cite_reference(Ehrhardt1985)

      ! input options
      CALL section_vals_val_get(input_section, "REFERENCE_BASIS", i_val=mao_basis)
      CALL section_vals_val_get(input_section, "EPS_FILTER", r_val=eps_filter)
      CALL section_vals_val_get(input_section, "EPS_FUNCTION", r_val=eps_fun)
      CALL section_vals_val_get(input_section, "EPS_GRAD", r_val=eps_grad)
      CALL section_vals_val_get(input_section, "MAX_ITER", i_val=max_iter)
      CALL section_vals_val_get(input_section, "PRINT_BASIS", l_val=print_basis)
      CALL section_vals_val_get(input_section, "NEGLECT_ABC", l_val=neglect_abc)
      CALL section_vals_val_get(input_section, "AB_THRESHOLD", r_val=eps_ab)
      CALL section_vals_val_get(input_section, "ABC_THRESHOLD", r_val=eps_abc)
      CALL section_vals_val_get(input_section, "ANALYZE_UNASSIGNED_CHARGE", l_val=analyze_ua)

      ! k-points?
      CALL get_qs_env(qs_env, dft_control=dft_control)
      nimages = dft_control%nimages
      IF (nimages > 1) THEN
         IF (unit_nr > 0) THEN
            WRITE (UNIT=unit_nr, FMT="(T2,A)") &
               "K-Points: MAO's determined and analyzed using Gamma-Point only."
         END IF
      END IF

      ! Reference basis set
      NULLIFY (mao_basis_set_list, orb_basis_set_list)
      CALL mao_reference_basis(qs_env, mao_basis, mao_basis_set_list, orb_basis_set_list, &
                               unit_nr, print_basis)

      ! neighbor lists
      NULLIFY (smm_list, smo_list)
      CALL setup_neighbor_list(smm_list, mao_basis_set_list, qs_env=qs_env)
      CALL setup_neighbor_list(smo_list, mao_basis_set_list, orb_basis_set_list, qs_env=qs_env)

      ! overlap matrices
      NULLIFY (matrix_smm, matrix_smo)
      CALL get_qs_env(qs_env, ks_env=ks_env)
      CALL build_overlap_matrix_simple(ks_env, matrix_smm, &
                                       mao_basis_set_list, mao_basis_set_list, smm_list)
      CALL build_overlap_matrix_simple(ks_env, matrix_smo, &
                                       mao_basis_set_list, orb_basis_set_list, smo_list)

      ! get reference density matrix and overlap matrix
      CALL get_qs_env(qs_env, rho=rho, matrix_s_kp=matrix_s)
      CALL qs_rho_get(rho, rho_ao_kp=matrix_p)
      nspin = SIZE(matrix_p, 1)
      !
      ! Q matrix
      IF (nimages == 1) THEN
         CALL mao_build_q(matrix_q, matrix_p, matrix_s, matrix_smm, matrix_smo, smm_list, electra, eps_filter)
      ELSE
         CALL get_qs_env(qs_env, matrix_ks_kp=matrix_ks, kpoints=kpoints)
         CALL mao_build_q(matrix_q, matrix_p, matrix_s, matrix_smm, matrix_smo, smm_list, electra, eps_filter, &
                          nimages=nimages, kpoints=kpoints, matrix_ks=matrix_ks, sab_orb=sab_orb)
      END IF

      ! check for extended basis sets
      fall = 0
      CALL neighbor_list_iterator_create(nl_iterator, smm_list)
      DO WHILE (neighbor_list_iterate(nl_iterator) == 0)
         CALL get_iterator_info(nl_iterator, iatom=iatom, jatom=jatom)
         IF (iatom <= jatom) THEN
            irow = iatom
            icol = jatom
         ELSE
            irow = jatom
            icol = iatom
         END IF
         CALL dbcsr_get_block_p(matrix=matrix_p(1, 1)%matrix, &
                                row=irow, col=icol, block=block, found=found)
         IF (.NOT. found) fall = fall+1
      END DO
      CALL neighbor_list_iterator_release(nl_iterator)

      CALL get_qs_env(qs_env=qs_env, para_env=para_env)
      CALL mp_sum(fall, para_env%group)
      IF (unit_nr > 0 .AND. fall > 0) THEN
         WRITE (UNIT=unit_nr, FMT="(/,T2,A,/,T2,A,/)") &
            "Warning: Extended MAO basis used with original basis filtered density matrix", &
            "Warning: Possible errors can be controled with EPS_PGF_ORB"
      END IF

      ! MAO matrices
      CALL get_qs_env(qs_env=qs_env, qs_kind_set=qs_kind_set, natom=natom)
      CALL get_ks_env(ks_env=ks_env, particle_set=particle_set, dbcsr_dist=dbcsr_dist)
      NULLIFY (mao_coef)
      CALL dbcsr_allocate_matrix_set(mao_coef, nspin)
      ALLOCATE (row_blk_sizes(natom), col_blk_sizes(natom))
      CALL get_particle_set(particle_set, qs_kind_set, nsgf=row_blk_sizes, &
                            basis=mao_basis_set_list)
      CALL get_particle_set(particle_set, qs_kind_set, nmao=col_blk_sizes)
      ! check if MAOs have been specified
      DO iab = 1, natom
         IF (col_blk_sizes(iab) < 0) &
            CPABORT("Number of MAOs has to be specified in KIND section for all elements")
      END DO
      DO ispin = 1, nspin
         ! coeficients
         ALLOCATE (mao_coef(ispin)%matrix)
         CALL dbcsr_create(matrix=mao_coef(ispin)%matrix, &
                           name="MAO_COEF", dist=dbcsr_dist, matrix_type=dbcsr_type_no_symmetry, &
                           row_blk_size=row_blk_sizes, col_blk_size=col_blk_sizes, nze=0)
         CALL dbcsr_reserve_diag_blocks(matrix=mao_coef(ispin)%matrix)
      END DO
      DEALLOCATE (row_blk_sizes, col_blk_sizes)

      ! optimze MAOs
      epsx = 1000.0_dp
      CALL mao_optimize(mao_coef, matrix_q, matrix_smm, electra, max_iter, eps_grad, epsx, unit_nr)

      ! Analyze the MAO basis
      CALL mao_basis_analysis(mao_coef, matrix_smm, mao_basis_set_list, particle_set, &
                              qs_kind_set, unit_nr, para_env)

      ! Calculate the overlap and density matrix in the new MAO basis
      NULLIFY (mao_dmat, mao_smat, mao_qmat)
      CALL dbcsr_allocate_matrix_set(mao_qmat, nspin)
      CALL dbcsr_allocate_matrix_set(mao_dmat, nspin)
      CALL dbcsr_allocate_matrix_set(mao_smat, nspin)
      CALL dbcsr_get_info(mao_coef(1)%matrix, col_blk_size=col_blk_sizes, distribution=dbcsr_dist)
      DO ispin = 1, nspin
         ALLOCATE (mao_dmat(ispin)%matrix)
         CALL dbcsr_create(mao_dmat(ispin)%matrix, name="MAO density", dist=dbcsr_dist, &
                           matrix_type=dbcsr_type_symmetric, row_blk_size=col_blk_sizes, &
                           col_blk_size=col_blk_sizes, nze=0)
         ALLOCATE (mao_smat(ispin)%matrix)
         CALL dbcsr_create(mao_smat(ispin)%matrix, name="MAO overlap", dist=dbcsr_dist, &
                           matrix_type=dbcsr_type_symmetric, row_blk_size=col_blk_sizes, &
                           col_blk_size=col_blk_sizes, nze=0)
         ALLOCATE (mao_qmat(ispin)%matrix)
         CALL dbcsr_create(mao_qmat(ispin)%matrix, name="MAO covar density", dist=dbcsr_dist, &
                           matrix_type=dbcsr_type_symmetric, row_blk_size=col_blk_sizes, &
                           col_blk_size=col_blk_sizes, nze=0)
      END DO
      CALL dbcsr_create(amat, name="MAO overlap", template=mao_dmat(1)%matrix)
      CALL dbcsr_create(tmat, name="MAO Overlap Inverse", template=amat)
      CALL dbcsr_create(qmat, name="MAO covar density", template=amat)
      CALL dbcsr_create(cgmat, name="TEMP matrix", template=mao_coef(1)%matrix)
      CALL dbcsr_create(axmat, name="TEMP", template=amat, matrix_type=dbcsr_type_no_symmetry)
      DO ispin = 1, nspin
         ! calculate MAO overlap matrix
         CALL dbcsr_multiply("N", "N", 1.0_dp, matrix_smm(1)%matrix, mao_coef(ispin)%matrix, &
                             0.0_dp, cgmat)
         CALL dbcsr_multiply("T", "N", 1.0_dp, mao_coef(ispin)%matrix, cgmat, 0.0_dp, amat)
         ! calculate inverse of MAO overlap
         threshold = 1.e-8_dp
         CALL invert_Hotelling(tmat, amat, threshold, norm_convergence=1.e-4_dp, silent=.TRUE.)
         CALL dbcsr_copy(mao_smat(ispin)%matrix, amat)
         ! calculate q-matrix q = C*Q*C
         CALL dbcsr_multiply("N", "N", 1.0_dp, matrix_q(ispin)%matrix, mao_coef(ispin)%matrix, &
                             0.0_dp, cgmat, filter_eps=eps_filter)
         CALL dbcsr_multiply("T", "N", 1.0_dp, mao_coef(ispin)%matrix, cgmat, &
                             0.0_dp, qmat, filter_eps=eps_filter)
         CALL dbcsr_copy(mao_qmat(ispin)%matrix, qmat)
         ! calculate density matrix
         CALL dbcsr_multiply("N", "N", 1.0_dp, qmat, tmat, 0.0_dp, axmat, filter_eps=eps_filter)
         CALL dbcsr_multiply("N", "N", 1.0_dp, tmat, axmat, 0.0_dp, mao_dmat(ispin)%matrix, &
                             filter_eps=eps_filter)
      END DO
      CALL dbcsr_release(amat)
      CALL dbcsr_release(tmat)
      CALL dbcsr_release(qmat)
      CALL dbcsr_release(cgmat)
      CALL dbcsr_release(axmat)

      ! calculate unassigned charge : n - Tr PS
      DO ispin = 1, nspin
         CALL dbcsr_trace(mao_dmat(ispin)%matrix, mao_smat(ispin)%matrix, ua_charge(ispin))
         ua_charge(ispin) = electra(ispin)-ua_charge(ispin)
      END DO
      IF (unit_nr > 0) THEN
         WRITE (unit_nr, *)
         DO ispin = 1, nspin
            WRITE (UNIT=unit_nr, FMT="(T2,A,T32,A,i2,T55,A,F12.8)") &
               "Unassigned charge", "Spin ", ispin, "delta charge =", ua_charge(ispin)
         END DO
      END IF

      ! occupation numbers: single atoms
      ! We use S_A = 1
      ! At the gamma point we use an effective MIC
      CALL get_qs_env(qs_env, natom=natom)
      ALLOCATE (occnumA(natom, nspin))
      occnumA = 0.0_dp
      DO ispin = 1, nspin
         DO iatom = 1, natom
            CALL dbcsr_get_block_p(matrix=mao_qmat(ispin)%matrix, &
                                   row=iatom, col=iatom, block=block, found=found)
            IF (found) THEN
               DO iab = 1, SIZE(block, 1)
                  occnumA(iatom, ispin) = occnumA(iatom, ispin)+block(iab, iab)
               END DO
            END IF
         END DO
      END DO
      CALL mp_sum(occnumA, para_env%group)

      ! occupation numbers: atom pairs
      ALLOCATE (occnumAB(natom, natom, nspin))
      occnumAB = 0.0_dp
      DO ispin = 1, nspin
         CALL dbcsr_create(qmat_diag, name="MAO diagonal density", template=mao_dmat(1)%matrix)
         CALL dbcsr_create(smat_diag, name="MAO diagonal overlap", template=mao_dmat(1)%matrix)
         ! replicate the diagonal blocks of the density and overlap matrices
         CALL dbcsr_get_block_diag(mao_qmat(ispin)%matrix, qmat_diag)
         CALL dbcsr_replicate_all(qmat_diag)
         CALL dbcsr_get_block_diag(mao_smat(ispin)%matrix, smat_diag)
         CALL dbcsr_replicate_all(smat_diag)
         DO ia = 1, natom
            DO ib = ia+1, natom
               iab = 0
               CALL dbcsr_get_block_p(matrix=mao_qmat(ispin)%matrix, &
                                      row=ia, col=ib, block=block, found=found)
               IF (found) iab = 1
               CALL mp_sum(iab, para_env%group)
               CPASSERT(iab <= 1)
               IF (iab == 0 .AND. para_env%ionode) THEN
                  ! AB block is not available N_AB = N_A + N_B
                  ! Do this only on the "source" processor
                  occnumAB(ia, ib, ispin) = occnumA(ia, ispin)+occnumA(ib, ispin)
                  occnumAB(ib, ia, ispin) = occnumA(ia, ispin)+occnumA(ib, ispin)
               ELSE IF (found) THEN
                  ! owner of AB block performs calculation
                  na = SIZE(block, 1)
                  nb = SIZE(block, 2)
                  nab = na+nb
                  ALLOCATE (sab(nab, nab), qab(nab, nab), sinv(nab, nab))
                  ! qmat
                  qab(1:na, na+1:nab) = block(1:na, 1:nb)
                  qab(na+1:nab, 1:na) = TRANSPOSE(block(1:na, 1:nb))
                  CALL dbcsr_get_block_p(matrix=qmat_diag, row=ia, col=ia, block=diag, found=fo)
                  CPASSERT(fo)
                  qab(1:na, 1:na) = diag(1:na, 1:na)
                  CALL dbcsr_get_block_p(matrix=qmat_diag, row=ib, col=ib, block=diag, found=fo)
                  CPASSERT(fo)
                  qab(na+1:nab, na+1:nab) = diag(1:nb, 1:nb)
                  ! smat
                  CALL dbcsr_get_block_p(matrix=mao_smat(ispin)%matrix, &
                                         row=ia, col=ib, block=block, found=fo)
                  CPASSERT(fo)
                  sab(1:na, na+1:nab) = block(1:na, 1:nb)
                  sab(na+1:nab, 1:na) = TRANSPOSE(block(1:na, 1:nb))
                  CALL dbcsr_get_block_p(matrix=smat_diag, row=ia, col=ia, block=diag, found=fo)
                  CPASSERT(fo)
                  sab(1:na, 1:na) = diag(1:na, 1:na)
                  CALL dbcsr_get_block_p(matrix=smat_diag, row=ib, col=ib, block=diag, found=fo)
                  CPASSERT(fo)
                  sab(na+1:nab, na+1:nab) = diag(1:nb, 1:nb)
                  ! inv smat
                  sinv(1:nab, 1:nab) = sab(1:nab, 1:nab)
                  CALL invmat_symm(sinv)
                  ! Tr(Q*Sinv)
                  occnumAB(ia, ib, ispin) = SUM(qab*sinv)
                  occnumAB(ib, ia, ispin) = occnumAB(ia, ib, ispin)
                  !
                  DEALLOCATE (sab, qab, sinv)
               END IF
            END DO
         END DO
         CALL dbcsr_release(qmat_diag)
         CALL dbcsr_release(smat_diag)
      END DO
      CALL mp_sum(occnumAB, para_env%group)

      ! calculate shared electron numbers (AB)
      ALLOCATE (selnAB(natom, natom, nspin))
      selnAB = 0.0_dp
      DO ispin = 1, nspin
         DO ia = 1, natom
            DO ib = ia+1, natom
               selnAB(ia, ib, ispin) = occnumA(ia, ispin)+occnumA(ib, ispin)-occnumAB(ia, ib, ispin)
               selnAB(ib, ia, ispin) = selnAB(ia, ib, ispin)
            END DO
         END DO
      END DO

      IF (.NOT. neglect_abc) THEN
         ! calculate N_ABC
         nabc = (natom*(natom-1)*(natom-2))/6
         ALLOCATE (occnumABC(nabc, nspin))
         occnumABC = -1.0_dp
         DO ispin = 1, nspin
            CALL dbcsr_create(qmat_diag, name="MAO diagonal density", template=mao_dmat(1)%matrix)
            CALL dbcsr_create(smat_diag, name="MAO diagonal overlap", template=mao_dmat(1)%matrix)
            ! replicate the diagonal blocks of the density and overlap matrices
            CALL dbcsr_get_block_diag(mao_qmat(ispin)%matrix, qmat_diag)
            CALL dbcsr_replicate_all(qmat_diag)
            CALL dbcsr_get_block_diag(mao_smat(ispin)%matrix, smat_diag)
            CALL dbcsr_replicate_all(smat_diag)
            iabc = 0
            DO ia = 1, natom
               CALL dbcsr_get_block_p(matrix=qmat_diag, row=ia, col=ia, block=qblka, found=fo)
               CPASSERT(fo)
               CALL dbcsr_get_block_p(matrix=smat_diag, row=ia, col=ia, block=sblka, found=fo)
               CPASSERT(fo)
               na = SIZE(qblka, 1)
               DO ib = ia+1, natom
                  ! screen with SEN(AB)
                  IF (selnAB(ia, ib, ispin) < eps_abc) THEN
                     iabc = iabc+(natom-ib)
                     CYCLE
                  END IF
                  CALL dbcsr_get_block_p(matrix=qmat_diag, row=ib, col=ib, block=qblkb, found=fo)
                  CPASSERT(fo)
                  CALL dbcsr_get_block_p(matrix=smat_diag, row=ib, col=ib, block=sblkb, found=fo)
                  CPASSERT(fo)
                  nb = SIZE(qblkb, 1)
                  nab = na+nb
                  ALLOCATE (qmatab(na, nb), smatab(na, nb))
                  CALL dbcsr_get_block_p(matrix=mao_qmat(ispin)%matrix, row=ia, col=ib, &
                                         block=block, found=found)
                  qmatab = 0.0_dp
                  IF (found) qmatab(1:na, 1:nb) = block(1:na, 1:nb)
                  CALL mp_sum(qmatab, para_env%group)
                  CALL dbcsr_get_block_p(matrix=mao_smat(ispin)%matrix, row=ia, col=ib, &
                                         block=block, found=found)
                  smatab = 0.0_dp
                  IF (found) smatab(1:na, 1:nb) = block(1:na, 1:nb)
                  CALL mp_sum(smatab, para_env%group)
                  DO ic = ib+1, natom
                     ! screen with SEN(AB)
                     IF ((selnAB(ia, ic, ispin) < eps_abc) .OR. (selnAB(ib, ic, ispin) < eps_abc)) THEN
                        iabc = iabc+1
                        CYCLE
                     END IF
                     CALL dbcsr_get_block_p(matrix=qmat_diag, row=ic, col=ic, block=qblkc, found=fo)
                     CPASSERT(fo)
                     CALL dbcsr_get_block_p(matrix=smat_diag, row=ic, col=ic, block=sblkc, found=fo)
                     CPASSERT(fo)
                     nc = SIZE(qblkc, 1)
                     ALLOCATE (qmatac(na, nc), smatac(na, nc))
                     CALL dbcsr_get_block_p(matrix=mao_qmat(ispin)%matrix, row=ia, col=ic, &
                                            block=block, found=found)
                     qmatac = 0.0_dp
                     IF (found) qmatac(1:na, 1:nc) = block(1:na, 1:nc)
                     CALL mp_sum(qmatac, para_env%group)
                     CALL dbcsr_get_block_p(matrix=mao_smat(ispin)%matrix, row=ia, col=ic, &
                                            block=block, found=found)
                     smatac = 0.0_dp
                     IF (found) smatac(1:na, 1:nc) = block(1:na, 1:nc)
                     CALL mp_sum(smatac, para_env%group)
                     ALLOCATE (qmatbc(nb, nc), smatbc(nb, nc))
                     CALL dbcsr_get_block_p(matrix=mao_qmat(ispin)%matrix, row=ib, col=ic, &
                                            block=block, found=found)
                     qmatbc = 0.0_dp
                     IF (found) qmatbc(1:nb, 1:nc) = block(1:nb, 1:nc)
                     CALL mp_sum(qmatbc, para_env%group)
                     CALL dbcsr_get_block_p(matrix=mao_smat(ispin)%matrix, row=ib, col=ic, &
                                            block=block, found=found)
                     smatbc = 0.0_dp
                     IF (found) smatbc(1:nb, 1:nc) = block(1:nb, 1:nc)
                     CALL mp_sum(smatbc, para_env%group)
                     !
                     nabc = na+nb+nc
                     ALLOCATE (sab(nabc, nabc), sinv(nabc, nabc), qab(nabc, nabc))
                     !
                     qab(1:na, 1:na) = qblka(1:na, 1:na)
                     qab(na+1:nab, na+1:nab) = qblkb(1:nb, 1:nb)
                     qab(nab+1:nabc, nab+1:nabc) = qblkc(1:nc, 1:nc)
                     qab(1:na, na+1:nab) = qmatab(1:na, 1:nb)
                     qab(na+1:nab, 1:na) = TRANSPOSE(qmatab(1:na, 1:nb))
                     qab(1:na, nab+1:nabc) = qmatac(1:na, 1:nc)
                     qab(nab+1:nabc, 1:na) = TRANSPOSE(qmatac(1:na, 1:nc))
                     qab(na+1:nab, nab+1:nabc) = qmatbc(1:nb, 1:nc)
                     qab(nab+1:nabc, na+1:nab) = TRANSPOSE(qmatbc(1:nb, 1:nc))
                     !
                     sab(1:na, 1:na) = sblka(1:na, 1:na)
                     sab(na+1:nab, na+1:nab) = sblkb(1:nb, 1:nb)
                     sab(nab+1:nabc, nab+1:nabc) = sblkc(1:nc, 1:nc)
                     sab(1:na, na+1:nab) = smatab(1:na, 1:nb)
                     sab(na+1:nab, 1:na) = TRANSPOSE(smatab(1:na, 1:nb))
                     sab(1:na, nab+1:nabc) = smatac(1:na, 1:nc)
                     sab(nab+1:nabc, 1:na) = TRANSPOSE(smatac(1:na, 1:nc))
                     sab(na+1:nab, nab+1:nabc) = smatbc(1:nb, 1:nc)
                     sab(nab+1:nabc, na+1:nab) = TRANSPOSE(smatbc(1:nb, 1:nc))
                     ! inv smat
                     sinv(1:nabc, 1:nabc) = sab(1:nabc, 1:nabc)
                     CALL invmat_symm(sinv)
                     ! Tr(Q*Sinv)
                     iabc = iabc+1
                     me = MOD(iabc, para_env%num_pe)
                     IF (me == para_env%mepos) THEN
                        occnumABC(iabc, ispin) = SUM(qab*sinv)
                     ELSE
                        occnumABC(iabc, ispin) = 0.0_dp
                     END IF
                     !
                     DEALLOCATE (sab, sinv, qab)
                     DEALLOCATE (qmatac, smatac)
                     DEALLOCATE (qmatbc, smatbc)
                  END DO
                  DEALLOCATE (qmatab, smatab)
               END DO
            END DO
            CALL dbcsr_release(qmat_diag)
            CALL dbcsr_release(smat_diag)
         END DO
         CALL mp_sum(occnumABC, para_env%group)
      END IF

      IF (.NOT. neglect_abc) THEN
         ! calculate shared electron numbers (ABC)
         nabc = (natom*(natom-1)*(natom-2))/6
         ALLOCATE (selnABC(nabc, nspin))
         selnABC = 0.0_dp
         DO ispin = 1, nspin
            iabc = 0
            DO ia = 1, natom
               DO ib = ia+1, natom
                  DO ic = ib+1, natom
                     iabc = iabc+1
                     IF (occnumABC(iabc, ispin) >= 0.0_dp) THEN
                        selnABC(iabc, ispin) = occnumA(ia, ispin)+occnumA(ib, ispin)+occnumA(ic, ispin)- &
                                               occnumAB(ia, ib, ispin)-occnumAB(ia, ic, ispin)-occnumAB(ib, ic, ispin)+ &
                                               occnumABC(iabc, ispin)
                     END IF
                  END DO
               END DO
            END DO
         END DO
      END IF

      ! calculate atomic charge
      ALLOCATE (raq(natom, nspin))
      raq = 0.0_dp
      DO ispin = 1, nspin
         DO ia = 1, natom
            raq(ia, ispin) = occnumA(ia, ispin)
            DO ib = 1, natom
               raq(ia, ispin) = raq(ia, ispin)-0.5_dp*selnAB(ia, ib, ispin)
            END DO
         END DO
         IF (.NOT. neglect_abc) THEN
            iabc = 0
            DO ia = 1, natom
               DO ib = ia+1, natom
                  DO ic = ib+1, natom
                     iabc = iabc+1
                     raq(ia, ispin) = raq(ia, ispin)+selnABC(iabc, ispin)/3._dp
                     raq(ib, ispin) = raq(ib, ispin)+selnABC(iabc, ispin)/3._dp
                     raq(ic, ispin) = raq(ic, ispin)+selnABC(iabc, ispin)/3._dp
                  END DO
               END DO
            END DO
         END IF
      END DO

      ! calculate unassigned charge (from sum over atomic charges)
      DO ispin = 1, nspin
         deltaq = (electra(ispin)-SUM(raq(1:natom, ispin)))-ua_charge(ispin)
         IF (unit_nr > 0) THEN
            WRITE (UNIT=unit_nr, FMT="(T2,A,T32,A,i2,T55,A,F12.8)") &
               "Cutoff error on charge", "Spin ", ispin, "error charge =", deltaq
         END IF
      END DO

      ! analyze unassigned charge
      ALLOCATE (uaq(natom, nspin))
      uaq = 0.0_dp
      IF (analyze_ua) THEN
         CALL get_qs_env(qs_env=qs_env, para_env=para_env, blacs_env=blacs_env)
         CALL get_qs_env(qs_env=qs_env, sab_orb=sab_orb, sab_all=sab_all)
         CALL dbcsr_get_info(mao_coef(1)%matrix, row_blk_size=mao_blk_sizes, &
                             col_blk_size=col_blk_sizes, distribution=dbcsr_dist)
         CALL dbcsr_get_info(matrix_s(1, 1)%matrix, row_blk_size=row_blk_sizes)
         CALL dbcsr_create(amat, name="temp", template=matrix_s(1, 1)%matrix)
         CALL dbcsr_create(tmat, name="temp", template=mao_coef(1)%matrix)
         ! replicate diagonal of smm matrix
         CALL dbcsr_get_block_diag(matrix_smm(1)%matrix, smat_diag)
         CALL dbcsr_replicate_all(smat_diag)

         ALLOCATE (orb_blk(natom), mao_blk(natom))
         DO ia = 1, natom
            orb_blk = row_blk_sizes
            mao_blk = row_blk_sizes
            mao_blk(ia) = col_blk_sizes(ia)
            CALL dbcsr_create(sumat, name="Smat", dist=dbcsr_dist, matrix_type=dbcsr_type_symmetric, &
                              row_blk_size=mao_blk, col_blk_size=mao_blk, nze=0)
            CALL cp_dbcsr_alloc_block_from_nbl(sumat, sab_orb)
            CALL dbcsr_create(cholmat, name="Cholesky matrix", dist=dbcsr_dist, &
                              matrix_type=dbcsr_type_no_symmetry, row_blk_size=mao_blk, col_blk_size=mao_blk, nze=0)
            CALL dbcsr_create(rumat, name="Rmat", dist=dbcsr_dist, matrix_type=dbcsr_type_no_symmetry, &
                              row_blk_size=orb_blk, col_blk_size=mao_blk, nze=0)
            CALL cp_dbcsr_alloc_block_from_nbl(rumat, sab_orb, .TRUE.)
            CALL dbcsr_create(crumat, name="Rmat*Umat", dist=dbcsr_dist, matrix_type=dbcsr_type_no_symmetry, &
                              row_blk_size=orb_blk, col_blk_size=mao_blk, nze=0)
            ! replicate row and col of smo matrix
            ALLOCATE (rowblock(natom))
            DO ib = 1, natom
               na = mao_blk_sizes(ia)
               nb = row_blk_sizes(ib)
               ALLOCATE (rowblock(ib)%mat(na, nb))
               rowblock(ib)%mat = 0.0_dp
               CALL dbcsr_get_block_p(matrix=matrix_smo(1)%matrix, row=ia, col=ib, &
                                      block=block, found=found)
               IF (found) rowblock(ib)%mat(1:na, 1:nb) = block(1:na, 1:nb)
               CALL mp_sum(rowblock(ib)%mat, para_env%group)
            END DO
            !
            DO ispin = 1, nspin
               CALL dbcsr_copy(tmat, mao_coef(ispin)%matrix)
               CALL dbcsr_replicate_all(tmat)
               CALL dbcsr_iterator_start(dbcsr_iter, matrix_s(1, 1)%matrix)
               DO WHILE (dbcsr_iterator_blocks_left(dbcsr_iter))
                  CALL dbcsr_iterator_next_block(dbcsr_iter, iatom, jatom, block)
                  CALL dbcsr_get_block_p(matrix=sumat, row=iatom, col=jatom, block=sblk, found=fos)
                  CPASSERT(fos)
                  CALL dbcsr_get_block_p(matrix=rumat, row=iatom, col=jatom, block=rblku, found=for)
                  CPASSERT(for)
                  CALL dbcsr_get_block_p(matrix=rumat, row=jatom, col=iatom, block=rblkl, found=for)
                  CPASSERT(for)
                  CALL dbcsr_get_block_p(matrix=tmat, row=ia, col=ia, block=cmao, found=found)
                  CPASSERT(found)
                  IF (iatom /= ia .AND. jatom /= ia) THEN
                     ! copy original overlap matrix
                     sblk = block
                     rblku = block
                     rblkl = TRANSPOSE(block)
                  ELSE IF (iatom /= ia) THEN
                     rblkl = TRANSPOSE(block)
                     sblk = MATMUL(TRANSPOSE(rowblock(iatom)%mat), cmao)
                     rblku = sblk
                  ELSE IF (jatom /= ia) THEN
                     rblku = block
                     sblk = MATMUL(TRANSPOSE(cmao), rowblock(jatom)%mat)
                     rblkl = TRANSPOSE(sblk)
                  ELSE
                     CALL dbcsr_get_block_p(matrix=smat_diag, row=ia, col=ia, block=block, found=found)
                     CPASSERT(found)
                     sblk = MATMUL(TRANSPOSE(cmao), MATMUL(block, cmao))
                     rblku = MATMUL(TRANSPOSE(rowblock(ia)%mat), cmao)
                  END IF
               END DO
               CALL dbcsr_iterator_stop(dbcsr_iter)
               ! Cholesky decomposition of SUMAT = U'U
               CALL dbcsr_desymmetrize(sumat, cholmat)
               CALL cp_dbcsr_cholesky_decompose(cholmat, para_env=para_env, blacs_env=blacs_env)
               ! T = R*inv(U)
               ssize = SUM(mao_blk)
               CALL cp_dbcsr_cholesky_restore(rumat, ssize, cholmat, crumat, op="SOLVE", pos="RIGHT", &
                                              transa="N", para_env=para_env, blacs_env=blacs_env)
               ! A = T*transpose(T)
               CALL dbcsr_multiply("N", "T", 1.0_dp, crumat, crumat, 0.0_dp, amat, &
                                   filter_eps=eps_filter)
               ! Tr(P*A)
               CALL dbcsr_trace(matrix_p(ispin, 1)%matrix, amat, uaq(ia, ispin))
               uaq(ia, ispin) = uaq(ia, ispin)-electra(ispin)
            END DO
            !
            CALL dbcsr_release(sumat)
            CALL dbcsr_release(cholmat)
            CALL dbcsr_release(rumat)
            CALL dbcsr_release(crumat)
            !
            DO ib = 1, natom
               DEALLOCATE (rowblock(ib)%mat)
            END DO
            DEALLOCATE (rowblock)
         END DO
         CALL dbcsr_release(smat_diag)
         CALL dbcsr_release(amat)
         CALL dbcsr_release(tmat)
         DEALLOCATE (orb_blk, mao_blk)
      END IF
      !
      raq(1:natom, 1:nspin) = raq(1:natom, 1:nspin)-uaq(1:natom, 1:nspin)
      DO ispin = 1, nspin
         deltaq = electra(ispin)-SUM(raq(1:natom, ispin))
         IF (unit_nr > 0) THEN
            WRITE (UNIT=unit_nr, FMT="(T2,A,T32,A,i2,T55,A,F12.8)") &
               "Charge/Atom redistributed", "Spin ", ispin, "delta charge =", &
               (deltaq+ua_charge(ispin))/REAL(natom, KIND=dp)
         END IF
      END DO

      ! output charges
      IF (unit_nr > 0) THEN
         IF (nspin == 1) THEN
            WRITE (unit_nr, "(/,T2,A,T40,A,T75,A)") "MAO atomic charges ", "Atom", "Charge"
         ELSE
            WRITE (unit_nr, "(/,T2,A,T40,A,T55,A,T70,A)") "MAO atomic charges ", "Atom", "Charge", "Spin Charge"
         END IF
         DO ispin = 1, nspin
            deltaq = electra(ispin)-SUM(raq(1:natom, ispin))
            raq(:, ispin) = raq(:, ispin)+deltaq/REAL(natom, KIND=dp)
         END DO
         total_charge = 0.0_dp
         total_spin = 0.0_dp
         DO iatom = 1, natom
            CALL get_atomic_kind(atomic_kind=particle_set(iatom)%atomic_kind, &
                                 element_symbol=element_symbol, kind_number=ikind)
            CALL get_qs_kind(qs_kind_set(ikind), zeff=zeff)
            IF (nspin == 1) THEN
               WRITE (unit_nr, "(T30,I6,T42,A2,T69,F12.6)") iatom, element_symbol, zeff-raq(iatom, 1)
               total_charge = total_charge+(zeff-raq(iatom, 1))
            ELSE
               WRITE (unit_nr, "(T30,I6,T42,A2,T48,F12.6,T69,F12.6)") iatom, element_symbol, &
                  zeff-raq(iatom, 1)-raq(iatom, 2), raq(iatom, 1)-raq(iatom, 2)
               total_charge = total_charge+(zeff-raq(iatom, 1)-raq(iatom, 2))
               total_spin = total_spin+(raq(iatom, 1)-raq(iatom, 2))
            END IF
         END DO
         IF (nspin == 1) THEN
            WRITE (unit_nr, "(T2,A,T69,F12.6)") "Total Charge", total_charge
         ELSE
            WRITE (unit_nr, "(T2,A,T49,F12.6,T69,F12.6)") "Total Charge", total_charge, total_spin
         END IF
      END IF

      IF (analyze_ua) THEN
         ! output unassigned charges
         IF (unit_nr > 0) THEN
            IF (nspin == 1) THEN
               WRITE (unit_nr, "(/,T2,A,T40,A,T75,A)") "MAO hypervalent charges ", "Atom", "Charge"
            ELSE
               WRITE (unit_nr, "(/,T2,A,T40,A,T55,A,T70,A)") "MAO hypervalent charges ", "Atom", &
                  "Charge", "Spin Charge"
            END IF
            total_charge = 0.0_dp
            total_spin = 0.0_dp
            DO iatom = 1, natom
               CALL get_atomic_kind(atomic_kind=particle_set(iatom)%atomic_kind, &
                                    element_symbol=element_symbol)
               IF (nspin == 1) THEN
                  WRITE (unit_nr, "(T30,I6,T42,A2,T69,F12.6)") iatom, element_symbol, uaq(iatom, 1)
                  total_charge = total_charge+uaq(iatom, 1)
               ELSE
                  WRITE (unit_nr, "(T30,I6,T42,A2,T48,F12.6,T69,F12.6)") iatom, element_symbol, &
                     uaq(iatom, 1)+uaq(iatom, 2), uaq(iatom, 1)-uaq(iatom, 2)
                  total_charge = total_charge+uaq(iatom, 1)+uaq(iatom, 2)
                  total_spin = total_spin+uaq(iatom, 1)-uaq(iatom, 2)
               END IF
            END DO
            IF (nspin == 1) THEN
               WRITE (unit_nr, "(T2,A,T69,F12.6)") "Total Charge", total_charge
            ELSE
               WRITE (unit_nr, "(T2,A,T49,F12.6,T69,F12.6)") "Total Charge", total_charge, total_spin
            END IF
         END IF
      END IF

      ! output shared electron numbers AB
      IF (unit_nr > 0) THEN
         IF (nspin == 1) THEN
            WRITE (unit_nr, "(/,T2,A,T31,A,T40,A,T78,A)") "Shared electron numbers ", "Atom", "Atom", "SEN"
         ELSE
            WRITE (unit_nr, "(/,T2,A,T31,A,T40,A,T51,A,T63,A,T71,A)") "Shared electron numbers ", "Atom", "Atom", &
               "SEN(1)", "SEN(2)", "SEN(total)"
         END IF
         DO ia = 1, natom
            DO ib = ia+1, natom
               CALL get_atomic_kind(atomic_kind=particle_set(ia)%atomic_kind, element_symbol=esa)
               CALL get_atomic_kind(atomic_kind=particle_set(ib)%atomic_kind, element_symbol=esb)
               IF (nspin == 1) THEN
                  IF (selnAB(ia, ib, 1) > eps_ab) THEN
                     WRITE (unit_nr, "(T26,I6,' ',A2,T35,I6,' ',A2,T69,F12.6)") ia, esa, ib, esb, selnAB(ia, ib, 1)
                  END IF
               ELSE
                  IF ((selnAB(ia, ib, 1)+selnAB(ia, ib, 2)) > eps_ab) THEN
                     WRITE (unit_nr, "(T26,I6,' ',A2,T35,I6,' ',A2,T45,3F12.6)") ia, esa, ib, esb, &
                        selnAB(ia, ib, 1), selnAB(ia, ib, 2), (selnAB(ia, ib, 1)+selnAB(ia, ib, 2))
                  END IF
               END IF
            END DO
         END DO
      END IF

      IF (.NOT. neglect_abc) THEN
         ! output shared electron numbers ABC
         IF (unit_nr > 0) THEN
            WRITE (unit_nr, "(/,T2,A,T40,A,T49,A,T58,A,T78,A)") "Shared electron numbers ABC", &
               "Atom", "Atom", "Atom", "SEN"
            senmax = 0.0_dp
            iabc = 0
            DO ia = 1, natom
               DO ib = ia+1, natom
                  DO ic = ib+1, natom
                     iabc = iabc+1
                     senabc = SUM(selnABC(iabc, :))
                     senmax = MAX(senmax, senabc)
                     IF (senabc > eps_abc) THEN
                        CALL get_atomic_kind(atomic_kind=particle_set(ia)%atomic_kind, element_symbol=esa)
                        CALL get_atomic_kind(atomic_kind=particle_set(ib)%atomic_kind, element_symbol=esb)
                        CALL get_atomic_kind(atomic_kind=particle_set(ic)%atomic_kind, element_symbol=esc)
                        WRITE (unit_nr, "(T35,I6,' ',A2,T44,I6,' ',A2,T53,I6,' ',A2,T69,F12.6)") &
                           ia, esa, ib, esb, ic, esc, senabc
                     END IF
                  END DO
               END DO
            END DO
            WRITE (unit_nr, "(T2,A,T69,F12.6)") "Maximum SEN value calculated", senmax
         END IF
      END IF

      IF (unit_nr > 0) THEN
         WRITE (unit_nr, '(/,T2,A)') &
            '!---------------------------END OF MAO ANALYSIS-------------------------------!'
      END IF

      ! Deallocate temporary arrays
      DEALLOCATE (occnumA, occnumAB, selnAB, raq, uaq)
      IF (.NOT. neglect_abc) THEN
         DEALLOCATE (occnumABC, selnABC)
      END IF

      ! Deallocate the neighbor list structure
      IF (ASSOCIATED(smm_list)) THEN
         DO iab = 1, SIZE(smm_list)
            CALL deallocate_neighbor_list_set(smm_list(iab)%neighbor_list_set)
         END DO
         DEALLOCATE (smm_list)
      END IF
      IF (ASSOCIATED(smo_list)) THEN
         DO iab = 1, SIZE(smo_list)
            CALL deallocate_neighbor_list_set(smo_list(iab)%neighbor_list_set)
         END DO
         DEALLOCATE (smo_list)
      END IF

      DEALLOCATE (mao_basis_set_list, orb_basis_set_list)

      IF (ASSOCIATED(matrix_smm)) CALL dbcsr_deallocate_matrix_set(matrix_smm)
      IF (ASSOCIATED(matrix_smo)) CALL dbcsr_deallocate_matrix_set(matrix_smo)
      IF (ASSOCIATED(matrix_q)) CALL dbcsr_deallocate_matrix_set(matrix_q)

      IF (ASSOCIATED(mao_coef)) CALL dbcsr_deallocate_matrix_set(mao_coef)
      IF (ASSOCIATED(mao_dmat)) CALL dbcsr_deallocate_matrix_set(mao_dmat)
      IF (ASSOCIATED(mao_smat)) CALL dbcsr_deallocate_matrix_set(mao_smat)
      IF (ASSOCIATED(mao_qmat)) CALL dbcsr_deallocate_matrix_set(mao_qmat)

      CALL timestop(handle)

   END SUBROUTINE mao_analysis

END MODULE mao_wfn_analysis