File: pao_param_fock.F

package info (click to toggle)
cp2k 6.1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 204,532 kB
  • sloc: fortran: 835,196; f90: 59,605; python: 9,861; sh: 7,882; cpp: 4,868; ansic: 2,807; xml: 2,185; lisp: 733; pascal: 612; perl: 547; makefile: 497; csh: 16
file content (180 lines) | stat: -rw-r--r-- 7,009 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
!--------------------------------------------------------------------------------------------------!
!   CP2K: A general program to perform molecular dynamics simulations                              !
!   Copyright (C) 2000 - 2018  CP2K developers group                                               !
!--------------------------------------------------------------------------------------------------!

! **************************************************************************************************
!> \brief Common framework for using eigenvectors of a Fock matrix as PAO basis.
!> \author Ole Schuett
! **************************************************************************************************
MODULE pao_param_fock
   USE dbcsr_api,                       ONLY: dbcsr_get_block_p,&
                                              dbcsr_get_info
   USE kinds,                           ONLY: dp
   USE mathlib,                         ONLY: diamat_all
   USE pao_types,                       ONLY: pao_env_type
#include "./base/base_uses.f90"

   IMPLICIT NONE

   PRIVATE

   CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'pao_param_fock'

   PUBLIC :: pao_calc_U_block_fock

CONTAINS

! **************************************************************************************************
!> \brief Calculate new matrix U and optinally its gradient G
!> \param pao ...
!> \param iatom ...
!> \param V ...
!> \param U ...
!> \param penalty ...
!> \param gap ...
!> \param evals ...
!> \param M1 ...
!> \param G ...
! **************************************************************************************************
   SUBROUTINE pao_calc_U_block_fock(pao, iatom, V, U, penalty, gap, evals, M1, G)
      TYPE(pao_env_type), POINTER                        :: pao
      INTEGER, INTENT(IN)                                :: iatom
      REAL(dp), DIMENSION(:, :), POINTER                 :: V, U
      REAL(dp), INTENT(INOUT), OPTIONAL                  :: penalty
      REAL(dp), INTENT(OUT)                              :: gap
      REAL(dp), DIMENSION(:), INTENT(OUT), OPTIONAL      :: evals
      REAL(dp), DIMENSION(:, :), OPTIONAL, POINTER       :: M1, G

      CHARACTER(len=*), PARAMETER :: routineN = 'pao_calc_U_block_fock', &
         routineP = moduleN//':'//routineN

      INTEGER                                            :: handle, i, j, m, n
      INTEGER, DIMENSION(:), POINTER                     :: blk_sizes_pao, blk_sizes_pri
      LOGICAL                                            :: found
      REAL(dp)                                           :: alpha, beta, denom, diff
      REAL(dp), DIMENSION(:), POINTER                    :: H_evals
      REAL(dp), DIMENSION(:, :), POINTER                 :: block_N, D1, D2, H, H0, H_evecs, M2, M3, &
                                                            M4, M5

      CALL timeset(routineN, handle)

      CALL dbcsr_get_block_p(matrix=pao%matrix_H0, row=iatom, col=iatom, block=H0, found=found)
      CPASSERT(ASSOCIATED(H0))
      CALL dbcsr_get_block_p(matrix=pao%matrix_N_diag, row=iatom, col=iatom, block=block_N, found=found)
      CPASSERT(ASSOCIATED(block_N))
      IF (MAXVAL(ABS(V-TRANSPOSE(V))) > 1e-14_dp) CPABORT("Expect symmetric matrix")

      ! figure out basis sizes
      CALL dbcsr_get_info(pao%matrix_Y, row_blk_size=blk_sizes_pri, col_blk_size=blk_sizes_pao)
      n = blk_sizes_pri(iatom) ! size of primary basis
      m = blk_sizes_pao(iatom) ! size of pao basis

      ! calculate H in the orthonormal basis
      ALLOCATE (H(n, n))
      H = MATMUL(MATMUL(block_N, H0+V), block_N)

      ! diagonalize H
      ALLOCATE (H_evals(n), H_evecs(n, n))
      H_evecs = H
      CALL diamat_all(H_evecs, H_evals)

      ! the eigenvectors of H become the rotation matrix U
      U = H_evecs

      ! copy eigenvectors around the gap from H_evals into evals array
      IF (PRESENT(evals)) THEN
         CPASSERT(MOD(SIZE(evals), 2) == 0) ! gap will be exactely in the middle
         i = SIZE(evals)/2
         j = MIN(m, i)
         evals(1+i-j:i) = H_evals(1+m-j:m) ! eigenvalues below gap
         j = MIN(n-m, i)
         evals(i:i+j) = H_evals(m:m+j) ! eigenvalues above gap
      ENDIF

      ! calculate homo-lumo gap (it's useful for detecting numerical issues)
      gap = HUGE(dp)
      IF (m < n) & ! catch special case n==m
         gap = H_evals(m+1)-H_evals(m)

      IF (PRESENT(penalty)) THEN
         ! penalty terms: occupied and virtual eigenvalues repel each other
         alpha = pao%penalty_strength
         beta = pao%penalty_dist
         DO i = 1, m
         DO j = m+1, n
            diff = H_evals(i)-H_evals(j)
            penalty = penalty+alpha*EXP(-(diff/beta)**2)
         ENDDO
         ENDDO

         ! regularization energy
         penalty = penalty+pao%regularization*SUM(V**2)
      ENDIF

      IF (PRESENT(G)) THEN ! TURNING POINT (if calc grad) -------------------------

         CPASSERT(PRESENT(M1))

         ! calculate derivatives between eigenvectors of H
         ALLOCATE (D1(n, n), M2(n, n), M3(n, n), M4(n, n))
         DO i = 1, n
         DO j = 1, n
            ! ignore changes among occupied or virtual eigenvectors
            ! They will get filtered out by M2*D1 anyways, however this early
            ! intervention might stabilize numerics in the case of level-crossings.
            IF (i <= m .EQV. j <= m) THEN
               D1(i, j) = 0.0_dp
            ELSE
               denom = H_evals(i)-H_evals(j)
               IF (ABS(denom) > 1e-9_dp) THEN ! avoid division by zero
                  D1(i, j) = 1.0_dp/denom
               ELSE
                  D1(i, j) = SIGN(1e+9_dp, denom)
               ENDIF
            ENDIF
         ENDDO
         ENDDO
         IF (ASSOCIATED(M1)) THEN
            M2 = MATMUL(TRANSPOSE(M1), H_evecs)
         ELSE
            M2 = 0.0_dp
         ENDIF
         M3 = M2*D1 ! Hadamard product
         M4 = MATMUL(MATMUL(H_evecs, M3), TRANSPOSE(H_evecs))

         ! gradient contribution from penalty terms
         IF (PRESENT(penalty)) THEN
            ALLOCATE (D2(n, n))
            D2 = 0.0_dp
            DO i = 1, n
            DO j = 1, n
               IF (i <= m .EQV. j <= m) CYCLE
               diff = H_evals(i)-H_evals(j)
               D2(i, i) = D2(i, i)-2.0_dp*alpha*diff/beta**2*EXP(-(diff/beta)**2)
            ENDDO
            ENDDO
            M4 = M4+MATMUL(MATMUL(H_evecs, D2), TRANSPOSE(H_evecs))
            DEALLOCATE (D2)
         ENDIF

         ! dH / dV, return to non-orthonormal basis
         ALLOCATE (M5(n, n))
         M5 = MATMUL(MATMUL(block_N, M4), block_N)

         ! add regularization gradient
         IF (PRESENT(penalty)) &
            M5 = M5+2.0_dp*pao%regularization*V

         ! symmetrize
         G = 0.5_dp*(M5+TRANSPOSE(M5)) ! the final gradient

         DEALLOCATE (D1, M2, M3, M4, M5)
      ENDIF

      DEALLOCATE (H, H_evals, H_evecs)

      CALL timestop(handle)
   END SUBROUTINE pao_calc_U_block_fock

END MODULE pao_param_fock