File: se_fock_matrix_integrals.F

package info (click to toggle)
cp2k 6.1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 204,532 kB
  • sloc: fortran: 835,196; f90: 59,605; python: 9,861; sh: 7,882; cpp: 4,868; ansic: 2,807; xml: 2,185; lisp: 733; pascal: 612; perl: 547; makefile: 497; csh: 16
file content (1143 lines) | stat: -rw-r--r-- 46,064 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
!--------------------------------------------------------------------------------------------------!
!   CP2K: A general program to perform molecular dynamics simulations                              !
!   Copyright (C) 2000 - 2018  CP2K developers group                                               !
!--------------------------------------------------------------------------------------------------!

! **************************************************************************************************
!> \brief Provides the low level routines to build both the exchange and the
!>        Coulomb Fock matrices.. This routines support d-orbitals and should
!>        be changed only if one knows exactly what he is doing..
!> \author Teodoro Laino [tlaino] (05.2009) - Split and module reorganization
!> \par History
!>      Teodoro Laino (04.2008) [tlaino] - University of Zurich : d-orbitals
!>      Teodoro Laino (09.2008) [tlaino] - University of Zurich : Speed-up
!>      Teodoro Laino (09.2008) [tlaino] - University of Zurich : Periodic SE
! **************************************************************************************************
MODULE se_fock_matrix_integrals

   USE kinds,                           ONLY: dp
   USE semi_empirical_int_arrays,       ONLY: se_orbital_pointer
   USE semi_empirical_integrals,        ONLY: drotint,&
                                              drotnuc,&
                                              rotint,&
                                              rotnuc
   USE semi_empirical_store_int_types,  ONLY: semi_empirical_si_type
   USE semi_empirical_types,            ONLY: se_int_control_type,&
                                              se_taper_type,&
                                              semi_empirical_type
#include "./base/base_uses.f90"

#:include "ewalds_multipole_sr.fypp"

   IMPLICIT NONE
   PRIVATE

   CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'se_fock_matrix_integrals'
   LOGICAL, PARAMETER, PRIVATE          :: debug_this_module = .FALSE.

   PUBLIC :: fock2_1el, dfock2_1el, fock1_2el, fock2_1el_ew, fock2C_ew, &
             fock2C, dfock2C, fock2E, dfock2E, fock2_1el_r3, dfock2_1el_r3, &
             fock2C_r3, dfock2C_r3, se_coulomb_ij_interaction

CONTAINS

! **************************************************************************************************
!> \brief  Construction of 2-center 1-electron Fock Matrix
!> \param sepi ...
!> \param sepj ...
!> \param rij ...
!> \param ksi_block DIMENSION(sepi%natorb, sepi%natorb)
!> \param ksj_block DIMENSION(sepi%natorb, sepi%natorb)
!> \param pi_block ...
!> \param pj_block ...
!> \param ecore ...
!> \param itype ...
!> \param anag ...
!> \param se_int_control ...
!> \param se_taper ...
!> \param store_int_env ...
!> \date   04.2008 [tlaino]
!> \author Teodoro Laino [tlaino] - University of Zurich
! **************************************************************************************************
   SUBROUTINE fock2_1el(sepi, sepj, rij, ksi_block, ksj_block, pi_block, pj_block, &
                        ecore, itype, anag, se_int_control, se_taper, store_int_env)
      TYPE(semi_empirical_type), POINTER                 :: sepi, sepj
      REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rij
      REAL(KIND=dp), DIMENSION(:, :), POINTER            :: ksi_block, ksj_block
      REAL(KIND=dp), &
         DIMENSION(sepi%natorb, sepi%natorb), INTENT(IN) :: pi_block
      REAL(KIND=dp), &
         DIMENSION(sepj%natorb, sepj%natorb), INTENT(IN) :: pj_block
      REAL(KIND=dp), DIMENSION(2), INTENT(INOUT)         :: ecore
      INTEGER, INTENT(IN)                                :: itype
      LOGICAL, INTENT(IN)                                :: anag
      TYPE(se_int_control_type), INTENT(IN)              :: se_int_control
      TYPE(se_taper_type), POINTER                       :: se_taper
      TYPE(semi_empirical_si_type), POINTER              :: store_int_env

      CHARACTER(len=*), PARAMETER :: routineN = 'fock2_1el', routineP = moduleN//':'//routineN

      INTEGER                                            :: i1, i1L, i2, j1, j1L
      REAL(KIND=dp), DIMENSION(45)                       :: e1b, e2a

! Compute integrals

      CALL rotnuc(sepi, sepj, rij, e1b=e1b, e2a=e2a, itype=itype, anag=anag, &
                  se_int_control=se_int_control, se_taper=se_taper, store_int_env=store_int_env)
      !
      ! Add the electron-nuclear attraction term for atom sepi
      !
      i2 = 0
      DO i1L = 1, sepi%natorb
         i1 = se_orbital_pointer(i1L)
         DO j1L = 1, i1L-1
            j1 = se_orbital_pointer(j1L)
            i2 = i2+1
            ksi_block(i1, j1) = ksi_block(i1, j1)+e1b(i2)
            ksi_block(j1, i1) = ksi_block(i1, j1)
            ecore(1) = ecore(1)+2.0_dp*e1b(i2)*pi_block(i1, j1)
         END DO
         j1 = se_orbital_pointer(j1L)
         i2 = i2+1
         ksi_block(i1, j1) = ksi_block(i1, j1)+e1b(i2)
         ecore(1) = ecore(1)+e1b(i2)*pi_block(i1, j1)
      END DO
      !
      ! Add the electron-nuclear attraction term for atom sepj
      !
      i2 = 0
      DO i1L = 1, sepj%natorb
         i1 = se_orbital_pointer(i1L)
         DO j1L = 1, i1L-1
            j1 = se_orbital_pointer(j1L)
            i2 = i2+1
            ksj_block(i1, j1) = ksj_block(i1, j1)+e2a(i2)
            ksj_block(j1, i1) = ksj_block(i1, j1)
            ecore(2) = ecore(2)+2.0_dp*e2a(i2)*pj_block(i1, j1)
         END DO
         j1 = se_orbital_pointer(j1L)
         i2 = i2+1
         ksj_block(i1, j1) = ksj_block(i1, j1)+e2a(i2)
         ecore(2) = ecore(2)+e2a(i2)*pj_block(i1, j1)
      END DO

   END SUBROUTINE fock2_1el

! **************************************************************************************************
!> \brief Derivatives of 2-center 1-electron Fock Matrix
!> \param sepi ...
!> \param sepj ...
!> \param rij ...
!> \param pi_block ...
!> \param pj_block ...
!> \param itype ...
!> \param anag ...
!> \param se_int_control ...
!> \param se_taper ...
!> \param force ...
!> \param delta ...
!> \date 04.2008 [tlaino]
!> \author Teodoro Laino [tlaino] - University of Zurich
! **************************************************************************************************
   SUBROUTINE dfock2_1el(sepi, sepj, rij, pi_block, pj_block, itype, anag, &
                         se_int_control, se_taper, force, delta)
      TYPE(semi_empirical_type), POINTER                 :: sepi, sepj
      REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rij
      REAL(KIND=dp), &
         DIMENSION(sepi%natorb, sepi%natorb), INTENT(IN) :: pi_block
      REAL(KIND=dp), &
         DIMENSION(sepj%natorb, sepj%natorb), INTENT(IN) :: pj_block
      INTEGER, INTENT(IN)                                :: itype
      LOGICAL, INTENT(IN)                                :: anag
      TYPE(se_int_control_type), INTENT(IN)              :: se_int_control
      TYPE(se_taper_type), POINTER                       :: se_taper
      REAL(KIND=dp), DIMENSION(3), INTENT(INOUT)         :: force
      REAL(KIND=dp), INTENT(IN)                          :: delta

      CHARACTER(len=*), PARAMETER :: routineN = 'dfock2_1el', routineP = moduleN//':'//routineN

      INTEGER                                            :: i1, i1L, i2, j1, j1L
      REAL(KIND=dp)                                      :: tmp
      REAL(KIND=dp), DIMENSION(3, 45)                    :: de1b, de2a

! Compute integrals

      CALL drotnuc(sepi, sepj, rij, de1b=de1b, de2a=de2a, itype=itype, anag=anag, &
                   se_int_control=se_int_control, se_taper=se_taper, delta=delta)
      !
      ! Add the electron-nuclear attraction term for atom sepi
      !
      i2 = 0
      DO i1L = 1, sepi%natorb
         i1 = se_orbital_pointer(i1L)
         DO j1L = 1, i1L-1
            j1 = se_orbital_pointer(j1L)
            i2 = i2+1
            tmp = 2.0_dp*pi_block(i1, j1)
            force(1) = force(1)+de1b(1, i2)*tmp
            force(2) = force(2)+de1b(2, i2)*tmp
            force(3) = force(3)+de1b(3, i2)*tmp
         END DO
         j1 = se_orbital_pointer(j1L)
         i2 = i2+1
         force(1) = force(1)+de1b(1, i2)*pi_block(i1, j1)
         force(2) = force(2)+de1b(2, i2)*pi_block(i1, j1)
         force(3) = force(3)+de1b(3, i2)*pi_block(i1, j1)
      END DO
      !
      ! Add the electron-nuclear attraction term for atom sepj
      !
      i2 = 0
      DO i1L = 1, sepj%natorb
         i1 = se_orbital_pointer(i1L)
         DO j1L = 1, i1L-1
            j1 = se_orbital_pointer(j1L)
            i2 = i2+1
            tmp = 2.0_dp*pj_block(i1, j1)
            force(1) = force(1)+de2a(1, i2)*tmp
            force(2) = force(2)+de2a(2, i2)*tmp
            force(3) = force(3)+de2a(3, i2)*tmp
         END DO
         j1 = se_orbital_pointer(j1L)
         i2 = i2+1
         force(1) = force(1)+de2a(1, i2)*pj_block(i1, j1)
         force(2) = force(2)+de2a(2, i2)*pj_block(i1, j1)
         force(3) = force(3)+de2a(3, i2)*pj_block(i1, j1)
      END DO

   END SUBROUTINE dfock2_1el

! **************************************************************************************************
!> \brief Construction of 1-center 2-electron Fock Matrix
!> \param sep ...
!> \param p_tot ...
!> \param p_mat ...
!> \param f_mat DIMENSION(sep%natorb, sep%natorb)
!> \param factor ...
!> \date 04.2008 [tlaino]
!> \author Teodoro Laino [tlaino] - University of Zurich
! **************************************************************************************************
   SUBROUTINE fock1_2el(sep, p_tot, p_mat, f_mat, factor)
      TYPE(semi_empirical_type), POINTER                 :: sep
      REAL(KIND=dp), DIMENSION(45, 45), INTENT(IN)       :: p_tot
      REAL(KIND=dp), DIMENSION(sep%natorb, sep%natorb), &
         INTENT(IN)                                      :: p_mat
      REAL(KIND=dp), DIMENSION(:, :), POINTER            :: f_mat
      REAL(KIND=dp), INTENT(IN)                          :: factor

      CHARACTER(len=*), PARAMETER :: routineN = 'fock1_2el', routineP = moduleN//':'//routineN

      INTEGER                                            :: i, ijw, ikw, iL, im, j, jL, jlw, jm, k, &
                                                            kL, klw, l, lL
      REAL(KIND=dp)                                      :: sum

!   One-center coulomb and exchange terms for semiempirical_type sep
!
!  F(i,j)=F(i,j)+sum(k,l)((PA(k,l)+PB(k,l))*<i,j|k,l>
!                        -(PA(k,l)        )*<i,k|j,l>), k,l on type sep.
!

      DO iL = 1, sep%natorb
         i = se_orbital_pointer(iL)
         DO jL = 1, iL
            j = se_orbital_pointer(jL)

            !    `J' Address IJ in W
            ijw = (iL*(iL-1))/2+jL
            sum = 0.0_dp
            DO kL = 1, sep%natorb
               k = se_orbital_pointer(kL)
               DO lL = 1, sep%natorb
                  l = se_orbital_pointer(lL)

                  !    `J' Address KL in W
                  im = MAX(kL, lL)
                  jm = MIN(kL, lL)
                  klw = (im*(im-1))/2+jm

                  !    `K' Address IK in W
                  im = MAX(kL, jL)
                  jm = MIN(kL, jL)
                  ikw = (im*(im-1))/2+jm

                  !    `K' Address JL in W
                  im = MAX(lL, iL)
                  jm = MIN(lL, iL)
                  jlw = (im*(im-1))/2+jm

                  sum = sum+p_tot(k, l)*sep%w(ijw, klw)-p_mat(k, l)*sep%w(ikw, jlw)
               END DO
            END DO
            f_mat(i, j) = f_mat(i, j)+factor*sum
            f_mat(j, i) = f_mat(i, j)
         END DO
      END DO
   END SUBROUTINE fock1_2el

! **************************************************************************************************
!> \brief Construction of 2-center 1-electron Fock Matrix (Ewald self term)
!> \param sep ...
!> \param rij ...
!> \param ks_block DIMENSION(sep%natorb, sep%natorb)
!> \param p_block ...
!> \param ecore ...
!> \param itype ...
!> \param anag ...
!> \param se_int_control ...
!> \param se_taper ...
!> \param store_int_env ...
!> \date 04.2009 [jgh]
!> \author jgh - University of Zurich
! **************************************************************************************************
   SUBROUTINE fock2_1el_ew(sep, rij, ks_block, p_block, ecore, itype, anag, &
                           se_int_control, se_taper, store_int_env)
      TYPE(semi_empirical_type), POINTER                 :: sep
      REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rij
      REAL(KIND=dp), DIMENSION(:, :), POINTER            :: ks_block
      REAL(KIND=dp), DIMENSION(sep%natorb, sep%natorb), &
         INTENT(IN)                                      :: p_block
      REAL(KIND=dp), INTENT(INOUT)                       :: ecore
      INTEGER, INTENT(IN)                                :: itype
      LOGICAL, INTENT(IN)                                :: anag
      TYPE(se_int_control_type), INTENT(IN)              :: se_int_control
      TYPE(se_taper_type), POINTER                       :: se_taper
      TYPE(semi_empirical_si_type), POINTER              :: store_int_env

      CHARACTER(len=*), PARAMETER :: routineN = 'fock2_1el_ew', routineP = moduleN//':'//routineN

      INTEGER                                            :: i1, i1L, i2, j1, j1L, n
      REAL(KIND=dp), DIMENSION(45)                       :: e1b, e2a

! Compute integrals

      CALL rotnuc(sep, sep, rij, e1b=e1b, e2a=e2a, itype=itype, anag=anag, &
                  se_int_control=se_int_control, se_taper=se_taper, store_int_env=store_int_env)
      !
      ! Add the electron-nuclear attraction term for atom sep
      ! e1b == e2a
      !
      n = (sep%natorb*(sep%natorb+1))/2
      i2 = 0
      DO i1L = 1, sep%natorb
         i1 = se_orbital_pointer(i1L)
         DO j1L = 1, i1L-1
            j1 = se_orbital_pointer(j1L)
            i2 = i2+1
            ks_block(i1, j1) = ks_block(i1, j1)+e1b(i2)
            ks_block(j1, i1) = ks_block(i1, j1)
            ecore = ecore+2._dp*e1b(i2)*p_block(i1, j1)
         END DO
         ! i1L == j1L
         i2 = i2+1
         ks_block(i1, i1) = ks_block(i1, i1)+e1b(i2)
         ecore = ecore+e1b(i2)*p_block(i1, i1)
      END DO

   END SUBROUTINE fock2_1el_ew

! **************************************************************************************************
!> \brief  Construction of 2-center Fock Matrix - Coulomb Self Terms (Ewald)
!> \param sep ...
!> \param rij ...
!> \param p_tot ...
!> \param f_mat DIMENSION(sep%natorb, sep%natorb)
!> \param factor ...
!> \param anag ...
!> \param se_int_control ...
!> \param se_taper ...
!> \param store_int_env ...
!> \date 04.2009 [jgh]
!> \author jgh - University of Zurich
! **************************************************************************************************
   SUBROUTINE fock2C_ew(sep, rij, p_tot, f_mat, factor, anag, se_int_control, &
                        se_taper, store_int_env)
      TYPE(semi_empirical_type), POINTER                 :: sep
      REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rij
      REAL(KIND=dp), DIMENSION(45, 45), INTENT(IN)       :: p_tot
      REAL(KIND=dp), DIMENSION(:, :), POINTER            :: f_mat
      REAL(KIND=dp), INTENT(IN)                          :: factor
      LOGICAL, INTENT(IN)                                :: anag
      TYPE(se_int_control_type), INTENT(IN)              :: se_int_control
      TYPE(se_taper_type), POINTER                       :: se_taper
      TYPE(semi_empirical_si_type), POINTER              :: store_int_env

      CHARACTER(len=*), PARAMETER :: routineN = 'fock2C_ew', routineP = moduleN//':'//routineN

      INTEGER                                            :: i, iL, j, jL, k, kL, kr, l, lL, natorb
      REAL(KIND=dp)                                      :: a, aa, bb
      REAL(KIND=dp), DIMENSION(2025)                     :: w

! Evaluate integrals

      CALL rotint(sep, sep, rij, w, anag=anag, se_int_control=se_int_control, &
                  se_taper=se_taper, store_int_env=store_int_env)
      kr = 0
      natorb = sep%natorb
      DO iL = 1, natorb
         i = se_orbital_pointer(iL)
         aa = 2.0_dp
         DO jL = 1, iL
            j = se_orbital_pointer(jL)
            IF (i == j) THEN
               aa = 1.0_dp
            END IF
            DO kL = 1, natorb
               k = se_orbital_pointer(kL)
               bb = 2.0_dp
               DO lL = 1, kL
                  l = se_orbital_pointer(lL)
                  IF (k == l) THEN
                     bb = 1.0_dp
                  END IF
                  kr = kr+1
                  a = 0.5_dp*w(kr)*factor
                  ! Coulomb
                  f_mat(i, j) = f_mat(i, j)+bb*a*p_tot(k, l)
                  f_mat(k, l) = f_mat(k, l)+aa*a*p_tot(i, j)
                  f_mat(j, i) = f_mat(i, j)
                  f_mat(l, k) = f_mat(k, l)
               END DO
            END DO
         END DO
      END DO

   END SUBROUTINE fock2C_ew

! **************************************************************************************************
!> \brief  Construction of 2-center Fock Matrix - Coulomb Terms
!> \param sepi ...
!> \param sepj ...
!> \param rij ...
!> \param switch ...
!> \param pi_tot ...
!> \param fi_mat DIMENSION(sepi%natorb, sepi%natorb)
!> \param pj_tot DIMENSION(sepj%natorb, sepj%natorb)
!> \param fj_mat ...
!> \param factor ...
!> \param anag ...
!> \param se_int_control ...
!> \param se_taper ...
!> \param store_int_env ...
!> \date 04.2008 [tlaino]
!> \author Teodoro Laino [tlaino] - University of Zurich
! **************************************************************************************************
   SUBROUTINE fock2C(sepi, sepj, rij, switch, pi_tot, fi_mat, pj_tot, fj_mat, &
                     factor, anag, se_int_control, se_taper, store_int_env)
      TYPE(semi_empirical_type), POINTER                 :: sepi, sepj
      REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rij
      LOGICAL, INTENT(IN)                                :: switch
      REAL(KIND=dp), DIMENSION(45, 45), INTENT(IN)       :: pi_tot
      REAL(KIND=dp), DIMENSION(:, :), POINTER            :: fi_mat
      REAL(KIND=dp), DIMENSION(45, 45), INTENT(IN)       :: pj_tot
      REAL(KIND=dp), DIMENSION(:, :), POINTER            :: fj_mat
      REAL(KIND=dp), INTENT(IN)                          :: factor
      LOGICAL, INTENT(IN)                                :: anag
      TYPE(se_int_control_type), INTENT(IN)              :: se_int_control
      TYPE(se_taper_type), POINTER                       :: se_taper
      TYPE(semi_empirical_si_type), POINTER              :: store_int_env

      CHARACTER(len=*), PARAMETER :: routineN = 'fock2C', routineP = moduleN//':'//routineN

      INTEGER                                            :: i, iL, j, jL, k, kL, kr, l, lL, natorb(2)
      REAL(KIND=dp)                                      :: a, aa, bb, irij(3)
      REAL(KIND=dp), DIMENSION(2025)                     :: w

! Evaluate integrals

      IF (.NOT. switch) THEN
         CALL rotint(sepi, sepj, rij, w, anag=anag, se_int_control=se_int_control, &
                     se_taper=se_taper, store_int_env=store_int_env)
      ELSE
         irij = -rij
         CALL rotint(sepj, sepi, irij, w, anag=anag, se_int_control=se_int_control, &
                     se_taper=se_taper, store_int_env=store_int_env)
      END IF
      kr = 0
      natorb(1) = sepi%natorb
      natorb(2) = sepj%natorb
      IF (switch) THEN
         natorb(1) = sepj%natorb
         natorb(2) = sepi%natorb
      END IF
      DO iL = 1, natorb(1)
         i = se_orbital_pointer(iL)
         aa = 2.0_dp
         DO jL = 1, iL
            j = se_orbital_pointer(jL)
            IF (i == j) THEN
               aa = 1.0_dp
            END IF
            DO kL = 1, natorb(2)
               k = se_orbital_pointer(kL)
               bb = 2.0_dp
               DO lL = 1, kL
                  l = se_orbital_pointer(lL)
                  IF (k == l) THEN
                     bb = 1.0_dp
                  END IF
                  kr = kr+1
                  a = w(kr)*factor
                  ! Coulomb
                  IF (.NOT. switch) THEN
                     fi_mat(i, j) = fi_mat(i, j)+bb*a*pj_tot(k, l)
                     fj_mat(k, l) = fj_mat(k, l)+aa*a*pi_tot(i, j)
                     fi_mat(j, i) = fi_mat(i, j)
                     fj_mat(l, k) = fj_mat(k, l)
                  ELSE
                     fj_mat(i, j) = fj_mat(i, j)+bb*a*pi_tot(k, l)
                     fi_mat(k, l) = fi_mat(k, l)+aa*a*pj_tot(i, j)
                     fj_mat(j, i) = fj_mat(i, j)
                     fi_mat(l, k) = fi_mat(k, l)
                  END IF
               END DO
            END DO
         END DO
      END DO

   END SUBROUTINE fock2C

! **************************************************************************************************
!> \brief Derivatives of 2-center Fock Matrix - Coulomb Terms
!> \param sepi ...
!> \param sepj ...
!> \param rij ...
!> \param switch ...
!> \param pi_tot ...
!> \param pj_tot ...
!> \param factor ...
!> \param anag ...
!> \param se_int_control ...
!> \param se_taper ...
!> \param force ...
!> \param delta ...
!> \date 04.2008 [tlaino]
!> \author Teodoro Laino [tlaino] - University of Zurich
! **************************************************************************************************
   SUBROUTINE dfock2C(sepi, sepj, rij, switch, pi_tot, pj_tot, factor, anag, &
                      se_int_control, se_taper, force, delta)
      TYPE(semi_empirical_type), POINTER                 :: sepi, sepj
      REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rij
      LOGICAL, INTENT(IN)                                :: switch
      REAL(KIND=dp), DIMENSION(45, 45), INTENT(IN)       :: pi_tot, pj_tot
      REAL(KIND=dp), INTENT(IN)                          :: factor
      LOGICAL, INTENT(IN)                                :: anag
      TYPE(se_int_control_type), INTENT(IN)              :: se_int_control
      TYPE(se_taper_type), POINTER                       :: se_taper
      REAL(KIND=dp), DIMENSION(3), INTENT(INOUT)         :: force
      REAL(KIND=dp), INTENT(IN)                          :: delta

      CHARACTER(len=*), PARAMETER :: routineN = 'dfock2C', routineP = moduleN//':'//routineN

      INTEGER                                            :: i, iL, j, jL, k, kL, kr, l, lL, natorb(2)
      REAL(KIND=dp)                                      :: aa, bb, tmp
      REAL(KIND=dp), DIMENSION(3)                        :: a, irij
      REAL(KIND=dp), DIMENSION(3, 2025)                  :: dw

! Evaluate integrals' derivatives

      IF (.NOT. switch) THEN
         CALL drotint(sepi, sepj, rij, dw, delta, anag=anag, se_int_control=se_int_control, &
                      se_taper=se_taper)
      ELSE
         irij = -rij
         CALL drotint(sepj, sepi, irij, dw, delta, anag=anag, se_int_control=se_int_control, &
                      se_taper=se_taper)
      END IF

      kr = 0
      natorb(1) = sepi%natorb
      natorb(2) = sepj%natorb
      IF (switch) THEN
         natorb(1) = sepj%natorb
         natorb(2) = sepi%natorb
      END IF
      DO iL = 1, natorb(1)
         i = se_orbital_pointer(iL)
         aa = 2.0_dp
         DO jL = 1, iL
            j = se_orbital_pointer(jL)
            IF (i == j) THEN
               aa = 1.0_dp
            END IF
            DO kL = 1, natorb(2)
               k = se_orbital_pointer(kL)
               bb = 2.0_dp
               DO lL = 1, kL
                  l = se_orbital_pointer(lL)
                  IF (k == l) THEN
                     bb = 1.0_dp
                  END IF
                  kr = kr+1
                  a(1) = dw(1, kr)*factor
                  a(2) = dw(2, kr)*factor
                  a(3) = dw(3, kr)*factor
                  ! Coulomb
                  IF (.NOT. switch) THEN
                     tmp = bb*aa*pj_tot(k, l)*pi_tot(i, j)
                  ELSE
                     tmp = bb*aa*pi_tot(k, l)*pj_tot(i, j)
                  END IF
                  force(1) = force(1)+a(1)*tmp
                  force(2) = force(2)+a(2)*tmp
                  force(3) = force(3)+a(3)*tmp
               END DO
            END DO
         END DO
      END DO
   END SUBROUTINE dfock2C

! **************************************************************************************************
!> \brief Construction of 2-center Fock Matrix - General Driver
!> \param sepi ...
!> \param sepj ...
!> \param rij ...
!> \param switch ...
!> \param isize ...
!> \param pi_mat ...
!> \param fi_mat DIMENSION(isize(1), isize(2))
!> \param factor ...
!> \param anag ...
!> \param se_int_control ...
!> \param se_taper ...
!> \param store_int_env ...
!> \date 04.2008 [tlaino]
!> \author Teodoro Laino [tlaino] - University of Zurich
! **************************************************************************************************
   SUBROUTINE fock2E(sepi, sepj, rij, switch, isize, pi_mat, fi_mat, factor, &
                     anag, se_int_control, se_taper, store_int_env)
      TYPE(semi_empirical_type), POINTER                 :: sepi, sepj
      REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rij
      LOGICAL, INTENT(IN)                                :: switch
      INTEGER, DIMENSION(2), INTENT(IN)                  :: isize
      REAL(KIND=dp), DIMENSION(isize(1), isize(2)), &
         INTENT(IN)                                      :: pi_mat
      REAL(KIND=dp), DIMENSION(:, :), POINTER            :: fi_mat
      REAL(KIND=dp), INTENT(IN)                          :: factor
      LOGICAL, INTENT(IN)                                :: anag
      TYPE(se_int_control_type), INTENT(IN)              :: se_int_control
      TYPE(se_taper_type), POINTER                       :: se_taper
      TYPE(semi_empirical_si_type), POINTER              :: store_int_env

      CHARACTER(len=*), PARAMETER :: routineN = 'fock2E', routineP = moduleN//':'//routineN

      INTEGER                                            :: i, iL, j, jL, k, kL, kr, l, lL, natorb(2)
      REAL(KIND=dp)                                      :: a, aa, bb, irij(3)
      REAL(KIND=dp), DIMENSION(2025)                     :: w

! Evaluate integrals

      IF (.NOT. switch) THEN
         CALL rotint(sepi, sepj, rij, w, anag=anag, se_int_control=se_int_control, &
                     se_taper=se_taper, store_int_env=store_int_env)
      ELSE
         irij = -rij
         CALL rotint(sepj, sepi, irij, w, anag=anag, se_int_control=se_int_control, &
                     se_taper=se_taper, store_int_env=store_int_env)
      END IF
      kr = 0
      natorb(1) = sepi%natorb
      natorb(2) = sepj%natorb
      IF (switch) THEN
         natorb(1) = sepj%natorb
         natorb(2) = sepi%natorb
      END IF
      DO iL = 1, natorb(1)
         i = se_orbital_pointer(iL)
         aa = 2.0_dp
         DO jL = 1, iL
            j = se_orbital_pointer(jL)
            IF (i == j) THEN
               aa = 1.0_dp
            END IF
            DO kL = 1, natorb(2)
               k = se_orbital_pointer(kL)
               bb = 2.0_dp
               DO lL = 1, kL
                  l = se_orbital_pointer(lL)
                  IF (k == l) THEN
                     bb = 1.0_dp
                  END IF
                  kr = kr+1
                  a = w(kr)*factor
                  ! Exchange
                  a = a*aa*bb*0.25_dp
                  fi_mat(i, k) = fi_mat(i, k)-a*pi_mat(j, l)
                  fi_mat(i, l) = fi_mat(i, l)-a*pi_mat(j, k)
                  fi_mat(j, k) = fi_mat(j, k)-a*pi_mat(i, l)
                  fi_mat(j, l) = fi_mat(j, l)-a*pi_mat(i, k)
               END DO
            END DO
         END DO
      END DO

   END SUBROUTINE fock2E

! **************************************************************************************************
!> \brief Derivatives of 2-center Fock Matrix - General Driver
!> \param sepi ...
!> \param sepj ...
!> \param rij ...
!> \param switch ...
!> \param isize ...
!> \param pi_mat ...
!> \param factor ...
!> \param anag ...
!> \param se_int_control ...
!> \param se_taper ...
!> \param force ...
!> \param delta ...
!> \date 04.2008 [tlaino]
!> \author Teodoro Laino [tlaino] - University of Zurich
! **************************************************************************************************
   SUBROUTINE dfock2E(sepi, sepj, rij, switch, isize, pi_mat, factor, anag, &
                      se_int_control, se_taper, force, delta)
      TYPE(semi_empirical_type), POINTER                 :: sepi, sepj
      REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rij
      LOGICAL, INTENT(IN)                                :: switch
      INTEGER, DIMENSION(2), INTENT(IN)                  :: isize
      REAL(KIND=dp), DIMENSION(isize(1), isize(2)), &
         INTENT(IN)                                      :: pi_mat
      REAL(KIND=dp), INTENT(IN)                          :: factor
      LOGICAL, INTENT(IN)                                :: anag
      TYPE(se_int_control_type), INTENT(IN)              :: se_int_control
      TYPE(se_taper_type), POINTER                       :: se_taper
      REAL(KIND=dp), DIMENSION(3), INTENT(INOUT)         :: force
      REAL(KIND=dp), INTENT(IN)                          :: delta

      CHARACTER(len=*), PARAMETER :: routineN = 'dfock2E', routineP = moduleN//':'//routineN

      INTEGER                                            :: i, iL, j, jL, k, kL, kr, l, lL, natorb(2)
      REAL(KIND=dp)                                      :: aa, bb, tmp, tmp1, tmp2, tmp3, tmp4
      REAL(KIND=dp), DIMENSION(3)                        :: a, irij
      REAL(KIND=dp), DIMENSION(3, 2025)                  :: dw

! Evaluate integrals' derivatives

      IF (.NOT. switch) THEN
         CALL drotint(sepi, sepj, rij, dw, delta, anag=anag, se_int_control=se_int_control, &
                      se_taper=se_taper)
      ELSE
         irij = -rij
         CALL drotint(sepj, sepi, irij, dw, delta, anag=anag, se_int_control=se_int_control, &
                      se_taper=se_taper)
      END IF

      kr = 0
      natorb(1) = sepi%natorb
      natorb(2) = sepj%natorb
      IF (switch) THEN
         natorb(1) = sepj%natorb
         natorb(2) = sepi%natorb
      END IF
      DO iL = 1, natorb(1)
         i = se_orbital_pointer(iL)
         aa = 2.0_dp
         DO jL = 1, iL
            j = se_orbital_pointer(jL)
            IF (i == j) THEN
               aa = 1.0_dp
            END IF
            DO kL = 1, natorb(2)
               k = se_orbital_pointer(kL)
               bb = 2.0_dp
               DO lL = 1, kL
                  l = se_orbital_pointer(lL)
                  IF (k == l) THEN
                     bb = 1.0_dp
                  END IF
                  kr = kr+1
                  tmp = factor*aa*bb*0.25_dp
                  a(1) = dw(1, kr)*tmp
                  a(2) = dw(2, kr)*tmp
                  a(3) = dw(3, kr)*tmp
                  ! Exchange
                  tmp1 = pi_mat(j, l)*pi_mat(i, k)
                  tmp2 = pi_mat(j, k)*pi_mat(i, l)
                  tmp3 = pi_mat(i, l)*pi_mat(j, k)
                  tmp4 = pi_mat(i, k)*pi_mat(j, l)

                  force(1) = force(1)-a(1)*tmp1
                  force(1) = force(1)-a(1)*tmp2
                  force(1) = force(1)-a(1)*tmp3
                  force(1) = force(1)-a(1)*tmp4

                  force(2) = force(2)-a(2)*tmp1
                  force(2) = force(2)-a(2)*tmp2
                  force(2) = force(2)-a(2)*tmp3
                  force(2) = force(2)-a(2)*tmp4

                  force(3) = force(3)-a(3)*tmp1
                  force(3) = force(3)-a(3)*tmp2
                  force(3) = force(3)-a(3)*tmp3
                  force(3) = force(3)-a(3)*tmp4
               END DO
            END DO
         END DO
      END DO
   END SUBROUTINE dfock2E

! **************************************************************************************************
!> \brief  Construction of 2-center 1-electron Fock Matrix for the residual
!>         (1/R^3) integral part
!> \param sepi ...
!> \param sepj ...
!> \param ksi_block DIMENSION(sepi%natorb, sepi%natorb)
!> \param ksj_block DIMENSION(sepj%natorb, sepj%natorb)
!> \param pi_block ...
!> \param pj_block ...
!> \param e1b ...
!> \param e2a ...
!> \param ecore ...
!> \param rp ...
!> \date   12.2008 [tlaino]
!> \author Teodoro Laino [tlaino]
! **************************************************************************************************
   SUBROUTINE fock2_1el_r3(sepi, sepj, ksi_block, ksj_block, pi_block, pj_block, &
                           e1b, e2a, ecore, rp)
      TYPE(semi_empirical_type), POINTER                 :: sepi, sepj
      REAL(KIND=dp), DIMENSION(:, :), POINTER            :: ksi_block, ksj_block
      REAL(KIND=dp), &
         DIMENSION(sepi%natorb, sepi%natorb), INTENT(IN) :: pi_block
      REAL(KIND=dp), &
         DIMENSION(sepj%natorb, sepj%natorb), INTENT(IN) :: pj_block
      REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: e1b, e2a
      REAL(KIND=dp), DIMENSION(2), INTENT(INOUT)         :: ecore
      REAL(KIND=dp), INTENT(IN)                          :: rp

      CHARACTER(len=*), PARAMETER :: routineN = 'fock2_1el_r3', routineP = moduleN//':'//routineN

      INTEGER                                            :: i1, i1L, i2

!
! Add the electron-nuclear residual attraction term for atom sepi
!

      i2 = 0
      DO i1L = 1, sepi%natorb
         i2 = i2+1
         i1 = se_orbital_pointer(i1L)
         ksi_block(i1, i1) = ksi_block(i1, i1)+e1b(i2)*rp
         ecore(1) = ecore(1)+e1b(i2)*rp*pi_block(i1, i1)
      END DO
      !
      ! Add the electron-nuclear residual attraction term for atom sepj
      !
      i2 = 0
      DO i1L = 1, sepj%natorb
         i2 = i2+1
         i1 = se_orbital_pointer(i1L)
         ksj_block(i1, i1) = ksj_block(i1, i1)+e2a(i2)*rp
         ecore(2) = ecore(2)+e2a(i2)*rp*pj_block(i1, i1)
      END DO

   END SUBROUTINE fock2_1el_r3

! **************************************************************************************************
!> \brief  Derivatives of 2-center 1-electron Fock Matrix residual (1/R^3)
!>         integral part
!> \param sepi ...
!> \param sepj ...
!> \param drp ...
!> \param pi_block ...
!> \param pj_block ...
!> \param force ...
!> \param e1b ...
!> \param e2a ...
!> \date   12.2008 [tlaino]
!> \author Teodoro Laino [tlaino]
! **************************************************************************************************
   SUBROUTINE dfock2_1el_r3(sepi, sepj, drp, pi_block, pj_block, force, e1b, e2a)
      TYPE(semi_empirical_type), POINTER                 :: sepi, sepj
      REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: drp
      REAL(KIND=dp), &
         DIMENSION(sepi%natorb, sepi%natorb), INTENT(IN) :: pi_block
      REAL(KIND=dp), &
         DIMENSION(sepj%natorb, sepj%natorb), INTENT(IN) :: pj_block
      REAL(KIND=dp), DIMENSION(3), INTENT(INOUT)         :: force
      REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: e1b, e2a

      CHARACTER(len=*), PARAMETER :: routineN = 'dfock2_1el_r3', routineP = moduleN//':'//routineN

      INTEGER                                            :: i1, i1L, i2
      REAL(KIND=dp)                                      :: tmp

!
! Add the electron-nuclear residual attraction term for atom sepi
!

      i2 = 0
      DO i1L = 1, sepi%natorb
         i1 = se_orbital_pointer(i1L)
         i2 = i2+1
         tmp = e1b(i2)*pi_block(i1, i1)
         force(1) = force(1)+tmp*drp(1)
         force(2) = force(2)+tmp*drp(2)
         force(3) = force(3)+tmp*drp(3)
      END DO
      !
      ! Add the electron-nuclear attraction term for atom sepj
      !
      i2 = 0
      DO i1L = 1, sepj%natorb
         i1 = se_orbital_pointer(i1L)
         i2 = i2+1
         tmp = e2a(i2)*pj_block(i1, i1)
         force(1) = force(1)+tmp*drp(1)
         force(2) = force(2)+tmp*drp(2)
         force(3) = force(3)+tmp*drp(3)
      END DO

   END SUBROUTINE dfock2_1el_r3

! **************************************************************************************************
!> \brief  Construction of 2-center Fock Matrix - Coulomb Terms for the residual
!>         (1/R^3) integral part
!> \param sepi ...
!> \param sepj ...
!> \param switch ...
!> \param pi_tot ...
!> \param fi_mat DIMENSION(sepi%natorb, sepi%natorb)
!> \param pj_tot ...
!> \param fj_mat DIMENSION(sepj%natorb, sepj%natorb)
!> \param factor ...
!> \param w ...
!> \param rp ...
!> \date   12.2008 [tlaino]
!> \author Teodoro Laino [tlaino]
! **************************************************************************************************
   SUBROUTINE fock2C_r3(sepi, sepj, switch, pi_tot, fi_mat, pj_tot, fj_mat, &
                        factor, w, rp)
      TYPE(semi_empirical_type), POINTER                 :: sepi, sepj
      LOGICAL, INTENT(IN)                                :: switch
      REAL(KIND=dp), DIMENSION(45, 45), INTENT(IN)       :: pi_tot
      REAL(KIND=dp), DIMENSION(:, :), POINTER            :: fi_mat
      REAL(KIND=dp), DIMENSION(45, 45), INTENT(IN)       :: pj_tot
      REAL(KIND=dp), DIMENSION(:, :), POINTER            :: fj_mat
      REAL(KIND=dp), INTENT(IN)                          :: factor
      REAL(KIND=dp), DIMENSION(81), INTENT(IN)           :: w
      REAL(KIND=dp), INTENT(IN)                          :: rp

      CHARACTER(len=*), PARAMETER :: routineN = 'fock2C_r3', routineP = moduleN//':'//routineN

      INTEGER                                            :: i, iL, ind, j, k, kL, kr, natorb(2)
      REAL(KIND=dp)                                      :: a, w_l(81)

      natorb(1) = sepi%natorb
      natorb(2) = sepj%natorb
      IF (switch) THEN
         natorb(1) = sepj%natorb
         natorb(2) = sepi%natorb
         ! Reshuffle the integral array (natural storage order is sepi/sepj)
         kr = 0
         DO i = 1, sepj%natorb
            DO j = 1, sepi%natorb
               kr = kr+1
               ind = (j-1)*sepj%natorb+i
               w_l(kr) = w(ind)
            END DO
         END DO
      ELSE
         w_l = w
      END IF

      ! Modify the Fock Matrix
      kr = 0
      DO iL = 1, natorb(1)
         i = se_orbital_pointer(iL)
         DO kL = 1, natorb(2)
            k = se_orbital_pointer(kL)
            kr = kr+1
            a = w_l(kr)*factor*rp
            ! Coulomb
            IF (.NOT. switch) THEN
               fi_mat(i, i) = fi_mat(i, i)+a*pj_tot(k, k)
               fj_mat(k, k) = fj_mat(k, k)+a*pi_tot(i, i)
            ELSE
               fj_mat(i, i) = fj_mat(i, i)+a*pi_tot(k, k)
               fi_mat(k, k) = fi_mat(k, k)+a*pj_tot(i, i)
            END IF
         END DO
      END DO

   END SUBROUTINE fock2C_r3

! **************************************************************************************************
!> \brief  Derivatives of 2-center Fock Matrix - Coulomb Terms for the residual
!>         (1/R^3) integral part
!> \param sepi ...
!> \param sepj ...
!> \param switch ...
!> \param pi_tot ...
!> \param pj_tot ...
!> \param factor ...
!> \param w ...
!> \param drp ...
!> \param force ...
!> \date   12.2008 [tlaino]
!> \author Teodoro Laino [tlaino]
! **************************************************************************************************
   SUBROUTINE dfock2C_r3(sepi, sepj, switch, pi_tot, pj_tot, factor, w, drp, &
                         force)
      TYPE(semi_empirical_type), POINTER                 :: sepi, sepj
      LOGICAL, INTENT(IN)                                :: switch
      REAL(KIND=dp), DIMENSION(45, 45), INTENT(IN)       :: pi_tot, pj_tot
      REAL(KIND=dp), INTENT(IN)                          :: factor
      REAL(KIND=dp), DIMENSION(81), INTENT(IN)           :: w
      REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: drp
      REAL(KIND=dp), DIMENSION(3), INTENT(INOUT)         :: force

      CHARACTER(len=*), PARAMETER :: routineN = 'dfock2C_r3', routineP = moduleN//':'//routineN

      INTEGER                                            :: i, iL, ind, j, k, kL, kr, natorb(2)
      REAL(KIND=dp)                                      :: a(3), tmp, w_l(81)

      natorb(1) = sepi%natorb
      natorb(2) = sepj%natorb
      IF (switch) THEN
         natorb(1) = sepj%natorb
         natorb(2) = sepi%natorb
         ! Reshuffle the integral array (natural storage order is sepi/sepj)
         kr = 0
         DO i = 1, sepj%natorb
            DO j = 1, sepi%natorb
               kr = kr+1
               ind = (j-1)*sepj%natorb+i
               w_l(kr) = w(ind)
            END DO
         END DO
      ELSE
         w_l = w
      END IF

      ! Modify the Fock Matrix
      kr = 0
      DO iL = 1, natorb(1)
         i = se_orbital_pointer(iL)
         DO kL = 1, natorb(2)
            k = se_orbital_pointer(kL)
            kr = kr+1
            tmp = w_l(kr)*factor
            a(1) = tmp*drp(1)
            a(2) = tmp*drp(2)
            a(3) = tmp*drp(3)
            ! Coulomb
            IF (.NOT. switch) THEN
               tmp = pj_tot(k, k)*pi_tot(i, i)
            ELSE
               tmp = pi_tot(k, k)*pj_tot(i, i)
            END IF
            force(1) = force(1)+a(1)*tmp
            force(2) = force(2)+a(2)*tmp
            force(3) = force(3)+a(3)*tmp
         END DO
      END DO

   END SUBROUTINE dfock2C_r3

! **************************************************************************************************
!> \brief  Coulomb interaction multipolar correction
!> \param atom_a ...
!> \param atom_b ...
!> \param my_task ...
!> \param do_forces ...
!> \param do_efield ...
!> \param do_stress ...
!> \param charges ...
!> \param dipoles ...
!> \param quadrupoles ...
!> \param force_ab ...
!> \param efield0 ...
!> \param efield1 ...
!> \param efield2 ...
!> \param rab2 ...
!> \param rab ...
!> \param integral_value ...
!> \param ptens11 ...
!> \param ptens12 ...
!> \param ptens13 ...
!> \param ptens21 ...
!> \param ptens22 ...
!> \param ptens23 ...
!> \param ptens31 ...
!> \param ptens32 ...
!> \param ptens33 ...
!> \date   05.2009 [tlaino]
!> \author Teodoro Laino [tlaino]
! **************************************************************************************************
   SUBROUTINE se_coulomb_ij_interaction(atom_a, atom_b, my_task, do_forces, do_efield, &
                                        do_stress, charges, dipoles, quadrupoles, force_ab, efield0, efield1, efield2, &
                                        rab2, rab, integral_value, ptens11, ptens12, ptens13, ptens21, ptens22, ptens23, &
                                        ptens31, ptens32, ptens33)
      INTEGER, INTENT(IN)                                :: atom_a, atom_b
      LOGICAL, DIMENSION(3)                              :: my_task
      LOGICAL, INTENT(IN)                                :: do_forces, do_efield, do_stress
      REAL(KIND=dp), DIMENSION(:), POINTER               :: charges
      REAL(KIND=dp), DIMENSION(:, :), POINTER            :: dipoles
      REAL(KIND=dp), DIMENSION(:, :, :), POINTER         :: quadrupoles
      REAL(KIND=dp), DIMENSION(3), INTENT(OUT)           :: force_ab
      REAL(KIND=dp), DIMENSION(:), POINTER               :: efield0
      REAL(KIND=dp), DIMENSION(:, :), POINTER            :: efield1, efield2
      REAL(KIND=dp), INTENT(IN)                          :: rab2
      REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rab
      REAL(KIND=dp), INTENT(OUT), OPTIONAL               :: integral_value
      REAL(KIND=dp), INTENT(INOUT)                       :: ptens11, ptens12, ptens13, ptens21, &
                                                            ptens22, ptens23, ptens31, ptens32, &
                                                            ptens33

      CHARACTER(len=*), PARAMETER :: routineN = 'se_coulomb_ij_interaction', &
         routineP = moduleN//':'//routineN

      INTEGER                                            :: a, b, c, d, e, i, j, k
      LOGICAL                                            :: do_efield0, do_efield1, do_efield2, &
                                                            force_eval
      LOGICAL, DIMENSION(3)                              :: do_task
      LOGICAL, DIMENSION(3, 3)                           :: task
      REAL(KIND=dp) :: ch_i, ch_j, ef0_i, ef0_j, eloc, energy, fac, fac_ij, ir, irab2, r, tij, &
         tmp, tmp1, tmp11, tmp12, tmp13, tmp2, tmp21, tmp22, tmp23, tmp31, tmp32, tmp33, tmp_ij, &
         tmp_ji
      REAL(KIND=dp), DIMENSION(0:5)                      :: f
      REAL(KIND=dp), DIMENSION(3)                        :: dp_i, dp_j, ef1_i, ef1_j, fr, tij_a
      REAL(KIND=dp), DIMENSION(3, 3)                     :: ef2_i, ef2_j, qp_i, qp_j, tij_ab
      REAL(KIND=dp), DIMENSION(3, 3, 3)                  :: tij_abc
      REAL(KIND=dp), DIMENSION(3, 3, 3, 3)               :: tij_abcd
      REAL(KIND=dp), DIMENSION(3, 3, 3, 3, 3)            :: tij_abcde

      do_task = my_task
      energy = 0.0_dp
      DO i = 1, 3
         IF (do_task(i)) THEN
            SELECT CASE (i)
            CASE (1)
               do_task(1) = (charges(atom_a) /= 0.0_dp) .OR. (charges(atom_b) /= 0.0_dp)
            CASE (2)
               do_task(2) = (ANY(dipoles(:, atom_a) /= 0.0_dp)) .OR. (ANY(dipoles(:, atom_b) /= 0.0_dp))
            CASE (3)
               do_task(3) = (ANY(quadrupoles(:, :, atom_a) /= 0.0_dp)) .OR. (ANY(quadrupoles(:, :, atom_b) /= 0.0_dp))
            END SELECT
         END IF
      END DO
      DO i = 1, 3
         DO j = i, 3
            task(j, i) = do_task(i) .AND. do_task(j)
            task(i, j) = task(j, i)
         END DO
      END DO
      do_efield0 = do_efield .AND. ASSOCIATED(efield0)
      do_efield1 = do_efield .AND. ASSOCIATED(efield1)
      do_efield2 = do_efield .AND. ASSOCIATED(efield2)

      fac_ij = 1.0_dp
      IF (atom_a == atom_b) fac_ij = 0.5_dp

$: ewalds_multipole_sr_macro(mode="PURE_COULOMB")

      IF (PRESENT(integral_value)) THEN
         integral_value = eloc
      END IF
      IF (do_forces) THEN
         force_ab = fr
      END IF
   END SUBROUTINE se_coulomb_ij_interaction

END MODULE se_fock_matrix_integrals