1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
|
/*
* This file is part of the HDRL
* Copyright (C) 2017 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/*-----------------------------------------------------------------------------
Includes
-----------------------------------------------------------------------------*/
#include "hdrl_correlation.h"
#include <math.h>
/*-----------------------------------------------------------------------------
Data structures used internally
-----------------------------------------------------------------------------*/
typedef struct{
double mean;
double stdev;
}mean_and_stdev;
/*-----------------------------------------------------------------------------
Private Functions
-----------------------------------------------------------------------------*/
static inline
double calculate_xcorr_sample(const cpl_size shift, const cpl_array * arr1,
const cpl_array * arr2, const double mean1, const double mean2,
const double stdev1, const double stdev2);
static inline
mean_and_stdev calculate_mean_and_stdev(const cpl_array * arr1);
static inline cpl_error_code
hdrl_compute_xcorrelation_refine(hdrl_xcorrelation_result* xcorr_res,
const double bin, const double wrange);
/**
* @addtogroup hdrl_correlation
* @{
*/
/*-----------------------------------------------------------------------------
Functions
-----------------------------------------------------------------------------*/
/* ---------------------------------------------------------------------------*/
/**
* @brief Constructor for hdrl_xcorrelation_result
* @param x_corr Cross correlation. x_corr becomes owned by the returned value,
* do not free x_corr after the wrapping.
* @param max_idx Index where the cross correlation reaches its maximum
* @param half_window Half window used for the cross-correlation calculation
*
* @return the constructed object. NULL in case of error. Errors are triggered if
* data are not self consistent, e.g. if max_idx is greated than the length of
* x_corr.
*/
/* ---------------------------------------------------------------------------*/
hdrl_xcorrelation_result *
hdrl_xcorrelation_result_wrap(cpl_array * x_corr, const cpl_size max_idx,
const cpl_size half_window){
cpl_ensure(x_corr != NULL, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(max_idx >= 0, CPL_ERROR_ILLEGAL_INPUT, NULL);
cpl_ensure(max_idx < cpl_array_get_size(x_corr),
CPL_ERROR_ILLEGAL_INPUT, NULL);
hdrl_xcorrelation_result * to_ret = cpl_calloc(1, sizeof(*to_ret));
to_ret->xcorr = x_corr;
to_ret->pix_peakpos = max_idx;
to_ret->half_window = half_window;
return to_ret;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief Destructor for hdrl_xcorrelation_result
* @param self hdrl_xcorrelation_result to be deleted
*
* @return nothing
*/
/* ---------------------------------------------------------------------------*/
void hdrl_xcorrelation_result_delete(hdrl_xcorrelation_result * self){
if(self == NULL) return;
cpl_array_delete(self->xcorr);
cpl_free(self);
}
/* ---------------------------------------------------------------------------*/
/**
* @brief Get the index where the cross correlation reaches its maximum
* @param self hdrl_xcorrelation_result the getter will extract the
* data from
*
* @return the index where the cross correlation reaches its maximum
*/
/* ---------------------------------------------------------------------------*/
cpl_size
hdrl_xcorrelation_result_get_peak_pixel(const hdrl_xcorrelation_result * self){
cpl_ensure(self != NULL, CPL_ERROR_NULL_INPUT, 0);
return self->pix_peakpos;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief Get the index where the cross correlation reaches its maximum, with
* sub-pixel precision
* @param self hdrl_xcorrelation_result the getter will extract the
* data from
*
* @return the index where the cross correlation reaches its maximum, with
* sub-pixel precision
*/
/* ---------------------------------------------------------------------------*/
double hdrl_xcorrelation_result_get_peak_subpixel
(const hdrl_xcorrelation_result * self){
cpl_ensure(self != NULL, CPL_ERROR_NULL_INPUT, 0);
return self->peakpos;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief Get the half_window used to calculate the cross-correlation.
* @param self hdrl_xcorrelation_result the getter will extract the
* data from
*
* @return the half_window used to calculate the cross-correlation.
*/
/* ---------------------------------------------------------------------------*/
cpl_size hdrl_xcorrelation_result_get_half_window
(const hdrl_xcorrelation_result * self){
cpl_ensure(self != NULL, CPL_ERROR_NULL_INPUT, 0);
return self->half_window;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief Get the estimated standard deviation of the correlation
* @param self hdrl_xcorrelation_result the getter will extract the
* data from
*
* @return the estimated standard deviation of the correlation
*/
/* ---------------------------------------------------------------------------*/
double
hdrl_xcorrelation_result_get_sigma(const hdrl_xcorrelation_result * self){
cpl_ensure(self != NULL, CPL_ERROR_NULL_INPUT, 0);
return self->sigma;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief Getter for the cross correlation
* @param self hdrl_xcorrelation_result the getter will extract the
* data from
*
* @return the cross correlation
*/
/* ---------------------------------------------------------------------------*/
const cpl_array *
hdrl_xcorrelation_result_get_correlation(const hdrl_xcorrelation_result * self){
cpl_ensure(self != NULL, CPL_ERROR_NULL_INPUT, NULL);
return self->xcorr;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief Calculate cross-correlation
* @param arr1 First array
* @param arr2 Second array
* @param half_window half search window where the correlation is calculated
* @param normalize CPL_TRUE normalize correlation in mean and rms
*
* @return cross correlation and index where the peak is. NULL in case of error.
*
* @note: elements marked as invalid in arr1 or arr2 will be treated as they were
* out-of-boudary pixels.
*/
/* ---------------------------------------------------------------------------*/
hdrl_xcorrelation_result * hdrl_compute_xcorrelation(
const cpl_array * arr1, const cpl_array * arr2,
const cpl_size half_window, const cpl_boolean normalize){
cpl_ensure(half_window > 1, CPL_ERROR_INCOMPATIBLE_INPUT, NULL);
const mean_and_stdev not_normalized = {0.0, 1.0};
cpl_ensure(arr1 != NULL && arr2 != NULL, CPL_ERROR_NULL_INPUT, NULL);
cpl_size xcorr_length = 2 * half_window + 1;
cpl_array * corr = cpl_array_new(xcorr_length, HDRL_TYPE_DATA);
const mean_and_stdev d1 = normalize ?
calculate_mean_and_stdev(arr1) : not_normalized;
const mean_and_stdev d2 = normalize ?
calculate_mean_and_stdev(arr2) : not_normalized;
cpl_size max_idx = -1;
double max_corr = 0.0;
for(cpl_size i = -half_window; i <= half_window; ++i){
const double cr = calculate_xcorr_sample(i, arr1, arr2, d1.mean, d2.mean,
d1.stdev, d2.stdev);
const cpl_size idx = i + half_window;
cpl_array_set(corr, idx, cr);
if(isnan(cr)) continue;
if(cr >= max_corr || max_idx < 0){
max_corr = cr;
max_idx = idx;
}
}
return hdrl_xcorrelation_result_wrap(corr, max_idx, half_window);
}
static inline
cpl_error_code check_if_bad(const hdrl_xcorrelation_result * gfit,
const cpl_boolean check_refine){
cpl_ensure_code(gfit != NULL, CPL_ERROR_ILLEGAL_OUTPUT);
cpl_ensure_code(hdrl_xcorrelation_result_get_peak_pixel(gfit) >=0,
CPL_ERROR_ILLEGAL_OUTPUT);
if(check_refine){
const double px = hdrl_xcorrelation_result_get_peak_subpixel(gfit);
cpl_ensure_code(px >= 0.0 && !isnan(px), CPL_ERROR_ILLEGAL_OUTPUT);
const double sigma = hdrl_xcorrelation_result_get_sigma(gfit);
cpl_ensure_code( sigma > 0.0 && !isnan(sigma),CPL_ERROR_ILLEGAL_OUTPUT);
}
return CPL_ERROR_NONE;
}
static inline
cpl_boolean check_and_delete_if_bad(hdrl_xcorrelation_result ** gfit_arg,
const cpl_boolean check_refine){
cpl_error_code fail = check_if_bad(*gfit_arg, check_refine);
if(fail){
hdrl_xcorrelation_result_delete(*gfit_arg);
*gfit_arg = NULL;
}
return fail ? CPL_FALSE : CPL_TRUE;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief Calculate gaussian fit on cross-correlation, does a second fitting for
* refinement.
* @param arr1 First array
* @param arr2 Second array
* @param half_win half search window where the correlation is calculated
* @param normalize CPL_TRUE normalize correlation in mean and rms
* @param bin wavelength bin
* @param wrange half window wavelength range where the fit is going to be
* done
*
* @return gaussian fit for cross correlation.
*/
/* ---------------------------------------------------------------------------*/
hdrl_xcorrelation_result * hdrl_compute_offset_gaussian(
const cpl_array * arr1,
const cpl_array * arr2,
const cpl_size half_win, const cpl_boolean normalize,
const double bin, const double wrange){
cpl_ensure(half_win > 1, CPL_ERROR_ILLEGAL_INPUT, NULL);
cpl_ensure(arr1 != NULL, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(arr2 != NULL, CPL_ERROR_NULL_INPUT, NULL);
hdrl_xcorrelation_result * gfit =
hdrl_compute_offset_gaussian_internal(arr1, arr2, half_win,
normalize, bin, wrange);
cpl_ensure(gfit != NULL, CPL_ERROR_ILLEGAL_OUTPUT, NULL);
const cpl_size half_win2 =
(cpl_size)(3. * CPL_MATH_FWHM_SIG * gfit->sigma / bin);
hdrl_xcorrelation_result_delete(gfit);
gfit = hdrl_compute_offset_gaussian_internal(arr1, arr2, half_win2,
normalize, bin, wrange);
return gfit;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief Calculate gaussian fit on cross-correlation
* @param arr1 First array
* @param arr2 Second array
* @param half_win half search window where the correlation is calculated
* @param normalize CPL_TRUE normalize correlation in mean and rms
* @param bin wavelength bin
* @param wrange half window wavelength range where the fit is going to be
* done
*
* @return gaussian fit for cross correlation.
*/
/* ---------------------------------------------------------------------------*/
hdrl_xcorrelation_result * hdrl_compute_offset_gaussian_internal(
const cpl_array * arr1, const cpl_array * arr2,
const cpl_size half_win, const cpl_boolean normalize,
const double bin, const double wrange){
hdrl_xcorrelation_result * res =
hdrl_compute_xcorrelation(arr1, arr2, half_win, normalize);
if(!check_and_delete_if_bad(&res, CPL_FALSE)) return NULL;
cpl_error_code fail =
hdrl_compute_xcorrelation_refine(res, bin, wrange);
if(fail){
hdrl_xcorrelation_result_delete(res);
return NULL;
}
if(!check_and_delete_if_bad(&res, CPL_TRUE)) return NULL;
return res;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief Refine a hdrl_xcorrelation_result using gaussian fit
* @param xcorr_res hdrl_xcorrelation_result calculated with pixel precision
* @param bin wavelength bin
* @param wrange half window wavelength range where the fit is going to be
* done
*
* @return gaussian fit for cross correlation.
*/
/* ---------------------------------------------------------------------------*/
static inline cpl_error_code
hdrl_compute_xcorrelation_refine(hdrl_xcorrelation_result* xcorr_res,
const double bin, const double wrange){
const cpl_array * xcorr = hdrl_xcorrelation_result_get_correlation(xcorr_res);
const cpl_size maxpos = hdrl_xcorrelation_result_get_peak_pixel(xcorr_res);
const cpl_size xcorr_size = cpl_array_get_size(xcorr);
const cpl_size pre_idx = CPL_MAX(0, maxpos - 1);
const cpl_size post_idx = CPL_MIN(maxpos + 1, xcorr_size - 1);
const double a = cpl_array_get(xcorr, pre_idx, NULL);
const double b = cpl_array_get(xcorr, post_idx, NULL);
const double c = cpl_array_get(xcorr, maxpos, NULL);
/* Find sub-pixel peak initial estimation. Use parabolic assumption */
const double fraction = (b - a) / ( 4. * c - 2. * a - 2. * b );
const double subpix_offset = maxpos - fraction;
xcorr_res->peakpos = subpix_offset * bin;
xcorr_res->sigma = bin * 10;
xcorr_res->area = 1.0;
cpl_size num_elems = 0;
cpl_vector * wavs_windowed = cpl_vector_new(xcorr_size);
cpl_vector * corr_windowed = cpl_vector_new(xcorr_size);
for(cpl_size i = 0; i < xcorr_size; ++i){
const double w = i * bin;
int rej = 0;
const double xcorr_data = cpl_array_get(xcorr, i, &rej);
if(rej || isnan(xcorr_data)) continue;
if(w < xcorr_res->peakpos - wrange
|| w > xcorr_res->peakpos + wrange) continue;
cpl_vector_set(corr_windowed, num_elems, xcorr_data);
cpl_vector_set(wavs_windowed, num_elems, w);
num_elems++;
}
if(num_elems <= 0){
cpl_vector_delete(wavs_windowed);
cpl_vector_delete(corr_windowed);
cpl_ensure_code(CPL_FALSE, CPL_ERROR_ILLEGAL_OUTPUT);
}
cpl_vector_set_size(corr_windowed, num_elems);
cpl_vector_set_size(wavs_windowed, num_elems);
cpl_error_code code = cpl_vector_fit_gaussian(wavs_windowed, NULL,
corr_windowed, NULL, CPL_FIT_ALL, &xcorr_res->peakpos, &xcorr_res->sigma,
&xcorr_res->area, &xcorr_res->offset, &xcorr_res->mse, NULL, NULL);
/* if the fitting does not converge, CPL_ERROR_CONTINUE is set, the
* output parameters are calculated using a best-effort approach.
* See the documentation of cpl_vector_fit_gaussian .*/
if(code == CPL_ERROR_CONTINUE){
cpl_error_reset();
}
cpl_vector_delete(wavs_windowed);
cpl_vector_delete(corr_windowed);
return cpl_error_get_code();
}
static inline
double calculate_xcorr_sample(const cpl_size shift,
const cpl_array * arr1, const cpl_array * arr2,
const double mean1, const double mean2,
const double stdev1, const double stdev2){
double d = 0.0;
cpl_size num_el = 0;
const double norm = 1.00 / sqrt(stdev1 * stdev2);
const cpl_size l1 = cpl_array_get_size(arr1);
const cpl_size l2 = cpl_array_get_size(arr2);
for(cpl_size i = 0; i < l2; i++){
const cpl_size j = i + shift;
int rej1 = 0, rej2 = 0;
if(j < 0) continue;
if(j >= l1) continue;
const double v1 = cpl_array_get(arr1, j, &rej1);
const double v2 = cpl_array_get(arr2, i, &rej2);
if(rej1 || rej2) continue;
const double val = norm * (v1 - mean1) * (v2 - mean2);
d += val;
num_el++;
}
return d / (double)num_el;
}
static inline
mean_and_stdev calculate_mean_and_stdev(const cpl_array * arr1){
const double mean = cpl_array_get_mean(arr1);
const double stdev = cpl_array_get_stdev(arr1);
return (mean_and_stdev){mean, stdev};
}
/**@}*/
|