1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
|
/*
* This file is part of the HDRL
* Copyright (C) 2013 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#if !defined(_POSIX_C_SOURCE)
#define _POSIX_C_SOURCE 200112L
#endif
/*---------------------------------------------------------------------------*
* Includes *
*---------------------------------------------------------------------------*/
#include "hdrl_dar.h"
#include <math.h>
/*---------------------------------------------------------------------------*
* Debugging/feature Macros *
*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*
* Static *
*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/**
* @defgroup hdrl_dar DAR (Differential Atmospheric Refraction)
*
* @brief
*
*/
/*----------------------------------------------------------------------------*/
/**@{*/
/** @cond PRIVATE */
/*-----------------------------------------------------------------------------
DAR Parameters Definition
-----------------------------------------------------------------------------*/
typedef struct {
HDRL_PARAMETER_HEAD;
hdrl_value airmass; /* Air mass */
hdrl_value parang; /* Parallactic angle during exposure */
hdrl_value posang; /* Position angle on the sky from the angles we have */
hdrl_value temp; /* Temperature [Celsius] */
hdrl_value rhum; /* Relative humidity [%] */
hdrl_value pres; /* Pressure [mbar] */
cpl_wcs *wcs; /* World Coordinate system (WCS) in degrees(CDi_j) */
} hdrl_dar_parameter;
/* Parameter type */
static hdrl_parameter_typeobj hdrl_dar_parameter_type = {
HDRL_PARAMETER_DAR, /* type */
(hdrl_alloc *)&cpl_malloc, /* fp_alloc */
(hdrl_free *)&cpl_free, /* fp_free */
NULL, /* fp_destroy */
sizeof(hdrl_dar_parameter), /* obj_size */
};
/*----------------------------------------------------------------------------*/
/**
* @brief Verify basic correctness of the DAR parameters
*
* @param param Contains all of DAR parameters
*
* @return CPL_ERROR_NONE if everything is ok, an error code otherwise
*
**/
/*----------------------------------------------------------------------------*/
cpl_error_code hdrl_dar_parameter_verify(const hdrl_parameter *param)
{
cpl_error_ensure(param != NULL, CPL_ERROR_NULL_INPUT,
return CPL_ERROR_NULL_INPUT, "NULL Input Parameters");
cpl_error_ensure(hdrl_parameter_check_type(param, &hdrl_dar_parameter_type), CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT, "Expected DAR parameter");
const hdrl_dar_parameter *p_loc = (const hdrl_dar_parameter *)param;
hdrl_value airmass = p_loc->airmass;
hdrl_value parang = p_loc->parang; /* Degrees */
hdrl_value posang = p_loc->posang; /* Degrees */
hdrl_value temp = p_loc->temp; /* T [Celsius] */
hdrl_value rhum = p_loc->rhum; /* Relative humidity [%] */
hdrl_value pres = p_loc->pres; /* Pressure [mbar] */
cpl_error_ensure(airmass.data >= 0. && airmass.error >= 0., CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT, "Airmass parameter not valid");
cpl_error_ensure(parang.data >= -180. && parang.data <= 180. && parang.error >= 0., CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT, "Paralactic angle not valid");
cpl_error_ensure(posang.data >= -360. && posang.data <= 360. && posang.error >= 0., CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT, "Position angle not valid");
cpl_error_ensure(temp.data >= -273.15 && temp.error >= 0., CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT, "Temperature not valid");
cpl_error_ensure(rhum.data >= 0. && rhum.data <=100 && rhum.error >= 0., CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT, "Humidity percent value not valid");
cpl_error_ensure( pres.data >= 0. && pres.error >= 0., CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT, "Pressure not valid");
cpl_wcs* wcs = p_loc->wcs; /* Degrees */
cpl_error_ensure(wcs != NULL, CPL_ERROR_NULL_INPUT,
return CPL_ERROR_NULL_INPUT, "NULL WCS Input");
return CPL_ERROR_NONE;
}
/** @endcond */
/* ---------------------------------------------------------------------------*/
/**
* @brief Creates DAR parameters object with the values in the header
*
* @param airmass Air mass
* @param parang Parallactic angle during exposure
* @param posang Position angle on the sky from the angles we have
* @param temp Temperature [Celsius]
* @param rhum Relative humidity [%]
* @param pres Pressure [mbar]
* @param wcs World Coordinate system (WCS) in degrees(CDi_j)
*
* @return The dar parameters object. It needs to be deallocated
* with hdrl_parameter_delete() or _destroy()
*
* @note References:
* - based on public domain code of the IDL astro-lib procedure getrot.pro
* - See <a href=http://idlastro.gsfc.nasa.gov/ftp/pro/astrom/getrot.pro>getrot
* </a> for more info.
*
*/
/* ---------------------------------------------------------------------------*/
hdrl_parameter * hdrl_dar_parameter_create(hdrl_value airmass, hdrl_value parang,
hdrl_value posang, hdrl_value temp, hdrl_value rhum, hdrl_value pres, cpl_wcs *wcs)
{
hdrl_dar_parameter *p = (hdrl_dar_parameter *)hdrl_parameter_new(&hdrl_dar_parameter_type);
p->airmass = airmass;
p->parang = parang;
p->posang = posang;
p->temp = temp;
p->rhum = rhum;
p->pres = pres;
p->wcs = wcs;
/* After add the parameters, verify if they are correct */
if (hdrl_dar_parameter_verify((hdrl_parameter *)p) != CPL_ERROR_NONE) {
hdrl_parameter_delete((hdrl_parameter*)p);
return NULL;
}
return (hdrl_parameter *)p;
}
/*----------------------------------------------------------------------------*/
/**
* @brief Correct the pixel coordinates of all pixels of a given pixel table
* for differential atmospheric refraction (DAR).
*
* @param params In: h_parameter with all of params. in the observation
* @param lambdaRef In: Reference wavelength (in Angstroms)
* @param lambdaIn In: One lambda for each plane (in Angstroms)
* @param xShift Out: Correction for each plane in x-axis (pixels)
* @param yShift Out: Correction for each plane in y-axis (pixels)
* @param xShiftErr Out: Error in correction for each plane in x-axis (pix)
* @param yShiftErr Out: Error in correction for each plane in x-axis (pix)
*
* @return CPL_ERROR_NONE on success another CPL error code on failure
*
* @remark The resulting correction can be directly applied to the pixel table.
*
* Loop that compute the DAR offset for the wavelength difference with respect
* to the reference wavelength, and storage the shift in the coordinates,
* taking into account the instrument rotation angle on the sky and the
* parallactic angle at the time of the observations.
*
* The algorithm from Filippenko (1982, PASP, 94, 715). This only uses the formula
* from Owens which converts relative humidity to water vapor pressure.
*
* @note The calculation is performed by calling the top-level function
* hdrl_dar_compute() and the parameters passed to this function can be created
* by calling hdrl_dar_parameter_create().
*
* @note This module contains routines to calculate the refractive index of air.
* See <a href="http://emtoolbox.nist.gov/Wavelength/Documentation.asp#AppendixA">
* here</a> for the formulae used.
*
*/
/*----------------------------------------------------------------------------*/
cpl_error_code hdrl_dar_compute(const hdrl_parameter *params,
const hdrl_value lambdaRef, const cpl_vector *lambdaIn,
cpl_vector *xShift, cpl_vector *yShift, cpl_vector *xShiftErr, cpl_vector *yShiftErr)
{
cpl_error_ensure(params && lambdaIn && xShift && yShift != NULL, CPL_ERROR_NULL_INPUT,
return CPL_ERROR_NULL_INPUT, "NULL Input Parameters");
/* Check entry values in hdrl_parameter */
if (hdrl_dar_parameter_verify(params) != CPL_ERROR_NONE) {
return CPL_ERROR_UNSPECIFIED;
}
cpl_error_ensure(lambdaRef.data >= 0, CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT, "Reference wavelength must be >=0");
/* Local Usage Parameters */
const hdrl_dar_parameter *p_loc = (const hdrl_dar_parameter *)params;
hdrl_value airmass = p_loc->airmass;
hdrl_value parang = p_loc->parang; /* Degrees */
hdrl_value posang = p_loc->posang; /* Degrees */
hdrl_value temp = p_loc->temp; /* T [Celsius] */
hdrl_value rhum = p_loc->rhum; /* Relative humidity [%] */
hdrl_value pres = p_loc->pres; /* Pressure [mbar] */
cpl_wcs *wcs = p_loc->wcs; /* Degrees */
/* Check if the airmass is at less 1. */
cpl_ensure_code(airmass.data >= 1., cpl_error_get_code());
/* simple zenith distance in radians */
hdrl_value z = {acos(1. / airmass.data),
airmass.error * fabs( (-1. / pow(airmass.data, 2)) / sqrt(1. - pow(1. / airmass.data, 2)) )};
/* ----------------------------------------------------------------- *
* Compute the refractive index at lambdaRef with FILIPPENKO method *
* in um and output properties in "natural" (for the formulae) units *
* ----------------------------------------------------------------- */
/* Calculate temperature and error in Kelvin */
double temp_kel_data = temp.data + 273.15;
double temp_kel_err = (temp.error / fabs(temp.data)) * fabs(temp_kel_data);
hdrl_value temp_kel = {temp_kel_data, temp_kel_err};
/* Use the Owens formula to derive saturation pressure. Needs T[K] */
hdrl_value sp = hdrl_dar_owens_saturation_pressure(temp_kel);
/* Conversion from hPa (or mbar) to mmHg, needed for Filippenko *
* using that, derive the water vapor pressure in mmHg */
double HDRL_PHYS_hPa_TO_mmHg = 0.75006158;
/* Convert relative humidity [%] to fraction */
rhum.data /= 100.;
rhum.error /= 100.;
/* water vapor pressure in mmHg */
hdrl_value fp = {rhum.data *sp.data *HDRL_PHYS_hPa_TO_mmHg,
fabs(HDRL_PHYS_hPa_TO_mmHg * sp.data ) * rhum.error
+ fabs(HDRL_PHYS_hPa_TO_mmHg * rhum.data) * sp.error};
/* need the pressure in mmHg */
pres.data *= HDRL_PHYS_hPa_TO_mmHg;
pres.error *= HDRL_PHYS_hPa_TO_mmHg;
/* refractive index of air at reference wavelength. Needs lambda[um] */
hdrl_value lambdaRef_um = {lambdaRef.data * 1e-4,lambdaRef.error * 1e-4};
hdrl_value nr0 = hdrl_dar_filippenko_refractive_index(lambdaRef_um, pres, temp, fp);
/* Obtain shift with scale: Absolute Shift for a lambdaRef, xshift is in *
* E-W direction for posang = 0, yshift is N-S Shift units --> Degrees */
hdrl_value x_shift = {-sin( (parang.data + posang.data) * CPL_MATH_RAD_DEG),
parang.error * fabs(-CPL_MATH_RAD_DEG * cos(parang.data + posang.data))
+ posang.error * fabs(-CPL_MATH_RAD_DEG * cos(parang.data + posang.data))};
hdrl_value y_shift = { cos( (parang.data + posang.data) * CPL_MATH_RAD_DEG),
parang.error * fabs(-CPL_MATH_RAD_DEG * sin(parang.data + posang.data))
+ posang.error * fabs(-CPL_MATH_RAD_DEG * sin(parang.data + posang.data))};
/* Get scale in the world cordinate system (wcs) and apply them */
double xscale, yscale;
hdrl_dar_wcs_get_scales(wcs, &xscale, &yscale);
x_shift.data /= xscale;
x_shift.error /= xscale;
y_shift.data /= yscale;
y_shift.error /= yscale;
/* Diff. refr. base in arcsec converted from radians (Filippenko does *
* the conversion using x206265 which converts radians to arcsec) */
hdrl_value dr0 = {tan(z.data) * CPL_MATH_DEG_RAD,
z.error * fabs( (1. + pow(tan(z.data), 2)) * CPL_MATH_DEG_RAD)};
/* ------------------------------------------------------------------ *
* Calculate the relative lambda of in array (in) *
* apply the absolute shift (x_shift, y_shift) for lamdaRef *
* for obtain the out arrays (xShift, yShift ) *
* ------------------------------------------------------------------ */
cpl_size i;
cpl_size nmax = cpl_vector_get_size(lambdaIn);
HDRL_OMP(omp parallel for \
default(none) \
shared( nmax, lambdaIn, \
xShift, yShift, xShiftErr, yShiftErr, \
lambdaRef_um, pres, temp, fp, dr0, nr0, \
x_shift, y_shift ))
for (i = 0; i < nmax; i++) {
double lambda = cpl_vector_get(lambdaIn, i);
if (isfinite(lambda) != 0) {
hdrl_value lambda_um = {lambda * 1e-4, lambdaRef_um.error};
hdrl_value nr = hdrl_dar_filippenko_refractive_index(lambda_um, pres, temp, fp);
hdrl_value dr = {dr0.data * (nr0.data - nr.data),
dr0.error * fabs(nr0.data - nr.data)
+ nr0.error * fabs( dr0.data)
+ nr.error * fabs(-dr0.data)};
hdrl_value shiftPlaneX = {x_shift.data * dr.data,
x_shift.error * fabs(dr.data)
+ dr.error * fabs(x_shift.data)};
cpl_vector_set(xShift, i, shiftPlaneX.data );
cpl_vector_set(xShiftErr, i, shiftPlaneX.error);
hdrl_value shiftPlaneY = {y_shift.data * dr.data,
y_shift.error * fabs(dr.data)
+ dr.error * fabs(y_shift.data)};
cpl_vector_set(yShift, i, shiftPlaneY.data );
cpl_vector_set(yShiftErr, i, shiftPlaneY.error);
} else {
cpl_vector_set(xShift, i, NAN);
cpl_vector_set(xShiftErr, i, NAN);
cpl_vector_set(yShift, i, NAN);
cpl_vector_set(yShiftErr, i, NAN);
}
}
return CPL_ERROR_NONE;
}
/*----------------------------------------------------------------------------*/
/**
* @brief Compute the saturation pressure using the Owens calibration.
*
* @param hvT temperature (in Kelvin) with it error associated (in Celsius)
*
* @return the saturation pressure for the given temperature with it error propagation
*
* \f[
* s_p = -10474 +116.43\ T -0.43284\ T^2 +0.00053840\ T^3
* \f]
* where T is the temperature.
*
* @note This function is used for the Filippenko formulae.
*
*/
/*----------------------------------------------------------------------------*/
hdrl_value hdrl_dar_owens_saturation_pressure(hdrl_value hvT)
{
double T = hvT.data;
double errorT = hvT.error;
return (hdrl_value){-10474.0 + 116.43 * T - 0.43284 * T * T + 0.00053840 * pow(T, 3),
errorT * fabs(0.0016152 * T * T - 0.86568 * T + 116.43)};
}
/*----------------------------------------------------------------------------*/
/**
* @brief Compute the refractive index for the given wavelength following
* Filippenko formulae. This function is called by hdrl_dar_compute().
*
* @param hvL the wavelength (in um) with it error associated
* @param hvP atmospheric pressure (in mmHg) with it error associated
* @param hvT temperature (in degrees Celsius) with it error associated
* @param hvF water vapor pressure (in mmHg) with it error associated
*
* @return The refractive index with it error propagation
*
* At sea level (P=760 mm Hg, T = 15 \f$^oC\f$) the refractive index of dry air is given
* by (Edlén 1953; Coleman, Bozman, and Meggers 1960):
* \f[
* (n( \lambda )_{15,760}-1)10^6 = 64.328 + \frac{29498.1}{146-(1/ \lambda )^2} +\frac{255.4}{41-(1/ \lambda )^2}
* \f]
* where \lambda is the wavelength of light in vacue (microns). Since observatories
* are usually located at high altitudes, the index of refraction must be corrected
* for the lower ambient temperature and pressure (Barrell 1951):
* \f[
* (n(\lambda)_{T,P} -1) = (n(\lambda)_{15,760} - 1) \cdot
* \frac{P[1+(1.049-0.0157\ T) 10^{-6}\ P]}{720.883 (1+0.003661\ T)}
* \f]
* In addition, the presence of water vapor in the atmosphere reduces \f$(n-1)10^6\f$ by:
* \f[
* \frac{0.0624-0.000680/\lambda^2}{1 + 0.003661\ T} f
* \f]
* here \f$f\f$ is the water vapor pressure in mm of Hg and T is the air temperature
* in \f$^oC\f$ (Barrell 1951).
* \f[
* f = 0.75006158 \cdot s_p \cdot h
* \f]
* where \f$s_p\f$ is the saturation pressure with Owens calibration and h is the fraction
* of humidity in [%].
*/
/*----------------------------------------------------------------------------*/
hdrl_value hdrl_dar_filippenko_refractive_index(
hdrl_value hvL, hdrl_value hvP, hdrl_value hvT, hdrl_value hvF)
{
double l = hvL.data,
P = hvP.data,
T = hvT.data,
f = hvF.data;
double errorL = hvL.error,
errorP = hvP.error,
errorT = hvT.error,
errorF = hvF.error;
/* inverse square of the wavelength */
double lisq = 1. / (l * l);
double errorLisq = errorL * fabs(-2. / pow(l, 3) );
/* 10^6 [n(lambda) - 1] at standard environmental conditions, Eq. (1) */
double nl1 = 64.328 + 29498.1 / (146. - lisq) + 255.4 / (41. - lisq);
double errorNl1 = errorLisq * fabs( 29498.1 / pow(146. - lisq, 2) + 255.4 / pow(41. - lisq, 2) );
/* correction for non-standard conditions, Eq. (2) */
double factor = 1.e-6;
double nl2A = nl1 * ( P / 720.883 * (1. + (1.049 -0.0157 * T) * 1e-6 * P) / (1. + 0.003661 * T) );
double errorNl2A1 = errorNl1 * fabs( factor *(P / 720.883 * (1. + (1.049 - 0.0157 * T) * 1e-6 * P) / (1. + 0.003661 * T) ) );
double errorNl2A2 = errorP * fabs( factor *(nl1 / (720.883 * (1. + 0.003661 * T)) *( (1. + (1.049 - 0.0157 * T) * 1e-6 * P) + P * (1.049 - 0.0157 * T) * 1e-6) ) );
double errorNl2A3 = errorT * fabs( factor *(nl1 * P / 720.883 * ( ( -0.0157 * 1e-6 * P * (1. + 0.003661 * T) - 0.003661 * (1. + (1.049 - 0.0157 * T) * 1e-6 * P) )/pow(1. + 0.003661 * T, 2) ) ) );
double errorNl2A = errorNl2A1 + errorNl2A2 + errorNl2A3;
/* Calcule correction for water vapor, Eq. (3) */
double nl2B = (0.0624 - 0.000680 * lisq) / (1. + 0.003661 * T) * f;
double errorNl2B1 = errorLisq * fabs( -0.000680 * f / (1. + 0.003661 * T) );
double errorNl2B2 = errorT * fabs( -0.003661 * (0.0624 - 0.000680 * lisq) * f / pow(1. + 0.003661 * T, 2) );
double errorNl2B3 = errorF * fabs( (0.0624 - 0.000680 * lisq) / (1. + 0.003661 * T) );
double errorNl2B = errorNl2B1 + errorNl2B2 + errorNl2B3;
/* Apply correction for water vapor, Eq. (3) */
double nl2 = nl2A - nl2B;
double errorNl2 = errorNl2A + errorNl2B;
/* convert to refractive index n(lambda) */
double nl3 = nl2 * 1e-6 + 1.;
double errorNl3 = fabs(errorNl2 * 1e-6);
return (hdrl_value){nl3,errorNl3};
}
/** @cond PRIVATE */
/*----------------------------------------------------------------------------*/
/**
* @brief Compute the spatial scales (in degrees) from the FITS header WCS.
*
* @param header the input header containing the WCS of the exposure
* @param aXScale the output scale in x-direction
* @param aYScale the output scale in y-direction
*
* @return CPL_ERROR_NONE for success, any other value for failure
*
* The world coordinate system from header, i.e. the CDi_j matrix, is used to
* compute the scales.
*
* @note References:
* - based on public domain code of the IDL astro-lib procedure getrot.pro
* - http://idlastro.gsfc.nasa.gov/ftp/pro/astrom/getrot.pro
*
*/
/*----------------------------------------------------------------------------*/
cpl_error_code hdrl_dar_wcs_get_scales(
cpl_wcs *wcs,
double *aXScale,
double *aYScale)
{
cpl_ensure_code(aXScale && aYScale, CPL_ERROR_NULL_INPUT);
cpl_errorstate prestate = cpl_errorstate_get();
const cpl_matrix *cd = cpl_wcs_get_cd(wcs);
/* take the absolute and scale by 3600 to get positive arcseconds */
double cd11 = cpl_matrix_get(cd, 0, 0),
cd12 = cpl_matrix_get(cd, 0, 1),
cd21 = cpl_matrix_get(cd, 1, 0),
cd22 = cpl_matrix_get(cd, 1, 1);
double det = cd11 * cd22 - cd12 * cd21;
cpl_ensure_code(cpl_errorstate_is_equal(prestate), cpl_error_get_code());
if (det < 0.) {
cd12 *= -1.;
cd11 *= -1.;
}
/* matrix without rotation */
if (cd12 == 0. && cd21 == 0.) {
*aXScale = cd11;
*aYScale = cd22;
return CPL_ERROR_NONE;
}
/* Only the absolute value */
*aXScale = sqrt(cd11 * cd11 + cd12 * cd12);
*aYScale = sqrt(cd22 * cd22 + cd21 * cd21);
return CPL_ERROR_NONE;
}
/** @endcond */
/**@}*/
|