File: hdrl_dar.c

package info (click to toggle)
cpl-plugin-amber 4.4.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 9,340 kB
  • sloc: ansic: 89,588; sh: 4,337; makefile: 620; python: 295
file content (536 lines) | stat: -rw-r--r-- 21,689 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
/*
 * This file is part of the HDRL
 * Copyright (C) 2013 European Southern Observatory
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#if !defined(_POSIX_C_SOURCE)
#define _POSIX_C_SOURCE 200112L
#endif


/*---------------------------------------------------------------------------*
 *                                   Includes                                *
 *---------------------------------------------------------------------------*/
#include "hdrl_dar.h"

#include <math.h>

/*---------------------------------------------------------------------------*
 *                             Debugging/feature Macros                      *
 *---------------------------------------------------------------------------*/


/*---------------------------------------------------------------------------*
 *                                  Static                                   *
 *---------------------------------------------------------------------------*/


/*---------------------------------------------------------------------------*/
/**
 * @defgroup hdrl_dar 	DAR (Differential Atmospheric Refraction)
 *
 * @brief
 *
 */
/*----------------------------------------------------------------------------*/

/**@{*/


/** @cond PRIVATE */

/*-----------------------------------------------------------------------------
                        DAR Parameters Definition
 -----------------------------------------------------------------------------*/
typedef struct {
    HDRL_PARAMETER_HEAD;
    hdrl_value airmass;	/* Air mass		                     				 */
    hdrl_value parang;	/* Parallactic angle during exposure				 */
    hdrl_value posang;	/* Position angle on the sky from the angles we have */
    hdrl_value temp;	/* Temperature [Celsius]							 */
    hdrl_value rhum;	/* Relative humidity [%]							 */
    hdrl_value pres;	/* Pressure [mbar]									 */
	cpl_wcs    *wcs;	/* World Coordinate system (WCS) in degrees(CDi_j)	 */
} hdrl_dar_parameter;

/* Parameter type */
static hdrl_parameter_typeobj hdrl_dar_parameter_type = {
    HDRL_PARAMETER_DAR,		                        /* type 	  */
    (hdrl_alloc *)&cpl_malloc,                      /* fp_alloc   */
    (hdrl_free  *)&cpl_free,                        /* fp_free 	  */
    NULL,									 	    /* fp_destroy */
    sizeof(hdrl_dar_parameter),		                /* obj_size   */
};

/*----------------------------------------------------------------------------*/
 /**
  * @brief    Verify basic correctness of the DAR parameters
  *
  * @param    param   Contains all of DAR parameters
  *
  * @return   CPL_ERROR_NONE if everything is ok, an error code otherwise
  *
  **/
 /*----------------------------------------------------------------------------*/
cpl_error_code hdrl_dar_parameter_verify(const hdrl_parameter *param)
{
	cpl_error_ensure(param != NULL, CPL_ERROR_NULL_INPUT,
		return CPL_ERROR_NULL_INPUT, "NULL Input Parameters");

	cpl_error_ensure(hdrl_parameter_check_type(param, &hdrl_dar_parameter_type), CPL_ERROR_ILLEGAL_INPUT,
		return CPL_ERROR_ILLEGAL_INPUT, "Expected DAR parameter");

	const hdrl_dar_parameter *p_loc = (const hdrl_dar_parameter *)param;
	hdrl_value airmass = p_loc->airmass;
	hdrl_value parang  = p_loc->parang;		/* Degrees               */
	hdrl_value posang  = p_loc->posang;		/* Degrees               */
	hdrl_value temp    = p_loc->temp;		/* T [Celsius]           */
	hdrl_value rhum    = p_loc->rhum;		/* Relative humidity [%] */
	hdrl_value pres    = p_loc->pres;		/* Pressure [mbar]       */

	cpl_error_ensure(airmass.data >= 0. && airmass.error >= 0., CPL_ERROR_ILLEGAL_INPUT,
		return CPL_ERROR_ILLEGAL_INPUT, "Airmass parameter not valid");

	cpl_error_ensure(parang.data >= -180. && parang.data <= 180. && parang.error >= 0., CPL_ERROR_ILLEGAL_INPUT,
		return CPL_ERROR_ILLEGAL_INPUT, "Paralactic angle not valid");

	cpl_error_ensure(posang.data >= -360. && posang.data <= 360. && posang.error >= 0., CPL_ERROR_ILLEGAL_INPUT,
		return CPL_ERROR_ILLEGAL_INPUT, "Position angle not valid");

	cpl_error_ensure(temp.data >= -273.15 && temp.error >= 0., CPL_ERROR_ILLEGAL_INPUT,
		return CPL_ERROR_ILLEGAL_INPUT, "Temperature not valid");

	cpl_error_ensure(rhum.data >= 0. && rhum.data <=100 && rhum.error >= 0., CPL_ERROR_ILLEGAL_INPUT,
		return CPL_ERROR_ILLEGAL_INPUT, "Humidity percent value not valid");

	cpl_error_ensure( pres.data >= 0. && pres.error >= 0., CPL_ERROR_ILLEGAL_INPUT,
		return CPL_ERROR_ILLEGAL_INPUT, "Pressure not valid");

	cpl_wcs* wcs = p_loc->wcs;	/* Degrees */

	cpl_error_ensure(wcs != NULL, CPL_ERROR_NULL_INPUT,
		return CPL_ERROR_NULL_INPUT, "NULL WCS Input");

    return CPL_ERROR_NONE;
}

/** @endcond */

/* ---------------------------------------------------------------------------*/
/**
 * @brief    Creates DAR parameters object with the values in the header
 *
 * @param	 airmass	Air mass
 * @param	 parang	 	Parallactic angle during exposure
 * @param	 posang	 	Position angle on the sky from the angles we have
 * @param	 temp	 	Temperature [Celsius]
 * @param	 rhum	    Relative humidity [%]
 * @param	 pres	    Pressure [mbar]
 * @param	 wcs	    World Coordinate system (WCS) in degrees(CDi_j)
 *
 * @return   The dar parameters object. It needs to be deallocated
 *           with hdrl_parameter_delete() or _destroy()
 *
 * @note References:
 * - based on public domain code of the IDL astro-lib procedure getrot.pro
 * - See <a href=http://idlastro.gsfc.nasa.gov/ftp/pro/astrom/getrot.pro>getrot
 * </a> for more info.
 *
 */
/* ---------------------------------------------------------------------------*/
hdrl_parameter * hdrl_dar_parameter_create(hdrl_value airmass, hdrl_value parang,
		hdrl_value posang, hdrl_value temp, hdrl_value rhum, hdrl_value pres, cpl_wcs *wcs)
{
	hdrl_dar_parameter *p =	(hdrl_dar_parameter *)hdrl_parameter_new(&hdrl_dar_parameter_type);

    p->airmass = airmass;
	p->parang  = parang;
	p->posang  = posang;
    p->temp    = temp;
	p->rhum    = rhum;
	p->pres    = pres;

	p->wcs = wcs;

	/* After add the parameters, verify if they are correct */
	if (hdrl_dar_parameter_verify((hdrl_parameter *)p) != CPL_ERROR_NONE) {
		hdrl_parameter_delete((hdrl_parameter*)p);
		return NULL;
	}

	return (hdrl_parameter *)p;
}


/*----------------------------------------------------------------------------*/
/**
 * @brief   Correct the pixel coordinates of all pixels of a given pixel table
 *          for differential atmospheric refraction (DAR).
 *
 * @param   params      In:  h_parameter with all of params. in the observation
 * @param   lambdaRef   In:  Reference wavelength (in Angstroms)
 * @param   lambdaIn	In:  One lambda for each plane (in Angstroms)
 * @param   xShift		Out: Correction for each plane in x-axis (pixels)
 * @param   yShift		Out: Correction for each plane in y-axis (pixels)
 * @param   xShiftErr	Out: Error in correction for each plane in x-axis (pix)
 * @param   yShiftErr	Out: Error in correction for each plane in x-axis (pix)
 *
 * @return  CPL_ERROR_NONE on success another CPL error code on failure
 *
 * @remark  The resulting correction can be directly applied to the pixel table.
 *
 * Loop that compute the DAR offset for the wavelength difference with respect
 * to the reference wavelength, and storage the shift in the coordinates,
 * taking into account the instrument rotation angle on the sky and the
 * parallactic angle at the time of the observations.
 *
 * The algorithm from Filippenko (1982, PASP, 94, 715). This only uses the formula
 * from Owens which converts relative humidity to water vapor pressure.
 *
 * @note The calculation is performed by calling the top-level function
 * hdrl_dar_compute() and the parameters passed to this function can be created
 * by calling hdrl_dar_parameter_create().
 *
 * @note  This module contains routines to calculate the refractive index of air.
 * See <a href="http://emtoolbox.nist.gov/Wavelength/Documentation.asp#AppendixA">
 * here</a> for the formulae used.
 *
 */
/*----------------------------------------------------------------------------*/
cpl_error_code hdrl_dar_compute(const hdrl_parameter *params,
		const hdrl_value lambdaRef, const cpl_vector *lambdaIn,
		cpl_vector *xShift, cpl_vector *yShift, cpl_vector *xShiftErr, cpl_vector *yShiftErr)
{

	cpl_error_ensure(params && lambdaIn && xShift && yShift != NULL, CPL_ERROR_NULL_INPUT,
		return CPL_ERROR_NULL_INPUT, "NULL Input Parameters");

	/* Check entry values in hdrl_parameter */
	if (hdrl_dar_parameter_verify(params) != CPL_ERROR_NONE) {
		return CPL_ERROR_UNSPECIFIED;
	}

	cpl_error_ensure(lambdaRef.data >= 0, CPL_ERROR_ILLEGAL_INPUT,
		return CPL_ERROR_ILLEGAL_INPUT, "Reference wavelength must be >=0");

	 /* Local Usage Parameters */
	const hdrl_dar_parameter *p_loc = (const hdrl_dar_parameter *)params;
	hdrl_value airmass  = p_loc->airmass;
	hdrl_value parang   = p_loc->parang;		/* Degrees               */
	hdrl_value posang   = p_loc->posang;		/* Degrees               */
	hdrl_value temp     = p_loc->temp;			/* T [Celsius]           */
	hdrl_value rhum     = p_loc->rhum;			/* Relative humidity [%] */
	hdrl_value pres     = p_loc->pres;			/* Pressure [mbar]       */
	cpl_wcs *wcs        = p_loc->wcs;			/* Degrees               */

	/* Check if the airmass is at less 1. */
	cpl_ensure_code(airmass.data >= 1., cpl_error_get_code());

	/* simple zenith distance in radians */
	hdrl_value z = {acos(1. / airmass.data),
	                airmass.error * fabs( (-1. / pow(airmass.data, 2)) / sqrt(1. - pow(1. / airmass.data, 2)) )};

	/* ----------------------------------------------------------------- *
	 * Compute the refractive index at lambdaRef with FILIPPENKO method  *
	 * in um and output properties in "natural" (for the formulae) units *
	 * ----------------------------------------------------------------- */

	/* Calculate temperature and error in Kelvin */
	double temp_kel_data = temp.data + 273.15;
	double temp_kel_err  = (temp.error / fabs(temp.data)) * fabs(temp_kel_data);
	hdrl_value temp_kel  = {temp_kel_data, temp_kel_err};

	/* Use the Owens formula to derive saturation pressure. Needs T[K] */
	hdrl_value sp = hdrl_dar_owens_saturation_pressure(temp_kel);

	/* Conversion from hPa (or mbar) to mmHg, needed for Filippenko *
	 * using that, derive the water vapor pressure in mmHg          */
	double HDRL_PHYS_hPa_TO_mmHg = 0.75006158;

	/* Convert relative humidity [%] to fraction */
	rhum.data  /= 100.;
	rhum.error /= 100.;

	/* water vapor pressure in mmHg */
	hdrl_value fp = {rhum.data *sp.data *HDRL_PHYS_hPa_TO_mmHg,
	                  fabs(HDRL_PHYS_hPa_TO_mmHg * sp.data  ) * rhum.error
			        + fabs(HDRL_PHYS_hPa_TO_mmHg * rhum.data) * sp.error};

	/* need the pressure in mmHg */
	pres.data  *= HDRL_PHYS_hPa_TO_mmHg;
	pres.error *= HDRL_PHYS_hPa_TO_mmHg;

	/* refractive index of air at reference wavelength. Needs lambda[um] */
	hdrl_value lambdaRef_um = {lambdaRef.data * 1e-4,lambdaRef.error * 1e-4};
	hdrl_value nr0 = hdrl_dar_filippenko_refractive_index(lambdaRef_um, pres, temp, fp);

	/* Obtain shift with scale: Absolute Shift for a lambdaRef, xshift is in *
	 * E-W direction for posang = 0, yshift is N-S Shift units --> Degrees   */
	hdrl_value x_shift = {-sin( (parang.data + posang.data) * CPL_MATH_RAD_DEG),
	                       parang.error * fabs(-CPL_MATH_RAD_DEG * cos(parang.data + posang.data))
	                     + posang.error * fabs(-CPL_MATH_RAD_DEG * cos(parang.data + posang.data))};

	hdrl_value y_shift = { cos( (parang.data + posang.data) * CPL_MATH_RAD_DEG),
	                       parang.error * fabs(-CPL_MATH_RAD_DEG * sin(parang.data + posang.data))
	                     + posang.error * fabs(-CPL_MATH_RAD_DEG * sin(parang.data + posang.data))};

	/* Get scale in the world cordinate system (wcs) and apply them */
	double xscale, yscale;
	hdrl_dar_wcs_get_scales(wcs, &xscale, &yscale);

	x_shift.data  /= xscale;
	x_shift.error /= xscale;

	y_shift.data  /= yscale;
	y_shift.error /= yscale;

	/* Diff. refr. base in arcsec converted from radians (Filippenko does *
	 * the conversion using x206265 which converts radians to arcsec)     */
	hdrl_value dr0 = {tan(z.data) * CPL_MATH_DEG_RAD,
	                  z.error * fabs( (1. + pow(tan(z.data), 2)) * CPL_MATH_DEG_RAD)};

	/* ------------------------------------------------------------------ *
	 * Calculate the relative lambda of in array (in)                     *
	 * apply the absolute shift  (x_shift, y_shift) for lamdaRef          *
	 * for obtain the out arrays (xShift,  yShift )                       *
	 * ------------------------------------------------------------------ */
	cpl_size i;
	cpl_size nmax = cpl_vector_get_size(lambdaIn);

	HDRL_OMP(omp parallel for                               		\
				 default(none)                                      \
				 shared(  nmax, lambdaIn, 						    \
						  xShift, yShift, xShiftErr, yShiftErr, 	\
						  lambdaRef_um, pres, temp, fp, dr0, nr0,   \
						  x_shift, y_shift                          ))
	for (i = 0; i < nmax; i++) {

		double lambda = cpl_vector_get(lambdaIn, i);
		if (isfinite(lambda) != 0) {

			hdrl_value lambda_um = {lambda * 1e-4, lambdaRef_um.error};
			hdrl_value nr = hdrl_dar_filippenko_refractive_index(lambda_um, pres, temp, fp);

			hdrl_value dr = {dr0.data  *     (nr0.data - nr.data),
			                 dr0.error * fabs(nr0.data - nr.data)
			               + nr0.error * fabs( dr0.data)
			               + nr.error  * fabs(-dr0.data)};

			hdrl_value shiftPlaneX = {x_shift.data * dr.data,
			                          x_shift.error * fabs(dr.data)
			                        + dr.error      * fabs(x_shift.data)};
			cpl_vector_set(xShift,    i, shiftPlaneX.data );
			cpl_vector_set(xShiftErr, i, shiftPlaneX.error);

			hdrl_value shiftPlaneY = {y_shift.data * dr.data,
			                          y_shift.error * fabs(dr.data)
			                        + dr.error      * fabs(y_shift.data)};
			cpl_vector_set(yShift,    i, shiftPlaneY.data );
			cpl_vector_set(yShiftErr, i, shiftPlaneY.error);

		} else {

			cpl_vector_set(xShift,    i, NAN);
			cpl_vector_set(xShiftErr, i, NAN);

			cpl_vector_set(yShift,    i, NAN);
			cpl_vector_set(yShiftErr, i, NAN);
		}
	}

	return CPL_ERROR_NONE;
}


/*----------------------------------------------------------------------------*/
/**
 * @brief   Compute the saturation pressure using the Owens calibration.
 *
 * @param   hvT   temperature (in Kelvin) with it error associated (in Celsius)
 *
 * @return  the saturation pressure for the given temperature with it error propagation
 *
 * \f[
 * s_p = -10474 +116.43\ T -0.43284\ T^2 +0.00053840\ T^3
 * \f]
 * where T is the temperature.
 *
 * @note This function is used for the Filippenko formulae.
 *
 */
/*----------------------------------------------------------------------------*/
hdrl_value hdrl_dar_owens_saturation_pressure(hdrl_value hvT)
{
  double T      = hvT.data;
  double errorT = hvT.error;

  return (hdrl_value){-10474.0 + 116.43 * T - 0.43284 * T * T + 0.00053840 * pow(T, 3),
      	  	  	  	  errorT * fabs(0.0016152 * T * T - 0.86568 * T + 116.43)};
}

/*----------------------------------------------------------------------------*/
/**
 * @brief   Compute the refractive index for the given wavelength following
 *          Filippenko formulae. This function is called by hdrl_dar_compute().
 *
 * @param   hvL    	the wavelength (in um) with it error associated
 * @param   hvP    	atmospheric pressure (in mmHg) with it error associated
 * @param   hvT    	temperature (in degrees Celsius) with it error associated
 * @param   hvF    	water vapor pressure (in mmHg) with it error associated
 *
 * @return  The refractive index with it error propagation
 *
 * At sea level (P=760 mm Hg, T = 15 \f$^oC\f$) the refractive index of dry air is given
 * by (Edlén 1953; Coleman, Bozman, and Meggers 1960):
 * \f[
 * (n( \lambda )_{15,760}-1)10^6 = 64.328 + \frac{29498.1}{146-(1/ \lambda )^2} +\frac{255.4}{41-(1/ \lambda )^2}
 * \f]
 * where \lambda is the wavelength of light in vacue (microns). Since observatories
 * are usually located at high altitudes, the index of refraction must be corrected
 * for the lower ambient temperature and pressure (Barrell 1951):
 * \f[
 * (n(\lambda)_{T,P} -1) = (n(\lambda)_{15,760} - 1) \cdot
 * \frac{P[1+(1.049-0.0157\ T) 10^{-6}\ P]}{720.883 (1+0.003661\ T)}
 * \f]
 * In addition, the presence of water vapor in the atmosphere reduces \f$(n-1)10^6\f$ by:
 * \f[
 * \frac{0.0624-0.000680/\lambda^2}{1 + 0.003661\ T} f
 * \f]
 * here \f$f\f$ is the water vapor pressure in mm of Hg and T is the air temperature
 * in \f$^oC\f$ (Barrell 1951).
 * \f[
 * f = 0.75006158 \cdot s_p \cdot h
 * \f]
 * where \f$s_p\f$ is the saturation pressure with Owens calibration and h is the fraction
 * of humidity in [%].
 */
/*----------------------------------------------------------------------------*/
hdrl_value hdrl_dar_filippenko_refractive_index(
		hdrl_value hvL, hdrl_value hvP, hdrl_value hvT, hdrl_value hvF)
{
	 double l      = hvL.data,
	        P      = hvP.data,
	        T      = hvT.data,
	        f      = hvF.data;

	 double errorL = hvL.error,
			errorP = hvP.error,
			errorT = hvT.error,
			errorF = hvF.error;

	/* inverse square of the wavelength */
    double lisq = 1. / (l * l);
    double errorLisq  = errorL * fabs(-2. / pow(l, 3) );

    /* 10^6 [n(lambda) - 1] at standard environmental conditions, Eq. (1) */
    double nl1        = 64.328 + 29498.1 / (146. - lisq) + 255.4 / (41. - lisq);
    double errorNl1   = errorLisq * fabs( 29498.1 / pow(146. - lisq, 2) + 255.4 / pow(41. - lisq, 2) );

    /* correction for non-standard conditions, Eq. (2) */
    double factor     = 1.e-6;
    double nl2A       = nl1 * ( P / 720.883 * (1. + (1.049 -0.0157 * T) * 1e-6 * P) / (1. + 0.003661 * T) );
    double errorNl2A1 = errorNl1 * fabs( factor *(P / 720.883 * (1. + (1.049 - 0.0157 * T) * 1e-6 * P) / (1. + 0.003661 * T) ) );
    double errorNl2A2 = errorP   * fabs( factor *(nl1 / (720.883 * (1. + 0.003661 * T)) *( (1. + (1.049 - 0.0157 * T) * 1e-6 * P) + P * (1.049 - 0.0157 * T) * 1e-6) ) );
    double errorNl2A3 = errorT   * fabs( factor *(nl1 * P / 720.883 * ( ( -0.0157 * 1e-6 * P * (1. + 0.003661 * T) - 0.003661 * (1. + (1.049 - 0.0157 * T) * 1e-6 * P) )/pow(1. + 0.003661 * T, 2) ) ) );
    double errorNl2A  = errorNl2A1 + errorNl2A2 + errorNl2A3;

    /* Calcule correction for water vapor, Eq. (3) */
    double nl2B       = (0.0624 - 0.000680 * lisq) / (1. + 0.003661 * T) * f;
    double errorNl2B1 = errorLisq * fabs( -0.000680 * f / (1. + 0.003661 * T) );
    double errorNl2B2 = errorT    * fabs( -0.003661 * (0.0624 - 0.000680 * lisq) * f / pow(1. + 0.003661 * T, 2) );
    double errorNl2B3 = errorF    * fabs( (0.0624 - 0.000680 * lisq) / (1. + 0.003661 * T)  );
    double errorNl2B  = errorNl2B1 + errorNl2B2 + errorNl2B3;

    /* Apply correction for water vapor, Eq. (3) */
	double nl2        = nl2A - nl2B;
    double errorNl2   = errorNl2A + errorNl2B;

    /* convert to refractive index n(lambda) */
    double nl3        = nl2 * 1e-6 + 1.;
    double errorNl3   = fabs(errorNl2 * 1e-6);

	return (hdrl_value){nl3,errorNl3};
}


/** @cond PRIVATE */

/*----------------------------------------------------------------------------*/
/**
 * @brief   Compute the spatial scales (in degrees) from the FITS header WCS.
 *
 * @param   header   the input header containing the WCS of the exposure
 * @param   aXScale   the output scale in x-direction
 * @param   aYScale   the output scale in y-direction
 *
 * @return  CPL_ERROR_NONE for success, any other value for failure
 *
 * The world coordinate system from header, i.e. the CDi_j matrix, is used to
 * compute the scales.
 *
 * @note References:
 * - based on public domain code of the IDL astro-lib procedure getrot.pro
 * - http://idlastro.gsfc.nasa.gov/ftp/pro/astrom/getrot.pro
 *
 */
/*----------------------------------------------------------------------------*/
cpl_error_code hdrl_dar_wcs_get_scales(
	cpl_wcs *wcs,
	double  *aXScale,
	double  *aYScale)
{
  cpl_ensure_code(aXScale && aYScale, CPL_ERROR_NULL_INPUT);

  cpl_errorstate prestate = cpl_errorstate_get();

  const cpl_matrix *cd = cpl_wcs_get_cd(wcs);

  /* take the absolute and scale by 3600 to get positive arcseconds */
  double cd11 = cpl_matrix_get(cd, 0, 0),
         cd12 = cpl_matrix_get(cd, 0, 1),
         cd21 = cpl_matrix_get(cd, 1, 0),
         cd22 = cpl_matrix_get(cd, 1, 1);

  double det = cd11 * cd22 - cd12 * cd21;
  cpl_ensure_code(cpl_errorstate_is_equal(prestate), cpl_error_get_code());

  if (det < 0.) {
    cd12 *= -1.;
    cd11 *= -1.;
  }

  /* matrix without rotation */
  if (cd12 == 0. && cd21 == 0.) {
    *aXScale = cd11;
    *aYScale = cd22;
    return CPL_ERROR_NONE;
  }

  /* Only the absolute value */
  *aXScale = sqrt(cd11 * cd11 + cd12 * cd12);
  *aYScale = sqrt(cd22 * cd22 + cd21 * cd21);

  return CPL_ERROR_NONE;
}

/** @endcond */

/**@}*/