1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
|
/*
* This file is part of the HDRL
* Copyright (C) 2017 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/*-----------------------------------------------------------------------------
Includes
-----------------------------------------------------------------------------*/
#include <hdrl_efficiency.h>
#include "hdrl_spectrum.h"
#include "hdrl_spectrum_resample.h"
#include "hdrl_parameter.h"
#include <math.h>
/*-----------------------------------------------------------------------------
Private Functions and Data Structures
-----------------------------------------------------------------------------*/
/*Parameter used for the efficiency calculation*/
typedef struct {
HDRL_PARAMETER_HEAD;
hdrl_value Ap;
hdrl_value Am;
hdrl_value G;
hdrl_value Tex;
hdrl_value Atel;
} hdrl_efficiency_parameters;
static hdrl_parameter_typeobj
hdrl_efficiency_parameters_type = {
HDRL_PARAMETER_EFFICIENCY, /* type */
(hdrl_alloc *)&cpl_malloc, /* fp_alloc */
(hdrl_free *)&cpl_free, /* fp_free */
NULL, /* fp_destroy */
sizeof(hdrl_efficiency_parameters), /* obj_size */
};
static inline cpl_error_code
hdrl_efficiency_parameter_check(const hdrl_parameter * pars);
static inline hdrl_value
hdrl_efficiency_parameter_get_Am(const hdrl_parameter * pars);
static inline hdrl_value
hdrl_efficiency_parameter_get_Ap(const hdrl_parameter * pars);
static inline hdrl_value
hdrl_efficiency_parameter_get_G(const hdrl_parameter * pars);
static inline hdrl_value
hdrl_efficiency_parameter_get_Tex(const hdrl_parameter * pars);
static inline hdrl_value
hdrl_efficiency_parameter_get_Atel(const hdrl_parameter * pars);
static inline hdrl_spectrum1D *
select_obs_spectrum(const hdrl_spectrum1D * I_std,
const hdrl_spectrum1D * I_std_ref,
const hdrl_spectrum1D * E_x);
static inline hdrl_data_t
lowest_w_max(const cpl_array * a1, const cpl_array * a2);
static inline hdrl_data_t
highest_w_min(const cpl_array * a1, const cpl_array * a2);
/**
* @addtogroup hdrl_efficiency
* @{
*/
/*-----------------------------------------------------------------------------
Functions
-----------------------------------------------------------------------------*/
/* ---------------------------------------------------------------------------*/
/**
* @brief ctor for the hdrl_parameter for response
* @param Ap Parameter to indicate if the efficiency is computed at
* airmass = 0, or at a given non zero value
* @param Am Airmass at which the std star was observed
* @param G Gain [ADU/e]
* @param Tex Exposure time [s]
*
* @return hdrl_parameter
*/
/* ---------------------------------------------------------------------------*/
hdrl_parameter* hdrl_response_parameter_create(
const hdrl_value Ap, const hdrl_value Am, const hdrl_value G,
const hdrl_value Tex){
hdrl_efficiency_parameters * p
= (hdrl_efficiency_parameters *)
hdrl_parameter_new(&hdrl_efficiency_parameters_type);
p->Am = Am;
p->Ap = Ap;
p->G = G;
p->Tex = Tex;
p->Atel = (hdrl_value){0.0, 0.0};
return (hdrl_parameter*) p;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief ctor for the hdrl_parameter for efficiency
* @param Ap Parameter to indicate if the efficiency is computed at
* airmass = 0, or at a given non zero value
* @param Am Airmass at which the std star was observed
* @param G Gain [e/ADU]
* @param Tex Exposure time [s]
* @param Atel Collecting area of the telescope [cm2]
*
* @return hdrl_parameter
*/
/* ---------------------------------------------------------------------------*/
hdrl_parameter* hdrl_efficiency_parameter_create(
const hdrl_value Ap, const hdrl_value Am, const hdrl_value G,
const hdrl_value Tex, const hdrl_value Atel){
hdrl_efficiency_parameters * p
= (hdrl_efficiency_parameters *)
hdrl_parameter_new(&hdrl_efficiency_parameters_type);
p->Am = Am;
p->Ap = Ap;
p->G = G;
p->Tex = Tex;
p->Atel = Atel;
return (hdrl_parameter*) p;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief core response calculation
* @param I_std_arg std star observed spectrum, wavelength in [nm]
* @param I_std_ref std start model spectrum, wavelength in [nm]
* @param E_x atm. extinction model spectrum, wavelength in [nm]
* @param pars parameters, see the constructor for
* hdrl_efficiency_parameter_create
* @return response, NULL in case of error
*
* This function implements the efficiency calculation. The formula used is:
*
* I_std_ref(l)* G * Tex * 10^(0.4 * (Ap-Am) * E_x(l))
* Res(l)= -----------------------------------------------------------
* I_std(l)
*
* Where I_std_ref and E_x spectra are resampled by this function to match
* the wavelengths where I_std is defined on. If E_x and I_std_ref already match
* the wavelengths of I_std resampling is not executed. If E_x or I_std_ref do not
* completely cover the wavelength interval where I_std is defined, I_std is
* truncated to avoid extrapolation of the models.
* For the other parameters see hdrl_response_parameter_create().
*
* Possible cpl-error-code set in this function:
* - CPL_ERROR_NULL_INPUT: if any of the spectra or parameter are NULL
* - For other errors see hdrl_spectrum1D_resample(), and arithmetic functions
* for spectrum processing (e.g. hdrl_spectrum1D_div_spectrum_create())
*/
/* ---------------------------------------------------------------------------*/
hdrl_spectrum1D *
hdrl_response_core_compute(
const hdrl_spectrum1D * I_std_arg,
const hdrl_spectrum1D * I_std_ref,
const hdrl_spectrum1D * E_x,
const hdrl_parameter * pars){
cpl_ensure(I_std_arg != NULL, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(I_std_ref != NULL, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(E_x != NULL, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(pars != NULL, CPL_ERROR_NULL_INPUT, NULL);
const hdrl_value Ap = hdrl_efficiency_parameter_get_Ap(pars);
const hdrl_value Am = hdrl_efficiency_parameter_get_Am(pars);
const hdrl_value G = hdrl_efficiency_parameter_get_G(pars);
const hdrl_value Tex = hdrl_efficiency_parameter_get_Tex(pars);
cpl_ensure(cpl_error_get_code() == CPL_ERROR_NONE,
CPL_ERROR_ILLEGAL_OUTPUT, NULL);
hdrl_spectrum1D * I_std = select_obs_spectrum(I_std_arg, I_std_ref, E_x);
cpl_ensure(I_std != NULL, CPL_ERROR_ILLEGAL_OUTPUT, NULL);
const hdrl_spectrum1D_wavelength spec_wav =
hdrl_spectrum1D_get_wavelength(I_std);
hdrl_parameter *params = hdrl_spectrum1D_resample_interpolate_parameter_create(
hdrl_spectrum1D_interp_akima);
hdrl_spectrum1D *exponential = hdrl_spectrum1D_resample(E_x, &spec_wav, params);
hdrl_parameter_delete(params);
cpl_ensure(exponential != NULL, CPL_ERROR_ILLEGAL_OUTPUT, NULL);
params = hdrl_spectrum1D_resample_interpolate_parameter_create(
hdrl_spectrum1D_interp_akima);
hdrl_spectrum1D * I_std_ref_resampled = hdrl_spectrum1D_resample(I_std_ref,
&spec_wav, params);
hdrl_parameter_delete(params);
cpl_ensure(I_std_ref_resampled != NULL, CPL_ERROR_ILLEGAL_OUTPUT, NULL);
/* exponent of 10.0*/
{
hdrl_spectrum1D * exponential2 = hdrl_spectrum1D_duplicate(exponential);
/*0.4A_pE_x(f) */
hdrl_spectrum1D_mul_scalar(exponential, (hdrl_value){0.4, 0.0});
hdrl_spectrum1D_mul_scalar(exponential, Ap);
/*0.4A_mE_x(f) */
hdrl_spectrum1D_mul_scalar(exponential2, (hdrl_value){0.4, 0.0});
hdrl_spectrum1D_mul_scalar(exponential2, Am);
/*0.4A_pE_x(f) - 0.4A_mE_x(f) */
hdrl_spectrum1D_sub_spectrum(exponential, exponential2);
hdrl_spectrum1D_delete(&exponential2);
}
hdrl_spectrum1D_exp_scalar(exponential, (hdrl_value){10.0, 0.0});
hdrl_spectrum1D_mul_scalar(exponential, G);
hdrl_spectrum1D_mul_spectrum(exponential, I_std_ref_resampled);
hdrl_spectrum1D_mul_scalar(exponential, Tex);
hdrl_spectrum1D_div_spectrum(exponential, I_std);
hdrl_spectrum1D_delete(&I_std_ref_resampled);
hdrl_spectrum1D_delete(&I_std);
return exponential;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief efficiency calculation
* @param I_std_arg std star observed spectrum, wavelength in [nm]
* @param I_std_ref std start model spectrum, wavelength in [nm]
* @param E_x atm. extinction model spectrum, wavelength in [nm]
* @param pars parameters, see the constructor for
* hdrl_spectrum1D_efficiency_parameter_create
* @return efficiency, NULL in case of error
*
* This function implements the efficiency calculation. The formula used is:
*
* I_std(l) * 10^(0.4 * E_x(l) * (Am - Ap)) * G * E_phot(l)
* Eff(l)= -----------------------------------------------------------
* Tex * Atel * I_std_ref(l)
*
* Where I_std_ref and E_x spectra are resampled by this function to match
* the wavelengths where I_std is defined on. If E_x and I_std_ref already match
* the wavelengths of I_std resampling is not executed.
* E_phot is the energy of one photon. For the other parameters see
* hdrl_spectrum1D_efficiency_parameter_create(). If E_x or I_std_ref do not
* completely cover the wavelength interval where I_std is defined, I_std is
* truncated to avoid extrapolation of the models.
*
* Possible cpl-error-code set in this function:
* - CPL_ERROR_NULL_INPUT: if any of the spectra or parameter are NULL
* - For other errors see hdrl_spectrum1D_resample(), and arithmetic functions
* for spectrum processing (e.g. hdrl_spectrum1D_div_spectrum_create())
*/
/* ---------------------------------------------------------------------------*/
hdrl_spectrum1D * hdrl_efficiency_compute(
const hdrl_spectrum1D * I_std_arg,
const hdrl_spectrum1D * I_std_ref,
const hdrl_spectrum1D * E_x,
const hdrl_parameter * pars)
{
cpl_ensure(I_std_arg != NULL, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(I_std_ref != NULL, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(E_x != NULL, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(pars != NULL, CPL_ERROR_NULL_INPUT, NULL);
const hdrl_value Ap = hdrl_efficiency_parameter_get_Ap(pars);
const hdrl_value Am = hdrl_efficiency_parameter_get_Am(pars);
const hdrl_value G = hdrl_efficiency_parameter_get_G(pars);
const hdrl_value Tex = hdrl_efficiency_parameter_get_Tex(pars);
const hdrl_value Atel = hdrl_efficiency_parameter_get_Atel(pars);
cpl_ensure(cpl_error_get_code() == CPL_ERROR_NONE, CPL_ERROR_ILLEGAL_OUTPUT, NULL);
hdrl_spectrum1D * I_std = select_obs_spectrum(I_std_arg, I_std_ref, E_x);
cpl_ensure(I_std != NULL, CPL_ERROR_ILLEGAL_OUTPUT, NULL);
const hdrl_spectrum1D_wavelength spec_wav = hdrl_spectrum1D_get_wavelength(I_std);
hdrl_parameter * params = hdrl_spectrum1D_resample_interpolate_parameter_create(
hdrl_spectrum1D_interp_akima);
hdrl_spectrum1D * exponential = hdrl_spectrum1D_resample(E_x,
&spec_wav, params);
hdrl_parameter_delete(params);
cpl_ensure(exponential != NULL, CPL_ERROR_ILLEGAL_OUTPUT, NULL);
params = hdrl_spectrum1D_resample_interpolate_parameter_create(
hdrl_spectrum1D_interp_akima);
hdrl_spectrum1D * I_std_ref_resampled = hdrl_spectrum1D_resample(I_std_ref,
&spec_wav, params);
hdrl_parameter_delete(params);
cpl_ensure(I_std_ref_resampled != NULL, CPL_ERROR_ILLEGAL_OUTPUT, NULL);
/* exponent of 10.0*/
{
hdrl_spectrum1D * exponential2 = hdrl_spectrum1D_duplicate(exponential);
/*0.4A_mE_x(f) */
hdrl_spectrum1D_mul_scalar(exponential, (hdrl_value){0.4, 0.0});
hdrl_spectrum1D_mul_scalar(exponential, Am);
/*0.4A_pE_x(f) */
hdrl_spectrum1D_mul_scalar(exponential2, (hdrl_value){0.4, 0.0});
hdrl_spectrum1D_mul_scalar(exponential2, Ap);
/*0.4A_mE_x(f) - 0.4A_pE_x(f) */
hdrl_spectrum1D_sub_spectrum(exponential, exponential2);
hdrl_spectrum1D_delete(&exponential2);
}
hdrl_spectrum1D * eph_spec = hdrl_spectrum1D_create_analytic(
E_ph, spec_wav.wavelength, spec_wav.scale);
hdrl_spectrum1D_exp_scalar(exponential, (hdrl_value){10.0, 0.0});
hdrl_spectrum1D_mul_scalar(exponential, G);
hdrl_spectrum1D_mul_spectrum(exponential, I_std);
hdrl_spectrum1D_mul_spectrum(exponential, eph_spec);
hdrl_spectrum1D_div_scalar(exponential, Tex);
hdrl_spectrum1D_div_scalar(exponential, Atel);
hdrl_spectrum1D_div_spectrum(exponential, I_std_ref_resampled);
hdrl_spectrum1D_delete(&eph_spec);
hdrl_spectrum1D_delete(&I_std_ref_resampled);
hdrl_spectrum1D_delete(&I_std);
return exponential;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief energy of the photon calculation
* @param lambda wavelength, in nm
* @return energy of the photon for the given wavelength
*/
/* ---------------------------------------------------------------------------*/
hdrl_value E_ph(hdrl_data_t lambda){
const double nm2um = 0.001;
const double hc = 1.e7*1.986e-19 / nm2um;
return (hdrl_value){ hc / lambda, 0.0};
}
/*-----------------------------------------------------------------------------
Private Functions Implementation
-----------------------------------------------------------------------------*/
/* check that hdrl_parameter is an compatible with the efficiency computation
* routine.*/
static inline cpl_error_code
hdrl_efficiency_parameter_check(const hdrl_parameter * pars){
cpl_ensure_code(pars != NULL, CPL_ERROR_NULL_INPUT);
cpl_boolean is_compatible = hdrl_parameter_get_parameter_enum(pars) ==
HDRL_PARAMETER_EFFICIENCY;
cpl_ensure_code(is_compatible , CPL_ERROR_INCOMPATIBLE_INPUT);
return CPL_ERROR_NONE;
}
static inline hdrl_value
hdrl_efficiency_parameter_get_Am(const hdrl_parameter * pars){
if(hdrl_efficiency_parameter_check(pars))
return (hdrl_value){0.0,0.0};
const hdrl_efficiency_parameters * p
= (const hdrl_efficiency_parameters*)pars;
return p->Am;
}
static inline hdrl_value
hdrl_efficiency_parameter_get_Ap(const hdrl_parameter * pars){
if(hdrl_efficiency_parameter_check(pars))
return (hdrl_value){0.0,0.0};
const hdrl_efficiency_parameters * p
= (const hdrl_efficiency_parameters*)pars;
return p->Ap;
}
static inline hdrl_value
hdrl_efficiency_parameter_get_G(const hdrl_parameter * pars){
if(hdrl_efficiency_parameter_check(pars))
return (hdrl_value){0.0,0.0};
const hdrl_efficiency_parameters * p
= (const hdrl_efficiency_parameters*)pars;
return p->G;
}
static inline hdrl_value
hdrl_efficiency_parameter_get_Tex(const hdrl_parameter * pars){
if(hdrl_efficiency_parameter_check(pars))
return (hdrl_value){0.0,0.0};
const hdrl_efficiency_parameters * p
= (const hdrl_efficiency_parameters*)pars;
return p->Tex;
}
static inline hdrl_value
hdrl_efficiency_parameter_get_Atel(const hdrl_parameter * pars){
if(hdrl_efficiency_parameter_check(pars))
return (hdrl_value){0.0,0.0};
const hdrl_efficiency_parameters * p
= (const hdrl_efficiency_parameters*)pars;
return p->Atel;
}
/*get the maximum between the two minimum values of a1 and a2*/
static inline hdrl_data_t
highest_w_min(const cpl_array * a1, const cpl_array * a2){
const hdrl_data_t w1 = cpl_array_get_min(a1);
const hdrl_data_t w2 = cpl_array_get_min(a2);
return CPL_MAX(w2, w1);
}
/*get the minimum between the two maximum values of a1 and a2*/
static inline hdrl_data_t
lowest_w_max(const cpl_array * a1, const cpl_array * a2){
const hdrl_data_t w1 = cpl_array_get_max(a1);
const hdrl_data_t w2 = cpl_array_get_max(a2);
return CPL_MIN(w2, w1);
}
/*Removes lines inside I_std whose wavelengths are not contained inside I_std_ref
* or E_x*/
static inline hdrl_spectrum1D *
select_obs_spectrum(const hdrl_spectrum1D * I_std,
const hdrl_spectrum1D * I_std_ref,
const hdrl_spectrum1D * E_x){
const cpl_array * w_std_ref =
hdrl_spectrum1D_get_wavelength(I_std_ref).wavelength;
const cpl_array * E_x_ref =
hdrl_spectrum1D_get_wavelength(E_x).wavelength;
const hdrl_data_t w_min = highest_w_min(w_std_ref, E_x_ref);
const hdrl_data_t w_max = lowest_w_max(w_std_ref, E_x_ref);
cpl_ensure(w_min < w_max, CPL_ERROR_ILLEGAL_INPUT, NULL);
cpl_bivector * wavs = cpl_bivector_new(1);
cpl_vector_set(cpl_bivector_get_x(wavs), 0, w_min);
cpl_vector_set(cpl_bivector_get_y(wavs), 0, w_max);
hdrl_spectrum1D * to_ret = hdrl_spectrum1D_select_wavelengths(I_std,
wavs, CPL_TRUE);
cpl_bivector_delete(wavs);
return to_ret;
}
/**@}*/
|