1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
|
/*
* This file is part of the HDRL
* Copyright (C) 2014 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/*-----------------------------------------------------------------------------
Includes
-----------------------------------------------------------------------------*/
#include "hdrl_types.h"
#include "hdrl_image.h"
#include "hdrl_imagelist.h"
#include "hdrl_utils.h"
#include "hdrl_fit.h"
#include <cpl.h>
#include <math.h>
#include <assert.h>
/*----------------------------------------------------------------------------*/
/**
@defgroup hdrl_fit Fitting
*/
/*----------------------------------------------------------------------------*/
/**@{*/
/*-----------------------------------------------------------------------------
Static
-----------------------------------------------------------------------------*/
/** @cond PRIVATE */
#if CPL_VERSION_CODE > CPL_VERSION(6, 6, 255)
static cpl_matrix * matrix_product_normal_create(const cpl_matrix * self)
{
const size_t m = cpl_matrix_get_nrow(self);
cpl_matrix * product = cpl_matrix_wrap((cpl_size)m, (cpl_size)m,
cpl_malloc(m * m * sizeof(double)));
if (cpl_matrix_product_normal(product, self)) {
cpl_matrix_delete(product);
product = NULL;
}
return product;
}
#else
cpl_matrix * cpl_matrix_product_normal_create(const cpl_matrix * self);
cpl_error_code cpl_matrix_product_transpose(cpl_matrix * self,
const cpl_matrix * ma,
const cpl_matrix * mb);
static cpl_matrix * matrix_product_normal_create(const cpl_matrix * self)
{
return cpl_matrix_product_normal_create(self);
}
#endif
typedef struct {
/* input design matrix of fit */
cpl_matrix * design;
/* coefficient row matrix */
cpl_matrix * coef;
/* covariance matrix of coefficients */
cpl_matrix * cov;
} hdrl_ls_fit_result;
/* ---------------------------------------------------------------------------*/
/**
* @brief create least squares fit result structure
* @return fit result structure
*/
/* ---------------------------------------------------------------------------*/
static hdrl_ls_fit_result * hdrl_ls_fit_result_create(void)
{
return cpl_calloc(1, sizeof(hdrl_ls_fit_result));
}
/* ---------------------------------------------------------------------------*/
/**
* @brief delete least squares fit result structure
* @param fit result structure, may be NULL
*/
/* ---------------------------------------------------------------------------*/
static void hdrl_ls_fit_result_delete(hdrl_ls_fit_result * r)
{
if (r == NULL)
return;
cpl_matrix_delete(r->design);
cpl_matrix_delete(r->coef);
cpl_matrix_delete(r->cov);
cpl_free(r);
}
/* ---------------------------------------------------------------------------*/
/**
* @brief get fitted values from a least squares fit result
* @param r fit result structure
* @return vector containing the fitted values
*/
/* ---------------------------------------------------------------------------*/
static cpl_vector * hdrl_ls_fit_result_get_fitted_values(
const hdrl_ls_fit_result * r)
{
cpl_matrix * fvalues = cpl_matrix_product_create(r->design, r->coef);
cpl_vector * res = cpl_vector_wrap(cpl_matrix_get_nrow(fvalues),
cpl_matrix_get_data(fvalues));
cpl_matrix_unwrap(fvalues);
return res;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief get fit residuals from a least squares fit result
* @param r fit result structure
* @param data data which from which the fitted values are subtracted
* @return vector of residuals
*/
/* ---------------------------------------------------------------------------*/
static cpl_vector * hdrl_ls_fit_result_get_residuals(
const hdrl_ls_fit_result * r,
const cpl_vector * data)
{
cpl_vector * fval = hdrl_ls_fit_result_get_fitted_values(r);
cpl_vector * res = cpl_vector_duplicate(data);
cpl_vector_subtract(res, fval);
cpl_vector_delete(fval);
return res;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief get squared chi of a least squares fit result
* @param r fit result structure
* @param data data of the fit
* @param errors errors of the fit
* @return squared chi statistic of the fit
*
* the chi square is computed as:
* sum_i(1/sigma_i^2 * residual_i ^ 2)
*/
/* ---------------------------------------------------------------------------*/
static double hdrl_ls_fit_result_get_chi2(
const hdrl_ls_fit_result * r,
const cpl_vector * data,
cpl_vector * errors)
{
cpl_vector * fval = hdrl_ls_fit_result_get_residuals(r, data);
/* mse = sum(sqrt(weights) * residuals ** 2) / df */
cpl_vector_divide(fval, errors);
cpl_vector_multiply(fval, fval);
double mswd = cpl_vector_get_sum(fval);
cpl_vector_delete(fval);
return mswd;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief get degrees of freedom of a least squares fit
* @param r fit result structure
* @return degrees of freedom
*/
/* ---------------------------------------------------------------------------*/
static cpl_size hdrl_ls_fit_result_get_residual_dof(const hdrl_ls_fit_result * r)
{
return cpl_matrix_get_nrow(r->design) - cpl_matrix_get_ncol(r->design);
}
/* ---------------------------------------------------------------------------*/
/**
* @brief generic 1d vandermonde matrix
*
* @param sample sampling positions
* @param degree degree of polynomial
* @param func function evaluating polynomials from [0, degree] at
* sampling point
* @return matrix containing the vandermonde matrix
*/
/* ---------------------------------------------------------------------------*/
static cpl_matrix * vander1d(
const cpl_vector * sample,
cpl_size degree,
void (*func)(double, double *, size_t))
{
const size_t nr = cpl_vector_get_size(sample);
const size_t nc = degree + 1;
cpl_matrix * V = cpl_matrix_new(nr, nc);
double * v = cpl_matrix_get_data(V);
const double * d = cpl_vector_get_data_const(sample);
for (size_t i = 0; i < nr; i++) {
func(d[i], &v[i*nc], nc);
}
return V;
}
static void polynomial(double x, double * p, size_t ncoefs)
{
p[0] = 1.;
for (size_t i = 1; i < ncoefs; i++) {
p[i] = pow(x, i);
}
}
/* ---------------------------------------------------------------------------*/
/**
* @internal
* @brief get vandermonde matrix for a 1d polynomial
* @param sample sampling positions
* @param degree degree of polynomial
* @return matrix containing the vandermonde matrix
*/
/* ---------------------------------------------------------------------------*/
static cpl_matrix * polyvander1d(
const cpl_vector * sample,
cpl_size degree)
{
return vander1d(sample, degree, &polynomial);
}
/* ---------------------------------------------------------------------------*/
/**
* @internal
* @brief perform a least squares fit
* @param design design matrix
* @param values data to fit
* @param errors errors of data
* @return fit result structure
* must be deleted with hdrl_ls_fit_result_delete()
*/
/* ---------------------------------------------------------------------------*/
static hdrl_ls_fit_result * fit(
const cpl_matrix * design,
const cpl_vector * values,
const cpl_vector * errors)
{
hdrl_ls_fit_result * r = hdrl_ls_fit_result_create();
r->design = cpl_matrix_duplicate(design);
if (errors) {
assert(cpl_matrix_get_nrow(design) == cpl_vector_get_size(errors));
/* weight response and design */
cpl_vector * vrhs = cpl_vector_duplicate(errors);
cpl_vector_power(vrhs, -1);
cpl_matrix * wdesign = cpl_matrix_duplicate(design);
for (size_t i = 0; i < (size_t)cpl_vector_get_size(errors); i++) {
double w = cpl_vector_get(vrhs, i);
for (size_t j = 0; j < (size_t)cpl_matrix_get_ncol(wdesign); j++) {
cpl_matrix_set(wdesign, i, j,
cpl_matrix_get(wdesign, i, j) * w);
}
}
cpl_vector_multiply(vrhs, values);
cpl_matrix * rhs = cpl_matrix_wrap(cpl_vector_get_size(vrhs), 1,
cpl_vector_get_data(vrhs));
/* solve Ax = b */
/* cpl_matrix_solve_normal(design, rhs) + covariance */
{
cpl_matrix * At = cpl_matrix_transpose_create(wdesign);
cpl_matrix * AtA = matrix_product_normal_create(At);
/* RRt = AtA */
cpl_matrix_decomp_chol(AtA);
/* solve for pseudo inverse: (RRt)P=At*/
cpl_matrix_solve_chol(AtA, At);
/* compute solution to system Ax=b -> x=Pb */
r->coef = cpl_matrix_product_create(At, rhs);
/* compute covariance matrix cov(b) = PPt */
r->cov = cpl_matrix_new(cpl_matrix_get_ncol(At),
cpl_matrix_get_ncol(At));
cpl_matrix_product_transpose(r->cov, At, At);
cpl_matrix_delete(At);
cpl_matrix_delete(AtA);
}
cpl_matrix_unwrap(rhs);
cpl_vector_delete(vrhs);
cpl_matrix_delete(wdesign);
}
else {
cpl_vector * vrhs = cpl_vector_duplicate(values);
cpl_matrix * rhs = cpl_matrix_wrap(cpl_vector_get_size(vrhs), 1,
cpl_vector_get_data(vrhs));
r->coef = cpl_matrix_solve_normal(design, rhs);
cpl_matrix_unwrap(rhs);
cpl_vector_delete(vrhs);
}
return r;
}
/* ---------------------------------------------------------------------------*/
/**
* @internal
* @brief perform 1d polynomial least squares fit
*
* @param sample sampling points
* @param values values to fit
* @param errors errors to fit
* @param degree degree of polynomial to fit
* @return fit result structure
* must be deleted with hdrl_ls_fit_result_delete()
* @see fit, polyvander1d
*/
/* ---------------------------------------------------------------------------*/
static hdrl_ls_fit_result * polyfit1d(
const cpl_vector * sample,
const cpl_vector * values,
const cpl_vector * errors,
int degree)
{
cpl_matrix * design = polyvander1d(sample, degree);
hdrl_ls_fit_result * r = fit(design, values, errors);
cpl_matrix_delete(design);
return r;
}
/** @endcond */
/* ---------------------------------------------------------------------------*/
/**
* @brief weighted least squares polynomial fit of each pixel of a imagelist
*
* @param list imagelist to fit, the 1/errors^2 are used as the weights of
* the fit
* @param samplepos vector of sample position of each image in the list
* @param degree degree of the fit starting from 0
* @param coef output coefficient hdrl_imagelist, the data contains the
* coefficient the error contains the diagonal element of the
* covariance matrix
* @param chi2 output double cpl_image, contains the chi2 of the fit
* @param dof output double cpl_image, contains the degrees of freedom of
* the residuals
*
* @note the errors only need to be relative correct, if the are wrong by a
* constant the real errors of the data points can be estimated by
* multiplying the squared errors with chi2/dof
* The fitting method uses normal equation so the function should not be
* used for badly conditioned data.
*/
/* ---------------------------------------------------------------------------*/
cpl_error_code
hdrl_fit_polynomial_imagelist(const hdrl_imagelist * list,
const cpl_vector * samplepos,
const int degree,
hdrl_imagelist ** coef,
cpl_image ** chi2,
cpl_image ** dof)
{
cpl_ensure_code(degree >= 0, CPL_ERROR_INCOMPATIBLE_INPUT);
cpl_ensure_code(list && samplepos && coef, CPL_ERROR_NULL_INPUT);
// TODO test
cpl_ensure_code(cpl_vector_get_size(samplepos) ==
hdrl_imagelist_get_size(list),
CPL_ERROR_INCOMPATIBLE_INPUT);
cpl_ensure_code(cpl_vector_get_size(samplepos) ==
hdrl_imagelist_get_size(list),
CPL_ERROR_INCOMPATIBLE_INPUT);
cpl_ensure_code(hdrl_imagelist_get_size(list) > 0,
CPL_ERROR_INCOMPATIBLE_INPUT);
cpl_ensure_code(hdrl_imagelist_get_size(list) >= degree + 1,
CPL_ERROR_INCOMPATIBLE_INPUT);
intptr_t nx = hdrl_imagelist_get_size_x(list);
intptr_t ny = hdrl_imagelist_get_size_y(list);
size_t noz = degree + 1;
/* make sure image has a mask to avoid creation race later */
if (coef) {
*coef = hdrl_imagelist_new();
}
if (chi2) {
*chi2 = cpl_image_new(nx, ny, HDRL_TYPE_DATA);
cpl_image_get_bpm(*chi2);
}
if (dof) {
*dof = cpl_image_new(nx, ny, HDRL_TYPE_DATA);
cpl_image_get_bpm(*dof);
}
for (size_t z = 0; z < noz; z++) {
hdrl_image * img = hdrl_image_new(nx, ny);
hdrl_image_get_mask(img);
hdrl_imagelist_set(*coef, img, z);
}
cpl_imagelist * datal, *errorl;
if (hdrl_imagelist_to_cplwrap(list, &datal, &errorl)) {
goto fail;
}
HDRL_OMP(omp parallel shared(coef, chi2, dof))
{
hdrl_vector_cache * cache =
hdrl_vector_cache_new(cpl_imagelist_get_size(datal), nx * 2);
/* copy to store bad pixel cleaned positions in */
cpl_vector * nsamppos = cpl_vector_duplicate(samplepos);
HDRL_OMP(omp for)
for (intptr_t y = 0; y < ny; y++) {
cpl_vector * datav[nx];
cpl_vector * errsv[nx];
hdrl_imagelist_to_vector_row(datal, y + 1, datav, cache);
hdrl_imagelist_to_vector_row(errorl, y + 1, errsv, cache);
for (intptr_t x = 0; x < nx; x++) {
/* all bad or less good than fit degrees */
cpl_vector * data = datav[x];
cpl_vector * errs = errsv[x];
if (data == NULL || (size_t)cpl_vector_get_size(data) < noz) {
for (size_t z = 0; z < noz; z++) {
hdrl_image * oimg = hdrl_imagelist_get(*coef, z);
hdrl_image_set_pixel(oimg, x + 1, y + 1,
(hdrl_value){NAN, NAN});
hdrl_image_reject(oimg, x + 1, y + 1);
}
if (chi2) {
cpl_image_set(*chi2, x + 1, y + 1, NAN);
cpl_image_reject(*chi2, x + 1, y + 1);
}
if (dof) {
int n = data ? cpl_vector_get_size(data) - noz : -noz;
cpl_image_set(*dof, x + 1, y + 1, n);
cpl_image_reject(*dof, x + 1, y + 1);
}
hdrl_cplvector_delete_to_cache(cache, data);
hdrl_cplvector_delete_to_cache(cache, errs);
continue;
}
hdrl_ls_fit_result * r;
/* remove bad pixels from sample positions and fit */
if (cpl_vector_get_size(data) != cpl_vector_get_size(samplepos)) {
size_t j = 0;
cpl_vector_set_size(nsamppos, cpl_vector_get_size(data));
for (size_t i = 0; i < (size_t)hdrl_imagelist_get_size(list); i++) {
hdrl_image * img = hdrl_imagelist_get(list, i);
if (hdrl_image_is_rejected(img, x + 1, y + 1))
continue;
cpl_vector_set(nsamppos, j++, cpl_vector_get(samplepos, i));
}
r = polyfit1d(nsamppos, data, errs, degree);
}
else {
r = polyfit1d(samplepos, data, errs, degree);
}
// TODO handle failure
for (size_t z = 0; z < noz; z++) {
hdrl_image * oimg = hdrl_imagelist_get(*coef, z);
hdrl_image_set_pixel(oimg, x + 1, y + 1,
(hdrl_value){cpl_matrix_get(r->coef, z, 0),
sqrt(cpl_matrix_get(r->cov, z, z))});
}
if (chi2) {
cpl_image_set(*chi2, x + 1, y + 1,
hdrl_ls_fit_result_get_chi2(r, data, errs));
}
if (dof) {
cpl_image_set(*dof, x + 1, y + 1,
hdrl_ls_fit_result_get_residual_dof(r));
}
hdrl_ls_fit_result_delete(r);
hdrl_cplvector_delete_to_cache(cache, data);
hdrl_cplvector_delete_to_cache(cache, errs);
}
}
hdrl_vector_cache_delete(cache);
cpl_vector_delete(nsamppos);
}
cpl_imagelist_unwrap(datal);
cpl_imagelist_unwrap(errorl);
return cpl_error_get_code();
fail:
hdrl_imagelist_delete(*coef);
*coef = NULL;
if (chi2) {
cpl_image_delete(*chi2);
*chi2 = NULL;
}
if (dof) {
cpl_image_delete(*dof);
*dof = NULL;
}
return cpl_error_get_code();
}
/* ---------------------------------------------------------------------------*/
/**
* @brief weighted least squares polynomial fit of each pixel of a imagelist
*
* @param list imagelist to fit, the 1/errors^2 are used as the weights of
* the fit
* @param samplepos each slice of pixels of this imagelist form the sample
* position vector
* @param degree degree of the fit starting from 0
* @param coef output coefficient hdrl_imagelist, the data contains the
* coefficient the error contains the diagonal element of the
* covariance matrix
* @param chi2 output double cpl_image, contains the chi2 of the fit
* @param dof output double cpl_image, contains the degrees of freedom of
* the residuals
* @see hdrl_fit_polynomial_imagelist
*
* Similar to hdrl_fit_polynomial_imagelist except the sample positions for
* each line of pixels per image is taken from the slice of pixels of the
* samplepos imagelist
*
* @note the errors only need to be relative correct, if the are wrong by a
* constant the real errors of the data points can be estimated by
* multiplying the squared errors with chi2/dof
* The fitting method uses normal equation so the function should not be
* used for badly conditioned data.
*/
/* ---------------------------------------------------------------------------*/
cpl_error_code
hdrl_fit_polynomial_imagelist2(const hdrl_imagelist * list,
const cpl_imagelist * samplepos,
const int degree,
hdrl_imagelist ** coef,
cpl_image ** chi2,
cpl_image ** dof)
{
cpl_ensure_code(degree >= 0, CPL_ERROR_INCOMPATIBLE_INPUT);
cpl_ensure_code(list && samplepos && coef, CPL_ERROR_NULL_INPUT);
cpl_ensure_code(cpl_imagelist_get_size(samplepos) ==
hdrl_imagelist_get_size(list),
CPL_ERROR_INCOMPATIBLE_INPUT);
cpl_ensure_code(cpl_imagelist_get_size(samplepos) ==
hdrl_imagelist_get_size(list),
CPL_ERROR_INCOMPATIBLE_INPUT);
cpl_ensure_code(hdrl_imagelist_get_size(list) > 0,
CPL_ERROR_INCOMPATIBLE_INPUT);
cpl_ensure_code(hdrl_imagelist_get_size(list) >= degree + 1,
CPL_ERROR_INCOMPATIBLE_INPUT);
cpl_ensure_code(hdrl_image_get_size_x(hdrl_imagelist_get_const(list, 0)) ==
cpl_image_get_size_x(cpl_imagelist_get_const(samplepos, 0)),
CPL_ERROR_INCOMPATIBLE_INPUT);
cpl_ensure_code(hdrl_image_get_size_y(hdrl_imagelist_get_const(list, 0)) ==
cpl_image_get_size_y(cpl_imagelist_get_const(samplepos, 0)),
CPL_ERROR_INCOMPATIBLE_INPUT);
intptr_t nx = hdrl_imagelist_get_size_x(list);
intptr_t ny = hdrl_imagelist_get_size_y(list);
size_t noz = degree + 1;
/* make sure image has a mask to avoid creation race later */
if(coef) {
*coef = hdrl_imagelist_new();
}
if (chi2) {
*chi2 = cpl_image_new(nx, ny, HDRL_TYPE_DATA);
cpl_image_get_bpm(*chi2);
}
if (dof) {
*dof = cpl_image_new(nx, ny, HDRL_TYPE_DATA);
cpl_image_get_bpm(*dof);
}
for (size_t z = 0; z < noz; z++) {
hdrl_image * img = hdrl_image_new(nx, ny);
hdrl_image_get_mask(img);
hdrl_imagelist_set(*coef, img, z);
}
cpl_imagelist * datal, *errorl;
if (hdrl_imagelist_to_cplwrap(list, &datal, &errorl)) {
goto fail;
}
HDRL_OMP(omp parallel shared(coef, chi2, dof))
{
hdrl_vector_cache * cache =
hdrl_vector_cache_new(cpl_imagelist_get_size(datal), nx * 3);
HDRL_OMP(omp for)
for (intptr_t y = 0; y < ny; y++) {
cpl_vector * datav[nx];
cpl_vector * errsv[nx];
cpl_vector * samplev[nx];
hdrl_imagelist_to_vector_row(datal, y + 1, datav, cache);
hdrl_imagelist_to_vector_row(errorl, y + 1, errsv, cache);
hdrl_imagelist_to_vector_row(samplepos, y + 1, samplev, cache);
for (intptr_t x = 0; x < nx; x++) {
cpl_vector * data = datav[x];
cpl_vector * errs = errsv[x];
cpl_vector * samp = samplev[x];
/* all bad or less good than fit degrees */
if (data == NULL || samp == NULL ||
(size_t)cpl_vector_get_size(data) < noz ||
(size_t)cpl_vector_get_size(samp) < noz) {
for (size_t z = 0; z < noz; z++) {
hdrl_image * oimg = hdrl_imagelist_get(*coef, z);
hdrl_image_set_pixel(oimg, x + 1, y + 1,
(hdrl_value){NAN, NAN});
hdrl_image_reject(oimg, x + 1, y + 1);
}
if (chi2) {
cpl_image_set(*chi2, x + 1, y + 1, NAN);
cpl_image_reject(*chi2, x + 1, y + 1);
}
if (dof) {
int n = data ? cpl_vector_get_size(data) - noz : -noz;
cpl_image_set(*dof, x + 1, y + 1, n);
cpl_image_reject(*dof, x + 1, y + 1);
}
hdrl_cplvector_delete_to_cache(cache, data);
hdrl_cplvector_delete_to_cache(cache, errs);
hdrl_cplvector_delete_to_cache(cache, samp);
continue;
}
/* remove bad pixels from vectors */
if (cpl_vector_get_size(data) != hdrl_imagelist_get_size(list) ||
cpl_vector_get_size(samp) != hdrl_imagelist_get_size(list)) {
size_t j = 0;
for (size_t i = 0; i < (size_t)hdrl_imagelist_get_size(list); i++) {
int dump;
hdrl_image * himg = hdrl_imagelist_get(list, i);
const cpl_image * img = cpl_imagelist_get_const(samplepos, i);
/* if any entry is bad skip */
if (hdrl_image_is_rejected(himg, x + 1, y + 1) ||
cpl_image_is_rejected(img, x + 1, y + 1))
continue;
/* refill vector with non bad pixels in order */
hdrl_value val = hdrl_image_get_pixel(himg, x + 1, y + 1, NULL);
cpl_vector_set(data, j, val.data);
cpl_vector_set(errs, j, val.error);
cpl_vector_set(samp, j, cpl_image_get(img, x + 1, y + 1, &dump));
j++;
}
cpl_vector_set_size(data, j);
cpl_vector_set_size(errs, j);
cpl_vector_set_size(samp, j);
}
hdrl_ls_fit_result * r = polyfit1d(samp, data, errs, degree);
// TODO handle failure
for (size_t z = 0; z < noz; z++) {
hdrl_image * oimg = hdrl_imagelist_get(*coef, z);
hdrl_image_set_pixel(oimg, x + 1, y + 1,
(hdrl_value){cpl_matrix_get(r->coef, z, 0),
sqrt(cpl_matrix_get(r->cov, z, z))});
}
if (chi2) {
cpl_image_set(*chi2, x + 1, y + 1,
hdrl_ls_fit_result_get_chi2(r, data, errs));
}
if (dof) {
cpl_image_set(*dof, x + 1, y + 1,
hdrl_ls_fit_result_get_residual_dof(r));
}
hdrl_ls_fit_result_delete(r);
hdrl_cplvector_delete_to_cache(cache, data);
hdrl_cplvector_delete_to_cache(cache, errs);
hdrl_cplvector_delete_to_cache(cache, samp);
}
}
hdrl_vector_cache_delete(cache);
}
cpl_imagelist_unwrap(datal);
cpl_imagelist_unwrap(errorl);
return cpl_error_get_code();
fail:
hdrl_imagelist_delete(*coef);
*coef = NULL;
if (chi2) {
cpl_image_delete(*chi2);
*chi2 = NULL;
}
if (dof) {
cpl_image_delete(*dof);
*dof = NULL;
}
return cpl_error_get_code();
}
/**@}*/
|