1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
|
/*
* This file is part of the HDRL
* Copyright (C) 2015 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* hdrl_fringe.c
*
* Created on: May 11, 2015
* Author: agabasch
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/*-----------------------------------------------------------------------------
Includes
-----------------------------------------------------------------------------*/
#include <hdrl_fringe.h>
#include <hdrl_prototyping.h>
#include <math.h>
/*----------------------------------------------------------------------------*/
/**
* @defgroup hdrl_fringe Fringing
*
* @brief
* This module contains functions to derive and subtract a master-fringe image
*
* \section Computation Master-fringe computation
*
* For the master-fringe estimation, the algorithm model the pixel intensity
* distribution in a given image as a mixture of two Gaussian distributions,
* whose means are the background and the fringe amplitudes, respectively:
*
* \image html gaussians.png
*
* Thus the density function \f$f(x)\f$ of the
* intensity of an individual pixel is modeled as follows
* \f[
* f(x) = c_1\,e^{ -\frac{(x-\mu_1)^2}{2\sigma_1^2} }
* + c_2\,e^{ -\frac{(x-\mu_2)^2}{2\sigma_2^2} }.
* \f]
*
* The means \f$\mu_1\f$ and \f$\mu_2\f$ ( \f$\mu_1 < \mu_2 = \mu_{1}+a\f$) are
* proportional to the background amplitude and the fringe pattern
* amplitude, respectively. These values are used for normalization of
* the background and fringe amplitudes before stacking.
*
* The parameters of the two Gaussian components are estimated from the
* density function of the pixel intensities by a nonlinear least squares
* fit algorithm. The algorithm requires as its input an estimated
* density function. Such an estimate is calculated in a preprocessing
* step as a truncated Hermite series:
* \f[
* f(x) \approx \sum_{n=0}^p \; c_n h_n\left(\frac{x - \mu}{\sigma}\right),
* \f]
* where \f$h_n\f$ is the normalized Hermite function
* \f[
* h_n(x) = {\pi}^{-\frac14} \,
* 2^{-\frac{n}{2}} (n!)^{-\frac12} \, (\-1)^n \, e^{\frac{x^2\!\!}{2}} \,
* \frac{d^n}{dx^n}\left( e^{-x^2} \right),
* \f]
* \f$\mu\f$ and \f$\sigma\f$ are, respectively, the sample mean and the
* sample standard deviation of pixel intensities in the given image.
* The truncation parameter \f$p\f$ is found experimentally, \f$p = 20\f$ has
* been sufficient so far. The Hermite coefficients \f$c_n\f$ are computed
* as follows
* \f[
* c_n = \frac1{\sigma N}\; \sum_{i=1}^N h_n\left(\frac{I_i - \mu}{\sigma}\right),
* \f]
* where the summation extends over all pixel intensities \f$I_1, \ldots,
* I_{N}\f$, \f$N\f$ is the total number of pixels, and \f$n = 0, \ldots, p\f$.
*
* The following image shows a truncated Hermite series and its
* approximation by a Gaussian mixture.
*
* \image html hermite.png
*
* \section Subtractoin Master-fringe subtraction
*
* For the master-fringe subtraction the algorithm computes fringe
* amplitudes for each individual image by a least squares fit of a
* linear combination of the estimated master-fringe and a constant background.
* Specifically, the \f$i\f$th fringe \f$F_i\f$ is estimated as
*
* \f[
* F_{i} = a_{i}F + b_{i},
* \f]
*
* where \f$F\f$ is the estimated stacked master-fringe, and \f$b_i\f$ is a
* constant representing the background. The unknown constants \f$a_i\f$
* and \f$b_i\f$ are computed by a standard least squares fit preformed
* over the unmasked pixels.
*
*/
/*----------------------------------------------------------------------------*/
/**@{*/
/*---------------------------------------------------------------------------*/
/**
* @brief Calculates the master fringe and contribution map based on the
* @brief Gaussian mixture model.
*
* @param ilist_fringe Image list from where to extract the fringes
* @param ilist_obj Masks with the objects of the single images (or NULL)
* @param stat_mask Static mask (or NULL)
* @param collapse_params parameter controlling the collapse algorithm
* @param master returned master fringe map
* @param contrib_map returned contribution map of the master fringe map
* @param qctable returned table containing quality control information (or NULL)
*
* @return the cpl error code in case of error or CPL_ERROR_NONE
*
* The function calculates the master fringe and contribution maps of a list of
* (dithered) images. The background and fringe level are estimated as the mean
* values of a Gaussian mixture model to the image histogram. The histogram is
* approximated by a Hermite series before fitting the mixture model,
* in order to avoid possible problems with bin sizes.
*
* The masks exclude the regions where the fringe is weak, and are essential
* for an accurate estimation of noisy images.
* The masks can be used to remove objects and bad regions from the
* fit as well:
* The algorithm combines the bad pixel map (from ilist_fringe),
* the object mask (from ilist_obj), and static mask (stat_mask)
* for the fringe computation itself, but uses only
* the combined bad pixel map and object mask for the final collapsing. This
* ensures that the master fringe is also calculated in regions excluded by the
* static mask.
*
* @note Please note, that the function directly works on the passed hdrl
* imagelist (ilist_fringe) in order to save memory thus modifying the imagelist
*
* @note Error propagation: Please note, that the scaling factor derived and
* used in this function is considered to be noiseless, i.e. the associated
* error is supposed to be zero
*
*/
/*---------------------------------------------------------------------------*/
cpl_error_code
hdrl_fringe_compute(hdrl_imagelist* ilist_fringe, const cpl_imagelist * ilist_obj,
const cpl_mask* stat_mask, const hdrl_parameter* collapse_params,
hdrl_image** master, cpl_image** contrib_map,
cpl_table ** qctable)
{
if (qctable) {
*qctable = NULL;
}
/*Check that ilist_fringe and collapse_params are not pointer to NULL
* and that there is at least one image in the hdrl imagelist */
cpl_error_ensure(ilist_fringe && collapse_params , CPL_ERROR_NULL_INPUT,
goto cleanup, "NULL input imagelist or parameter");
cpl_error_ensure(hdrl_imagelist_get_size(ilist_fringe) > 0 ,
CPL_ERROR_NULL_INPUT, goto cleanup,
"input imagelist is empty");
cpl_size nx, ny, nx1, ny1;
nx = hdrl_image_get_size_x(hdrl_imagelist_get_const(ilist_fringe, 0));
ny = hdrl_image_get_size_y(hdrl_imagelist_get_const(ilist_fringe, 0));
/* If there is a ilist_obj check the size and the dimensions: */
if (ilist_obj != NULL) {
cpl_error_ensure(hdrl_imagelist_get_size(ilist_fringe) ==
cpl_imagelist_get_size(ilist_obj),
CPL_ERROR_INCOMPATIBLE_INPUT, goto cleanup,
"size of fringe and object image list does "
"not match");
nx1 = cpl_image_get_size_x(cpl_imagelist_get_const(ilist_obj, 0));
ny1 = cpl_image_get_size_y(cpl_imagelist_get_const(ilist_obj, 0));
cpl_error_ensure(nx == nx1, CPL_ERROR_INCOMPATIBLE_INPUT, goto cleanup,
"size of fringe image and object mask does not match");
cpl_error_ensure(ny == ny1, CPL_ERROR_INCOMPATIBLE_INPUT, goto cleanup,
"size of fringe image and object mask does not match");
}
/* If there is a static mask check the dimensions: */
if (stat_mask != NULL) {
/* If there is a stat_mask check the dimensions: */
cpl_error_ensure(nx == cpl_mask_get_size_x(stat_mask),
CPL_ERROR_INCOMPATIBLE_INPUT, goto cleanup,
"size of fringe image and fringe mask does not match");
cpl_error_ensure(ny == cpl_mask_get_size_y(stat_mask),
CPL_ERROR_INCOMPATIBLE_INPUT, goto cleanup,
"size of fringe image and fringe mask does not match");
}
/* This algorithm combines bpm (ilist_fringe), object list (from ilist_obj)
* and static mask (stat_mask) for the fringe computation but uses only
* the combined bpm and object list for the collapsing */
/* !! This algorithm directly works on the ilist_fringe object thus it
* modifies ilist_fringe !! */
double bkg_level = 0.;
double fringe_level = 0.;
cpl_size isize = hdrl_imagelist_get_size(ilist_fringe);
cpl_msg_debug(cpl_func, "Measure fringe amplitudes");
if (qctable != NULL) {
*qctable = cpl_table_new(isize);
cpl_table_new_column(*qctable, "Background_level", CPL_TYPE_DOUBLE);
cpl_table_new_column(*qctable, "Fringe_amplitude", CPL_TYPE_DOUBLE);
}
for (cpl_size i = 0; i < isize; i++) {
hdrl_image * this_himg = hdrl_imagelist_get(ilist_fringe, i);
cpl_mask *this_fmsk = cpl_mask_duplicate(hdrl_image_get_mask(this_himg));
if (ilist_obj != NULL) {
const cpl_image * obj = cpl_imagelist_get_const(ilist_obj, i);
cpl_mask * obj_mask = cpl_mask_threshold_image_create(obj,
-0.5, 0.5) ;
cpl_mask_not(obj_mask) ;
cpl_mask_or(this_fmsk, obj_mask);
cpl_mask_delete(obj_mask) ;
}
/* Add the object mask to the bad pixel mask for the collapsing */
hdrl_image_reject_from_mask(this_himg, this_fmsk);
/* Add the static mask to the bad pixel mask and object mask for the
* amplitude calculation */
if (stat_mask != NULL) {
cpl_mask_or(this_fmsk, stat_mask);
}
cpl_errorstate prestate = cpl_errorstate_get();
cpl_matrix *cur_amplitudes = hdrl_mime_fringe_amplitudes(
hdrl_image_get_image_const(this_himg), this_fmsk);
/* Handle situation where fit is not converging */
if (!cpl_errorstate_is_equal(prestate)) {
cpl_msg_warning(cpl_func, "Background level and fringe amplitude "
"could not be determined! Assuming a background"
" level of 0 and a fringe amplitude of 1");
bkg_level = 0.;
fringe_level = 1.;
/* Reset error code */
cpl_errorstate_set(prestate);
}
else {
bkg_level = cpl_matrix_get(cur_amplitudes, 0, 0);
fringe_level = cpl_matrix_get(cur_amplitudes, 1, 0);
}
double fringe_amplitude = fringe_level - bkg_level;
if (qctable != NULL) {
cpl_table_set_double(*qctable,"Background_level", i, bkg_level);
cpl_table_set_double(*qctable,"Fringe_amplitude", i, fringe_amplitude);
}
cpl_msg_info(cpl_func, "img: %04d Bkg: %12.6g Amplitude: %12.6g",
(int)i+1, bkg_level, fringe_amplitude);
cpl_msg_debug(cpl_func, "Rescaling image");
hdrl_image_sub_scalar(this_himg, (hdrl_value){bkg_level, 0.});
hdrl_image_div_scalar(this_himg, (hdrl_value){fringe_amplitude, 0.});
cpl_matrix_delete(cur_amplitudes);
cpl_mask_delete(this_fmsk);
}
cpl_msg_debug(cpl_func, "Combining the normalized fringes generating"
" the master-fringe");
hdrl_imagelist_collapse(ilist_fringe, collapse_params, master,
contrib_map);
cleanup:
if (cpl_error_get_code() != CPL_ERROR_NONE) {
if (qctable) {
cpl_table_delete(*qctable);
*qctable = NULL;
}
if (master) {
*master = NULL;
}
if (contrib_map) {
*contrib_map = NULL;
}
}
return cpl_error_get_code();
}
/*---------------------------------------------------------------------------*/
/**
* @brief Scales and subtracts the master fringe from the images.
*
* @param ilist_fringe Image list from where to subtract the master fringe
* @param ilist_obj Masks with the objects of the single images (or NULL)
* @param stat_mask Static mask (or NULL)
* @param masterfringe master fringe to scale and subtract
* @param qctable table containing quality control information (or NULL)
*
* @return the cpl error code in case of error or CPL_ERROR_NONE
*
* The function subtracts a fringe correction image (master) from a set of
* input images (ilist_fringe). The amplitude of the fringes is computed
* for each input image and used to properly rescale the correction image
* before subtraction.
*
* The masks exclude the regions where the fringe is weak, and are essential
* for an accurate scaling estimation of noisy images.
* The algorithm combines the bad pixel map (from ilist_fringe),
* the object mask (from ilist_obj), and static mask (stat_mask)
* for the scaling computation of the master fringe, but only uses the bad pixel
* map when subtracting the master-fringe. The object mask and static mask
* are ignored in this step. This ensures that the master fringe is properly
* subtracted (with error propagation) in all regions not affected by the bad
* pixel mask.
*
* @note Please note, that the function directly works on the passed hdrl
* imagelist (ilist_fringe) in order to save memory thus modifying the imagelist
* i.e. removing the fringes directly from the original imagelist (ilist_fringe)
*
* @note Error propagation: Please note, that the scaling factor derived and
* used in this function is considered to be noiseless, i.e. the associated
* error is supposed to be zero
*
*/
/*---------------------------------------------------------------------------*/
cpl_error_code
hdrl_fringe_correct(hdrl_imagelist * ilist_fringe, const cpl_imagelist * ilist_obj,
const cpl_mask * stat_mask, const hdrl_image * masterfringe,
cpl_table ** qctable)
{
if (qctable) {
*qctable = NULL;
}
/*Check that ilist_fringe and masterfringe are not NULL pointers
* and that there is at least one image in the hdrl imagelist */
cpl_ensure_code(ilist_fringe && masterfringe, CPL_ERROR_NULL_INPUT);
cpl_ensure_code(hdrl_imagelist_get_size(ilist_fringe) > 0 ,
CPL_ERROR_NULL_INPUT);
cpl_size nx, ny, nx1, ny1;
nx = hdrl_image_get_size_x(hdrl_imagelist_get_const(ilist_fringe, 0));
ny = hdrl_image_get_size_y(hdrl_imagelist_get_const(ilist_fringe, 0));
/*Check the dimension of the masterfringe image*/
nx1 = hdrl_image_get_size_x(masterfringe);
ny1 = hdrl_image_get_size_y(masterfringe);
cpl_ensure_code(nx == nx1, CPL_ERROR_INCOMPATIBLE_INPUT );
cpl_ensure_code(ny == ny1, CPL_ERROR_INCOMPATIBLE_INPUT );
/* If there is a ilist_obj check the size and the dimensions: */
if (ilist_obj != NULL) {
cpl_ensure_code(hdrl_imagelist_get_size(ilist_fringe) ==
cpl_imagelist_get_size(ilist_obj),
CPL_ERROR_INCOMPATIBLE_INPUT);
nx1 = cpl_image_get_size_x(cpl_imagelist_get_const(ilist_obj, 0));
ny1 = cpl_image_get_size_y(cpl_imagelist_get_const(ilist_obj, 0));
cpl_ensure_code(nx == nx1, CPL_ERROR_INCOMPATIBLE_INPUT );
cpl_ensure_code(ny == ny1, CPL_ERROR_INCOMPATIBLE_INPUT );
}
/* If there is a static mask check the dimensions: */
if (stat_mask != NULL) {
/* If there is a stat_mask check the dimensions: */
cpl_ensure_code(nx == cpl_mask_get_size_x(stat_mask),
CPL_ERROR_INCOMPATIBLE_INPUT );
cpl_ensure_code(ny == cpl_mask_get_size_y(stat_mask),
CPL_ERROR_INCOMPATIBLE_INPUT );
}
/* !! This algorithm directly works on the ilist_fringe object thus it
* modifies ilist_fringe !! */
/* Do the actual fringemap correction */
double bkg_level = 0.;
double fringe_level = 0.;
cpl_size isize = hdrl_imagelist_get_size(ilist_fringe);
cpl_msg_debug(cpl_func, "Measure fringe amplitudes");
if (qctable != NULL) {
*qctable = cpl_table_new(isize);
cpl_table_new_column(*qctable, "Background_level", CPL_TYPE_DOUBLE);
cpl_table_new_column(*qctable, "Fringe_amplitude", CPL_TYPE_DOUBLE);
}
for (cpl_size i = 0; i < isize; i++) {
hdrl_image * this_himg = hdrl_imagelist_get(ilist_fringe, i);
hdrl_image * this_masterfringe = hdrl_image_duplicate(masterfringe);
cpl_mask *this_fmsk = cpl_mask_duplicate(hdrl_image_get_mask(this_himg));
if (stat_mask != NULL) {
cpl_mask_or(this_fmsk, stat_mask);
}
if (ilist_obj != NULL) {
const cpl_image * obj = cpl_imagelist_get_const(ilist_obj, i);
cpl_mask * obj_mask = cpl_mask_threshold_image_create(obj,
-0.5, 0.5) ;
cpl_mask_not(obj_mask) ;
cpl_mask_or(this_fmsk, obj_mask);
cpl_mask_delete(obj_mask) ;
}
cpl_errorstate prestate = cpl_errorstate_get();
cpl_matrix * cur_amplitudes = hdrl_mime_fringe_amplitudes_ls(
hdrl_image_get_image_const(this_himg), this_fmsk,
hdrl_image_get_image_const(this_masterfringe));
/* Handle situation where fit is not converging */
if (!cpl_errorstate_is_equal(prestate)) {
cpl_msg_warning(cpl_func, "Background level and fringe amplitude "
"could not be determined! Assuming a background"
" level of 0 and a fringe amplitude of 0, i.e. "
"no correction will be applied to this image");
bkg_level = 0.;
fringe_level = 0.;
/* Reset error code */
cpl_errorstate_set(prestate);
}
else {
bkg_level = cpl_matrix_get(cur_amplitudes, 0, 0);
fringe_level = cpl_matrix_get(cur_amplitudes, 1, 0);
}
double fringe_amplitude = fringe_level - bkg_level;
if (qctable != NULL) {
cpl_table_set_double(*qctable,"Background_level", i, bkg_level);
cpl_table_set_double(*qctable,"Fringe_amplitude", i, fringe_amplitude);
}
cpl_msg_info(cpl_func, "img: %04d Bkg: %12.6g Amplitude: %12.6g",
(int)i+1, bkg_level, fringe_amplitude);
cpl_msg_debug(cpl_func, "Rescaling masterfringe");
hdrl_image_mul_scalar(this_masterfringe, (hdrl_value){fringe_amplitude, 0.});
cpl_msg_debug(cpl_func, "Subtract rescaled masterfringe");
hdrl_image_sub_image(this_himg, this_masterfringe);
hdrl_image_delete(this_masterfringe);
cpl_matrix_delete(cur_amplitudes);
cpl_mask_delete(this_fmsk);
}
if (cpl_error_get_code() != CPL_ERROR_NONE && qctable != NULL) {
cpl_table_delete(*qctable);
*qctable = NULL;
}
return cpl_error_get_code();
}
/** @cond PRIVATE */
/*---------------------------------------------------------------------------*/
/**
* @brief Estimate background and fringe levels in an image from a
* @brief Gaussian mixture model.
*
* @param img0 Image,
* @param mask0 Mask,
*
* @return A 2-by-1 matrix with the bkg and fringe amplitudes.
*
* Background and fringe level are estimated as the mean values of a
* Gaussian mixture model to the image histogram. The histogram is
* approximated by a Hermite series before fitting the mixture model,
* in order to avoid possible problems with bin sizes.
*
* The mask exclude the regions where the fringe is weak, and is essential
* for an accurate estimation of noisy images.
* The mask can be used to remove objects and bad regions from the
* fit.
*
* The returned matrix must be deallocated using cpl_matrix_delete().
*/
/*---------------------------------------------------------------------------*/
cpl_matrix *hdrl_mime_fringe_amplitudes(const cpl_image * img0,
const cpl_mask * mask0)
{
cpl_matrix *mdata;
cpl_matrix *coeffs;
cpl_matrix *x;
cpl_matrix *hseries;
cpl_matrix *amplitudes;
cpl_vector *vals;
cpl_vector *params;
const double *img_data;
const cpl_binary *mask_data;
double *md;
double *par;
double mean, stdev, bkg_amp, fringe_amp;
int nx, ny, n, size, ns;
int msize, i;
cpl_ensure(img0 != NULL, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(mask0 != NULL, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(cpl_image_get_type(img0) == CPL_TYPE_DOUBLE,
CPL_ERROR_INVALID_TYPE, NULL);
/* setting parameters
n number of the Hermite functions
*/
n = 20;
/* getting image parameters and stats
nx, ny dimensions of images
*/
nx = cpl_image_get_size_x(img0);
ny = cpl_image_get_size_y(img0);
size = nx * ny;
msize = size - cpl_mask_count(mask0);
/* check that at least some region have been flagged */
cpl_ensure(msize > 0 , CPL_ERROR_ILLEGAL_INPUT,NULL);
/* creating masked image */
mdata = cpl_matrix_new(msize, 1);
md = cpl_matrix_get_data(mdata);
img_data = cpl_image_get_data_double_const(img0);
mask_data = cpl_mask_get_data_const(mask0);
for (i = 0; i < size; i++, mask_data++, img_data++)
{
if (*mask_data == CPL_BINARY_0)
{
*md = (double) *img_data;
md++;
}
}
mean = cpl_matrix_get_mean(mdata);
stdev = cpl_matrix_get_stdev(mdata);
/* computing the Hermite coefficients */
coeffs = hdrl_mime_hermite_functions_sums_create(n, mean, stdev, mdata);
cpl_matrix_multiply_scalar(coeffs, 1.0 / msize);
/* reconstructing the density function as the Hermite series */
ns = 1000;
x = hdrl_mime_matrix_linspace_create(ns, mean - 4.0 * stdev,
mean + 4.0 * stdev);
hseries = hdrl_mime_hermite_series_create(n, mean, stdev, coeffs, x);
/* computing the parameters of the Gaussian mixture */
params = cpl_vector_new(6);
par = cpl_vector_get_data(params);
par[0] = 0.62 / (sqrt(CPL_MATH_PI) * stdev);
par[1] = mean - 0.4 * stdev;
par[2] = 0.58 * stdev;
par[3] = 0.57 / (sqrt(CPL_MATH_PI) * stdev);
par[4] = mean + 0.3 * stdev;
par[5] = 0.61 * stdev;
vals = cpl_vector_wrap(ns, cpl_matrix_get_data(hseries));
cpl_fit_lvmq(x, NULL, vals, NULL, params, NULL, hdrl_mime_gmix1,
hdrl_mime_gmix_derivs1, CPL_FIT_LVMQ_TOLERANCE, CPL_FIT_LVMQ_COUNT,
CPL_FIT_LVMQ_MAXITER, NULL, NULL, NULL);
bkg_amp = (par[1] > par[4] ? par[4] : par[1]);
fringe_amp = (par[1] > par[4] ? par[1] : par[4]);
amplitudes = cpl_matrix_new(2, 1);
cpl_matrix_set(amplitudes, 0, 0, bkg_amp);
cpl_matrix_set(amplitudes, 1, 0, fringe_amp);
/* cleaning up */
cpl_matrix_delete(mdata);
cpl_matrix_delete(coeffs);
cpl_matrix_delete(x);
cpl_matrix_delete(hseries);
cpl_vector_unwrap(vals);
cpl_vector_delete(params);
return amplitudes;
}
/*---------------------------------------------------------------------------*/
/**
* @brief Estimate background and fringe levels in an image from a
* @brief least-squares fit.
*
* @param img0 Image,
* @param mask0 Mask,
* @param fringe0 Fringe image
*
* @return A 2-by-1 matrix with the bkg and fringe amplitudes.
*
* The function determines the background and fringe levels in the
* image @a img0 by fitting the image with the fringe image @a fringe0
* and a constant background in the least-squares sense. The fit
* ignores the masked parts of the image and the fringe, where the
* fringe is weak.
*
* The returned matrix must be deallocated using cpl_matrix_delete().
*/
/*---------------------------------------------------------------------------*/
cpl_matrix *hdrl_mime_fringe_amplitudes_ls(const cpl_image * img0,
const cpl_mask * mask0, const cpl_image * fringe0)
{
cpl_matrix *mdata;
cpl_matrix *fdata;
cpl_matrix *cols12;
cpl_matrix *coeffs;
cpl_matrix *amplitudes;
const double *img_data;
const cpl_binary *mask_data;
const double *fringe_data;
double *md;
double *fd;
int nx, ny, size;
int msize, i;
cpl_ensure(img0 != NULL, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(mask0 != NULL, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(fringe0 != NULL, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(cpl_image_get_type(img0) == CPL_TYPE_DOUBLE,
CPL_ERROR_INVALID_TYPE, NULL);
cpl_ensure(cpl_image_get_type(fringe0) == CPL_TYPE_DOUBLE,
CPL_ERROR_INVALID_TYPE, NULL);
/* getting image parameters and stats
nx, ny dimensions of images
*/
nx = cpl_image_get_size_x(img0);
ny = cpl_image_get_size_y(img0);
size = nx * ny;
msize = size - cpl_mask_count(mask0);
/* check that at least some region have been flagged */
cpl_ensure(msize > 0 , CPL_ERROR_ILLEGAL_INPUT,NULL);
/* creating masked image and masked fringe */
mdata = cpl_matrix_new(msize, 1);
md = cpl_matrix_get_data(mdata);
fdata = cpl_matrix_new(msize, 1);
fd = cpl_matrix_get_data(fdata);
img_data = cpl_image_get_data_double_const(img0);
mask_data = cpl_mask_get_data_const(mask0);
fringe_data = cpl_image_get_data_double_const(fringe0);
for (i = 0; i < size; i++, img_data++, mask_data++, fringe_data++)
{
if (*mask_data == CPL_BINARY_0)
{
*md = (double) *img_data;
*fd = (double) *fringe_data;
md++;
fd++;
}
}
/* computing the least squares coefficients */
cols12 = cpl_matrix_new(msize, 2);
cpl_matrix_fill(cols12, 1.0);
cpl_matrix_copy(cols12, fdata, 0, 0);
coeffs = hdrl_mime_linalg_solve_tikhonov(cols12, mdata, 1.0e-10);
/* computing the amplitudes */
amplitudes = cpl_matrix_new(2, 1);
cpl_matrix_set(amplitudes, 0, 0, cpl_matrix_get(coeffs, 1, 0));
cpl_matrix_set(amplitudes, 1, 0, cpl_matrix_get(coeffs, 0, 0) +
cpl_matrix_get(coeffs, 1, 0));
/* cleaning up */
cpl_matrix_delete(mdata);
cpl_matrix_delete(fdata);
cpl_matrix_delete(cols12);
cpl_matrix_delete(coeffs);
return amplitudes;
}
/*---------------------------------------------------------------------------*/
/**
* @brief Evaluate the partial derivatives of the Gaussian mixture
*
* @param x[] Argument
* @param params[] Array of length 6 with the means, sigmas, and factors,
* @param result[] Derivatives of the GM at x[0]
*
* @return zero on success
*
*/
/*---------------------------------------------------------------------------*/
int hdrl_mime_gmix_derivs1(const double x[], const double params[],
double result[])
{
double a1, m1, sigma1;
double a2, m2, sigma2;
double tmp;
/* initializing */
a1 = params[0];
m1 = params[1];
sigma1 = params[2];
a2 = params[3];
m2 = params[4];
sigma2 = params[5];
/* evaluating */
tmp = (x[0] - m1) / sigma1;
result[0] = exp(-0.5 * tmp * tmp);
result[1] = a1 * exp(-0.5 * tmp * tmp);
result[1] *= tmp / sigma1;
result[2] = a1 * exp(-0.5 * tmp * tmp);
result[2] *= tmp * tmp / sigma1;
tmp = (x[0] - m2) / sigma2;
result[3] = exp(-0.5 * tmp * tmp);
result[4] = a2 * exp(-0.5 * tmp * tmp);
result[4] *= tmp / sigma2;
result[5] = a2 * exp(-0.5 * tmp * tmp);
result[5] *= tmp * tmp / sigma2;
return 0;
}
/*---------------------------------------------------------------------------*/
/**
* @brief Evaluate Gaussian mixture
*
* @param x[] Argument
* @param params[] Array of length 6 with the means, sigmas, and factors,
* @param result Value of the GM at x[0]
*
* @return zero on success
*
*/
/*---------------------------------------------------------------------------*/
int hdrl_mime_gmix1(const double x[], const double params[], double *result)
{
double a1, m1, sigma1;
double a2, m2, sigma2;
double tmp;
/* initializing */
a1 = params[0];
m1 = params[1];
sigma1 = params[2];
a2 = params[3];
m2 = params[4];
sigma2 = params[5];
/* evaluating */
tmp = (x[0] - m1) / sigma1;
result[0] = a1 * exp(-0.5 * tmp * tmp);
tmp = (x[0] - m2) / sigma2;
result[0] += a2 * exp(-0.5 * tmp * tmp);
return 0;
}
/*---------------------------------------------------------------------------*/
/**
* @brief Evaluate the Hermite series at given arguments.
*
* @param n Number of the Hermite functions,
* @param center Center,
* @param scale Scale factor,
* @param coeffs Hermite coefficients,
* @param x Nodes, at which the functions are evaluated.
*
* @return The Hermite series evaluated at given arguments.
*
* The Hermite functions are normalized in the L2-sense.
*
* The returned matrix must be deallocated using cpl_matrix_delete().
*/
/*---------------------------------------------------------------------------*/
cpl_matrix *hdrl_mime_hermite_series_create(int n, double center,
double scale, const cpl_matrix * coeffs, const cpl_matrix * x)
{
cpl_matrix *series;
double *ms;
const double *mc;
const double *mx;
double rt;
int i, k, size;
/* testing input */
if (x == NULL || coeffs == NULL)
{
cpl_error_set(cpl_func, CPL_ERROR_NULL_INPUT);
return NULL;
}
if (n < 1 || scale <= 0.0)
{
cpl_error_set(cpl_func, CPL_ERROR_ILLEGAL_INPUT);
return NULL;
}
/* The specific dimensions of the matrix x are not used, only its size. */
size = cpl_matrix_get_nrow(x) * cpl_matrix_get_ncol(x);
mx = cpl_matrix_get_data_const(x);
mc = cpl_matrix_get_data_const(coeffs);
/* allocating memory */
series = cpl_matrix_new(size, 1);
ms = cpl_matrix_get_data(series);
/* computing the normalization constant */
rt = 1.0 / sqrt(sqrt(CPL_MATH_PI));
/* evaluating the Hermite functions at the samples */
for (k = 0; k < size; k++)
{
double xk = (mx[k] - center) / scale;
double tmp1 = rt * exp(-0.5 * xk * xk);
double tmp2 = rt * sqrt(2.0) * xk * exp(-0.5 * xk * xk);
for (i = 2; i < n + 2; i++)
{
double tmp3 = sqrt(2) * xk * tmp2 - sqrt(i - 1) * tmp1;
tmp3 = tmp3 / sqrt(i);
ms[k] += tmp1 * mc[i - 2];
tmp1 = tmp2;
tmp2 = tmp3;
}
}
/* normalizing */
cpl_matrix_multiply_scalar(series, 1 / sqrt(scale));
return series;
}
/*---------------------------------------------------------------------------*/
/**
* @brief Create the sum of values of the k-th Hermite function at
* @brief given arguments, for k = 0, ..., n-1.
*
* @param n Number of the Hermite functions.
* @param center Center.
* @param scale Scale factor.
* @param x Nodes, at which the functions are evaluated.
*
* @return The sums of the Hermite functions at given arguments.
*
* The Hermite functions are normalized in the L2-sense.
*
* The returned matrix must be deallocated using cpl_matrix_delete().
*/
/*---------------------------------------------------------------------------*/
cpl_matrix *hdrl_mime_hermite_functions_sums_create(int n, double center,
double scale, const cpl_matrix * x)
{
cpl_matrix *sums;
double *ms;
const double *mx;
double rt;
int i, k, size;
double tmp3;
double sqrt_i[n + 2];
double rsqrt_i[n + 2];
/* testing input */
if (x == NULL)
{
cpl_error_set(cpl_func, CPL_ERROR_NULL_INPUT);
return NULL;
}
if (n < 1 || scale <= 0.0)
{
cpl_error_set(cpl_func, CPL_ERROR_ILLEGAL_INPUT);
return NULL;
}
/* The specific dimensions of the matrix x are not used, only its size. */
size = cpl_matrix_get_nrow(x) * cpl_matrix_get_ncol(x);
mx = cpl_matrix_get_data_const(x);
/* allocating memory */
sums = cpl_matrix_new(n, 1);
ms = cpl_matrix_get_data(sums);
/* computing the normalization constant */
rt = 1.0 / sqrt(sqrt(CPL_MATH_PI));
for (i = 1; i < n + 2; i++) {
sqrt_i[i] = sqrt(i);
rsqrt_i[i] = 1. / sqrt_i[i];
}
/* evaluating the Hermite functions at the samples */
for (k = 0; k < size; k++)
{
double xk = (mx[k] - center) / scale;
double tmp1 = rt * exp(-0.5 * xk * xk);
double tmp2 = rt * sqrt(2.0) * xk * exp(-0.5 * xk * xk);
for (i = 2; i < n + 2; i++)
{
tmp3 = sqrt(2) * xk * tmp2 - sqrt_i[i - 1] * tmp1;
tmp3 = tmp3 * rsqrt_i[i];
ms[i - 2] += tmp1;
tmp1 = tmp2;
tmp2 = tmp3;
}
}
/* normalizing */
cpl_matrix_multiply_scalar(sums, 1 / sqrt(scale));
return sums;
}
/** @endcond */
/**@}*/
|