1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
|
/*
* This file is part of the HDRL
* Copyright (C) 2012,2013 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/*-----------------------------------------------------------------------------
Includes
-----------------------------------------------------------------------------*/
#include "hdrl_sigclip.h"
#include "hdrl_utils.h"
#include "hdrl_collapse.h"
#include <cpl.h>
#include <string.h>
#include <math.h>
/*-----------------------------------------------------------------------------
Static
-----------------------------------------------------------------------------*/
static cpl_error_code hdrl_sort_double_pairs(cpl_vector *, cpl_vector *) ;
static long get_lower_bound_d(double * vec, long count, double val);
static long get_upper_bound_d(double * vec, long count, double val);
static long get_lower_bound(cpl_vector * vec, double val);
static long get_upper_bound(cpl_vector * vec, double val);
/** @cond PRIVATE */
/*----------------------------------------------------------------------------*/
/**
@defgroup hdrl_sigclip Clipping module
This module provides parameters for iterative \f$\kappa-\sigma\f$ clipping and
minmax rejection.
*/
/*----------------------------------------------------------------------------*/
/**@{*/
/* ---------------------------------------------------------------------------*/
/**
@brief Create parameters for the sigma-clip collapse
@param base_context base context of parameter (e.g. recipe name)
@param prefix prefix of parameter, may be empty string
@param defaults default sigclip parameters
@return The created parameter list
Creates a parameterlist containing
base_context.prefix.kappa-low
base_context.prefix.kappa-high
base_context.prefix.niter
*/
/* ---------------------------------------------------------------------------*/
cpl_parameterlist * hdrl_sigclip_parameter_create_parlist(
const char *base_context,
const char *prefix,
const hdrl_parameter *defaults)
{
cpl_ensure(base_context && prefix && defaults,
CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(hdrl_collapse_parameter_is_sigclip(defaults),
CPL_ERROR_INCOMPATIBLE_INPUT, NULL);
cpl_parameterlist *parlist = cpl_parameterlist_new();
/* --prefix.kappa-low */
hdrl_setup_vparameter(parlist, prefix, ".", "",
"kappa-low", base_context,
"Low kappa factor for kappa-sigma clipping algorithm",
CPL_TYPE_DOUBLE,
hdrl_collapse_sigclip_parameter_get_kappa_low(defaults));
/* --prefix.kappa-high */
hdrl_setup_vparameter(parlist, prefix, ".", "",
"kappa-high", base_context,
"High kappa factor for kappa-sigma clipping algorithm",
CPL_TYPE_DOUBLE,
hdrl_collapse_sigclip_parameter_get_kappa_high(defaults));
/* --prefix.niter */
hdrl_setup_vparameter(parlist, prefix, ".", "",
"niter", base_context,
"Maximum number of clipping iterations for kappa-sigma clipping",
CPL_TYPE_INT,
hdrl_collapse_sigclip_parameter_get_niter(defaults));
if (cpl_error_get_code()) {
cpl_parameterlist_delete(parlist);
return NULL;
}
return parlist;
}
/* ---------------------------------------------------------------------------*/
/**
@brief Create parameters for the minmax-clip collapse
@param base_context base context of parameter (e.g. recipe name)
@param prefix prefix of parameter, may be empty string
@param defaults default minmax parameters
@return The created parameter list
Creates a parameterlist containing
base_context.prefix.nlow
base_context.prefix.nhigh
*/
/* ---------------------------------------------------------------------------*/
cpl_parameterlist * hdrl_minmax_parameter_create_parlist(
const char *base_context,
const char *prefix,
const hdrl_parameter *defaults)
{
cpl_ensure(base_context && prefix && defaults,
CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(hdrl_collapse_parameter_is_minmax(defaults),
CPL_ERROR_INCOMPATIBLE_INPUT, NULL);
cpl_parameterlist * parlist = cpl_parameterlist_new();
/* --prefix.nlow */
hdrl_setup_vparameter(parlist, prefix, ".", "",
"nlow", base_context,
"Low number of pixels to reject for the minmax clipping algorithm",
CPL_TYPE_DOUBLE,
hdrl_collapse_minmax_parameter_get_nlow(defaults));
/* --prefix.nhigh */
hdrl_setup_vparameter(parlist, prefix, ".", "",
"nhigh", base_context,
"High number of pixels to reject for the minmax clipping algorithm",
CPL_TYPE_DOUBLE,
hdrl_collapse_minmax_parameter_get_nhigh(defaults));
if (cpl_error_get_code()) {
cpl_parameterlist_delete(parlist);
return NULL;
}
return parlist;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief parse parameterlist for sigclip parameters to init corresponding hdrl
* structure parameters
*
* @param parlist parameter list to parse
* @param prefix prefix of parameter name
* @param kappa_low pointer to storage to save kappa_low or NULL
* @param kappa_high pointer to storage to save kappa_high or NULL
* @param niter pointer to storage to save niter or NULL
* @see hdrl_kappa_sigma_clip_get_parlist()
* @return cpl_error_code
*
* parameterlist should have been created with
* hdrl_kappa_sigma_clip_get_parlist or have the same name hierachy
*/
/* ---------------------------------------------------------------------------*/
cpl_error_code hdrl_sigclip_parameter_parse_parlist(
const cpl_parameterlist * parlist,
const char * prefix,
double * kappa_low,
double * kappa_high,
int * niter)
{
cpl_ensure_code(prefix && parlist, CPL_ERROR_NULL_INPUT);
char * name;
if (kappa_low) {
name = hdrl_join_string(".", 2, prefix, "sigclip.kappa-low");
const cpl_parameter * par = cpl_parameterlist_find_const(parlist, name);
*kappa_low = cpl_parameter_get_double(par);
cpl_free(name);
}
if (kappa_high) {
name = hdrl_join_string(".", 2, prefix, "sigclip.kappa-high");
const cpl_parameter * par = cpl_parameterlist_find_const(parlist, name);
*kappa_high = cpl_parameter_get_double(par);
cpl_free(name);
}
if (niter) {
name = hdrl_join_string(".", 2, prefix, "sigclip.niter");
const cpl_parameter * par = cpl_parameterlist_find_const(parlist, name);
*niter = cpl_parameter_get_int(par);
cpl_free(name);
}
if (cpl_error_get_code()) {
return cpl_error_set_message(cpl_func, CPL_ERROR_DATA_NOT_FOUND,
"Error while parsing parameterlist "
"with prefix %s", prefix);
}
return CPL_ERROR_NONE;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief parse parameterlist for minmax parameters to init corresponding hdrl
* structure parameters
*
* @param parlist parameter list to parse
* @param prefix prefix of parameter name
* @param nlow pointer to storage to save nlow or NULL
* @param nhigh pointer to storage to save nhigh or NULL
* @see hdrl_minmax_clip_get_parlist()
* @return cpl_error_code
*
* parameterlist should have been created with
* hdrl_minmax_clip_get_parlist or have the same name hierachy
*/
/* ---------------------------------------------------------------------------*/
cpl_error_code hdrl_minmax_parameter_parse_parlist(
const cpl_parameterlist * parlist,
const char * prefix,
double * nlow,
double * nhigh)
{
cpl_ensure_code(prefix && parlist, CPL_ERROR_NULL_INPUT);
char * name;
if (nlow) {
name = hdrl_join_string(".", 2, prefix, "minmax.nlow");
const cpl_parameter * par = cpl_parameterlist_find_const(parlist, name);
*nlow = cpl_parameter_get_double(par);
cpl_free(name);
}
if (nhigh) {
name = hdrl_join_string(".", 2, prefix, "minmax.nhigh");
const cpl_parameter * par = cpl_parameterlist_find_const(parlist, name);
*nhigh = cpl_parameter_get_double(par);
cpl_free(name);
}
if (cpl_error_get_code()) {
return cpl_error_set_message(cpl_func, CPL_ERROR_DATA_NOT_FOUND,
"Error while parsing parameterlist "
"with prefix %s", prefix);
}
return CPL_ERROR_NONE;
}
/*----------------------------------------------------------------------------*/
/**
@internal
@brief Compute mean image value using min-max rejection method
@param source Input image
@param error Input error image
@param nlow Absolute number of low pixels to reject
@param nhigh Absolute number of high pixels to reject
@param mean_mm The min-max clipped mean
@param mean_mm_err The propagated error of the min-max clipped mean
@param naccepted Number of accepted values
@return @c CPL_ERROR_NONE or the appropriate error code.
@see hdrl_minmax_clip()
This function converts the image inputs into the proper data types in
order to call the hdrl_minmax_clip() function.
If the error values at the rejection boundaries are ambigous, e.g. when you
have multiple pixels with the same value but different error and the
rejection boundary would only select a subset of these, the algorithm assigns
the smallest error values of the equal value range to the selected pixels.
*/
/*----------------------------------------------------------------------------*/
cpl_error_code hdrl_minmax_clip_image(
const cpl_image * source,
const cpl_image * error,
const double nlow,
const double nhigh,
double * mean_mm,
double * mean_mm_err,
cpl_size * naccepted,
double * reject_low,
double * reject_high)
{
cpl_vector * vec_source = NULL;
cpl_vector * vec_error = NULL;
/* Check Entries */
cpl_error_ensure(source != NULL, CPL_ERROR_NULL_INPUT,
return CPL_ERROR_NULL_INPUT, "Null input source image!");
cpl_error_ensure(error != NULL, CPL_ERROR_NULL_INPUT,
return CPL_ERROR_NULL_INPUT, "Null input error image!");
cpl_error_ensure(cpl_image_get_size_x(source)==cpl_image_get_size_x(error),
CPL_ERROR_INCOMPATIBLE_INPUT, return CPL_ERROR_INCOMPATIBLE_INPUT,
"source and error image musty have same X size");
cpl_error_ensure(cpl_image_get_size_y(source)==cpl_image_get_size_y(error),
CPL_ERROR_INCOMPATIBLE_INPUT, return CPL_ERROR_INCOMPATIBLE_INPUT,
"source and error image musty have same Y size");
/* compress images to vectors excluding the bad pixels */
vec_source = hdrl_image_to_vector(source, NULL);
vec_error = hdrl_image_to_vector(error, cpl_image_get_bpm_const(source));
if (vec_source != NULL && vec_error != NULL) {
/* Call here the real clipping function */
hdrl_minmax_clip(vec_source, vec_error, nlow, nhigh, CPL_TRUE, mean_mm,
mean_mm_err, naccepted, reject_low, reject_high);
}
/* no good pixels */
else {
*mean_mm = NAN;
*mean_mm_err = NAN;
*naccepted = 0;
*reject_low = NAN;
*reject_high = NAN;
}
cpl_msg_debug(cpl_func, "mean_mm, mean_mm_err, naccepted: %g, %g, %ld",
*mean_mm, *mean_mm_err, (long)*naccepted);
cpl_vector_delete(vec_source);
cpl_vector_delete(vec_error);
return cpl_error_get_code();
}
/*----------------------------------------------------------------------------*/
/**
@internal
@brief Compute mean using min-max clipping.
@param vec The vector for which the clipped mean is computed.
@param vec_err The error of vec.
@param nlow The number of low pixels to be rejected by the algorithm
@param nhigh The number of high pixels to be rejected by the algorithm
@param inplace If true the input vectors are modified
@param mean_mm The min-max clipped mean.
@param mean_mm_err The propagated error of the min-max clipped mean.
@param naccepted Number of accepted values.
@param reject_low The lowest value that is rejected
@param reject_high The highest value that is rejected
@return @c CPL_ERROR_NONE or the appropriate error code.
This function computes the mean after sorting the elements and rejecting nlow
and nhigh values. The remaining pixels are then used to compute the mean and
the associated error. Please note that, if multiple equal elements are
present, the error propagation uses the value with the smallest error.
*/
/*----------------------------------------------------------------------------*/
cpl_error_code hdrl_minmax_clip(
cpl_vector * vec,
cpl_vector * vec_err,
const double nlow,
const double nhigh,
cpl_boolean inplace,
double * mean_mm,
double * mean_mm_err,
cpl_size * naccepted,
double * reject_low,
double * reject_high)
{
/* VARIABLES ON THE FUNCTION SCOPE:
vec_image a deep copy of the input vector vec.
mean_mm min-max clip mean (return variable).
*/
cpl_vector * vec_image = NULL;
cpl_vector * vec_image_err = NULL;
cpl_size vec_size;
cpl_size nlow_int, nhigh_int;
cpl_vector * vec_trunc;
cpl_size trunc_size;
double * d, * e;
/*In the future minmax rejection could also use relative values therefore
* we pass a double to the function - nevertheless the code as it is now
* expects an integer - thus we need to do the rounding */
nlow_int = (cpl_size)round(nlow);
nhigh_int = (cpl_size)round(nhigh);
cpl_error_ensure(vec != NULL, CPL_ERROR_NULL_INPUT,
return CPL_ERROR_NULL_INPUT, "Null input vector data");
cpl_error_ensure(vec_err != NULL, CPL_ERROR_NULL_INPUT,
return CPL_ERROR_NULL_INPUT, "Null input vector errors");
cpl_error_ensure(cpl_vector_get_size(vec) == cpl_vector_get_size(vec_err),
CPL_ERROR_INCOMPATIBLE_INPUT,
return CPL_ERROR_INCOMPATIBLE_INPUT,
"input data and error vectors must have same sizes");
cpl_error_ensure(mean_mm != NULL, CPL_ERROR_NULL_INPUT,
return CPL_ERROR_NULL_INPUT, "Null input mean storage");
cpl_error_ensure(nlow_int >=0 && nhigh_int>=0, CPL_ERROR_INCOMPATIBLE_INPUT,
return CPL_ERROR_INCOMPATIBLE_INPUT, "nlow and nhigh must "
"be strictly positive");
vec_size = cpl_vector_get_size(vec);
/* Nothing to do if only one data point */
if(vec_size <= (nlow_int+nhigh_int)) {
*mean_mm=NAN;
*mean_mm_err=NAN;
*naccepted=0;
return cpl_error_get_code();
}
if (inplace) {
vec_image = vec;
vec_image_err = vec_err;
}
else {
vec_image = cpl_vector_duplicate(vec);
vec_image_err = cpl_vector_duplicate(vec_err);
}
hdrl_sort_double_pairs(vec_image, vec_image_err);
trunc_size = (vec_size - nhigh_int) - nlow_int;
d = cpl_vector_get_data(vec_image);
e = cpl_vector_get_data(vec_image_err);
vec_trunc = cpl_vector_wrap(trunc_size, d + nlow_int);
/* COMPUTE THE MIN-MAX CLIP MEAN */
*mean_mm = cpl_vector_get_mean(vec_trunc);
if (naccepted) {
*naccepted = trunc_size;
}
if (reject_low) {
*reject_low = d[nlow_int];
}
if (reject_high) {
*reject_high = d[vec_size - nhigh_int - 1];
}
if (mean_mm_err) {
cpl_vector * vec_trunc_err;
/* if multiple equal elements use the one with the smallest error
* get the equal range, sort the errors and write the smallest into the
* valid array ends */
intptr_t l = get_lower_bound(vec_image, d[nlow_int]);
intptr_t h = get_upper_bound(vec_image, d[nlow_int]);
if (h - l > 1 && h - l != vec_size) {
cpl_vector * e_vec = cpl_vector_extract(vec_image_err, l, h - 1, 1);
cpl_vector_sort(e_vec, CPL_SORT_ASCENDING);
for (intptr_t i = nlow_int; i < h; i++) {
cpl_vector_set(vec_image_err, i,
cpl_vector_get(e_vec, i - nlow_int));
}
cpl_vector_delete(e_vec);
}
l = get_lower_bound(vec_image, d[vec_size - nhigh_int - 1]);
h = get_upper_bound(vec_image, d[vec_size - nhigh_int - 1]);
if (h - l > 1 && h - l != vec_size) {
cpl_vector * e_vec = cpl_vector_extract(vec_image_err, l, h - 1, 1);
cpl_vector_sort(e_vec, CPL_SORT_ASCENDING);
for (intptr_t i = l; i < vec_size - nhigh; i++) {
cpl_vector_set(vec_image_err, i,
cpl_vector_get(e_vec, i - l));
}
cpl_vector_delete(e_vec);
}
vec_trunc_err = cpl_vector_wrap(trunc_size, e + nlow_int);
/*Propagate the errors (cpl_vector_power is very slow PIPE-4330) */
cpl_vector_multiply(vec_trunc_err, vec_trunc_err);
*mean_mm_err = sqrt(cpl_vector_get_mean(vec_trunc_err) /
cpl_vector_get_size(vec_trunc_err));
cpl_vector_unwrap(vec_trunc_err);
}
/* CLEAN, AND RETURN */
cpl_vector_unwrap(vec_trunc);
if (!inplace) {
cpl_vector_delete(vec_image);
cpl_vector_delete(vec_image_err);
}
return cpl_error_get_code();
}
/*----------------------------------------------------------------------------*/
/**
@internal
@brief Compute mean image value using kappa-sigma clipping method
@param source Input image
@param error Input error image
@param kappa_low Number of sigmas for lower threshold
@param kappa_high Number of sigmas for upper threshold
@param iter Number of iterations
@param mean_ks The kappa-sigma clipped mean
@param mean_ks_err The propagated error of the kappa-sigma clipped mean
@param naccepted Number of accepted values
@param reject_low Values lower than this have been rejected
@param reject_high Values higher than this have been rejected
@return @c CPL_ERROR_NONE or the appropriate error code.
@see hdrl_kappa_sigma_clip()
This function converts the image inputs into the proper data types in
order to call the hdrl_kappa_sigma_clip() function.
*/
/*----------------------------------------------------------------------------*/
cpl_error_code hdrl_kappa_sigma_clip_image(
const cpl_image * source,
const cpl_image * error,
const double kappa_low,
const double kappa_high,
const int iter,
double * mean_ks,
double * mean_ks_err,
cpl_size * naccepted,
double * reject_low,
double * reject_high)
{
cpl_vector * vec_source = NULL;
cpl_vector * vec_error = NULL;
/* Check Entries */
cpl_error_ensure(source != NULL, CPL_ERROR_NULL_INPUT,
return CPL_ERROR_NULL_INPUT, "Null input source image!");
cpl_error_ensure(error != NULL, CPL_ERROR_NULL_INPUT,
return CPL_ERROR_NULL_INPUT, "Null input error image!");
cpl_error_ensure(cpl_image_get_size_x(source)==cpl_image_get_size_x(error),
CPL_ERROR_INCOMPATIBLE_INPUT, return CPL_ERROR_INCOMPATIBLE_INPUT,
"source and error image musty have same X size");
cpl_error_ensure(cpl_image_get_size_y(source)==cpl_image_get_size_y(error),
CPL_ERROR_INCOMPATIBLE_INPUT, return CPL_ERROR_INCOMPATIBLE_INPUT,
"source and error image musty have same Y size");
/* compress images to vectors excluding the bad pixels */
vec_source = hdrl_image_to_vector(source, NULL);
vec_error = hdrl_image_to_vector(error, cpl_image_get_bpm_const(source));
if (vec_source != NULL && vec_error != NULL) {
/* Call here the real sigma-clipping function */
hdrl_kappa_sigma_clip(vec_source, vec_error, kappa_low, kappa_high,
iter, CPL_TRUE, mean_ks, mean_ks_err, naccepted,
reject_low, reject_high);
}
/* no good pixels */
else {
*mean_ks = NAN;
*mean_ks_err = NAN;
*naccepted = 0;
*reject_low = NAN;
*reject_high = NAN;
}
cpl_msg_debug(cpl_func, "mean_ks, mean_ks_err, naccepted: %g, %g, %ld",
*mean_ks, *mean_ks_err, (long)*naccepted);
cpl_vector_delete(vec_source);
cpl_vector_delete(vec_error);
return cpl_error_get_code();
}
/* ---------------------------------------------------------------------------*/
/**
* @internal
* @brief get first index that compares greater than value
* @param vec vector to check
* @param count size of vector
* @param val upper bound to check
*/
/* ---------------------------------------------------------------------------*/
static long get_upper_bound_d(double * vec, long count, double val)
{
long first = 0;
while (count > 0)
{
long step = count / 2;
long it = first + step;
if (!(val < vec[it])) {
first = it + 1;
count -= step + 1;
}
else
count = step;
}
return first;
}
/* ---------------------------------------------------------------------------*/
/**
* @internal
* @brief get first index that compares greater than value
* @param vec vector to check
* @param val upper bound to check
*/
/* ---------------------------------------------------------------------------*/
static long get_upper_bound(cpl_vector * vec, double val)
{
double * d = cpl_vector_get_data(vec);
long count = cpl_vector_get_size(vec);
return get_upper_bound_d(d, count, val);
}
/* ---------------------------------------------------------------------------*/
/**
* @internal
* @brief get index that compares does not compare less than value
* @param vec vector to check
* @param count size of vector
* @param val upper bound to check
*/
/* ---------------------------------------------------------------------------*/
static long get_lower_bound_d(double * vec, long count, double val)
{
long first = 0;
while (count > 0)
{
long step = count / 2;
long it = first + step;
if (vec[it] < val) {
first = it + 1;
count -= step + 1;
}
else
count = step;
}
return first;
}
/* ---------------------------------------------------------------------------*/
/**
* @internal
* @brief get index that compares does not compare less than value
* @param vec vector to check
* @param val upper bound to check
*/
/* ---------------------------------------------------------------------------*/
static long get_lower_bound(cpl_vector * vec, double val)
{
double * d = cpl_vector_get_data(vec);
long count = cpl_vector_get_size(vec);
return get_lower_bound_d(d, count, val);
}
/* compute mean and error without needing to wrap a vector, the allocation can
* be very expensive for small stacks of images */
static void get_mean_err(const double * d, const double * e, long count,
double * rm, double * re)
{
double m = 0.;
for (long i = 0; i < count; i++) {
m += (d[i] - m) / (double)(i + 1);
}
*rm = m;
if (re) {
double se = 0;
for (long i = 0; i < count; i++) {
se += e[i] * e[i];
}
*re = sqrt(se) / count;
}
}
/*----------------------------------------------------------------------------*/
/**
@internal
@brief Compute mean using kappa-sigma clipping.
@param vec The vector for which mean is to be computed.
@param vec_err The error of vec.
@param kappa_low Number of sigmas for lower threshold.
@param kappa_high Number of sigmas for upper threshold.
@param iter Number of iterations.
@param inplace if true the vectors input are modified
@param mean_ks The kappa-sigma clipped mean.
@param mean_ks_err The propagated error of the kappa-sigma clipped mean.
@param naccepted Number of accepted values.
@param reject_low Values lower than this have been rejected.
@param reject_high Values higher than this have been rejected
@return @c CPL_ERROR_NONE or the appropriate error code.
The function computes the arithmetic mean of a vector after rejecting
outliers using kappa-sigma clipping. Robust estimates of the mean and
standard deviation are used to derive the interval within which values in
the vector are considered good.
The sigma-clipping is applied on the vec vector data. The vec_err vector
is used for the error computation.
An iterative process of rejection of the outlier elements of vec is
applied. iter specifies the maximum number of iterations.
At each iteration, the median and sigma values of the vector are computed and
used to derive low and high thresholds (\f$median-kappa\_low \times sigma\f$
and \f$median+kappa\_low \times sigma\f$). The values of vec outside those
bounds are rejected and the remaining values are passed to the next
iteration.
The mean value of the remaining elements is stored into mean_ks.
mean_ks_err contains \f$\frac{\sum_i{val_i^{2}}}{N}\f$ where \f$val_i\f$
are the remaining elements of vec_err and N the number of those elements.
The N value is stored in naccepted.
reject_low and reject_high are the final thresholds differenciating the
rejected pixels from the others.
The iterative process is illustrated here:
\image html sigclip_algorithm.png
Note that the \f$\sigma\f$ used for the thresholding in the different
iterations is not the standard deviation but the scaled
Median Absolute Deviation (MAD). The scaling is
\f$\sigma = MAD \times CPL_MATH_STD_MAD\f$.
The MAD is a more robust estimate of the scale of the distribution than the
standard deviation but only has ??% of the asymptotic statistical efficiency
for normal distributed data. This higher error in scale parameter only has
limited influence on the result as it is only used determination of clipping
thresholds.
*/
/*----------------------------------------------------------------------------*/
cpl_error_code hdrl_kappa_sigma_clip(
cpl_vector * vec,
cpl_vector * vec_err,
const double kappa_low,
const double kappa_high,
const int iter,
cpl_boolean inplace,
double * mean_ks,
double * mean_ks_err,
cpl_size * naccepted,
double * reject_low,
double * reject_high)
{
/* VARIABLES ON THE FUNCTION SCOPE:
vec_image a deep copy of the input vector vec.
mean_ks kappa-sigma clip mean (return variable).
mean_ks kappa-sigma clip mean (return variable).
*/
cpl_vector * vec_image = NULL;
cpl_vector * vec_image_err = NULL;
cpl_size vec_size;
double lower_bound = 0.;
double upper_bound = 0.;
cpl_error_ensure(vec != NULL, CPL_ERROR_NULL_INPUT,
return CPL_ERROR_NULL_INPUT, "Null input vector data");
cpl_error_ensure(vec_err != NULL, CPL_ERROR_NULL_INPUT,
return CPL_ERROR_NULL_INPUT, "Null input vector errors");
cpl_error_ensure(cpl_vector_get_size(vec) == cpl_vector_get_size(vec_err),
CPL_ERROR_INCOMPATIBLE_INPUT,
return CPL_ERROR_INCOMPATIBLE_INPUT,
"input data and error vectors must have same sizes");
cpl_error_ensure(mean_ks != NULL, CPL_ERROR_NULL_INPUT,
return CPL_ERROR_NULL_INPUT, "Null input mean storage");
cpl_error_ensure(iter > 0, CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT,
"iter must be larger than 0");
if (inplace) {
vec_image = vec;
vec_image_err = vec_err;
}
else {
vec_image = cpl_vector_duplicate(vec);
vec_image_err = cpl_vector_duplicate(vec_err);
}
double * vec_data = cpl_vector_get_data(vec_image);
double * vec_data_orig = vec_data;
double * vec_data_err = cpl_vector_get_data(vec_image_err);
vec_size = cpl_vector_get_size(vec_image);
/* sort the two vectors by the data */
hdrl_sort_double_pairs(vec_image, vec_image_err);
for(int it = 0; it < iter; it++) {
double median, sigma;
cpl_size lower_index, upper_index;
/* Nothing to do if only one data point */
if(vec_size == 1) {
lower_bound = vec_data[0];
upper_bound = lower_bound;
break;
}
/* STEPS OF KAPPA SIGMA CLIP
1. Sort the vector.
2. Find mean, and standard deviation (sigma).
3. Find lower, and upper bound after kappa-sigma clip.
4. Find index which corresponds to lower and upper bound
5. Extract the vector within the index bound.
*/
/* Use median as a robust estimator of the mean */
/* standard deviation from Median Absolute Deviation (MAD) as appropriate
for a Gaussian distribution */
/* offset index into original uncut vec_image */
cpl_size orig_offset = (cpl_size)(vec_data - vec_data_orig) + 1;
median = hcpl_vector_get_mad_window(vec_image, orig_offset,
orig_offset + vec_size - 1, &sigma);
if(sigma <= 0){
sigma=nextafter(0,1.0);
}
sigma *= CPL_MATH_STD_MAD;
lower_bound = median - kappa_low * sigma;
upper_bound = median + kappa_high * sigma;
lower_index = get_lower_bound_d(vec_data, vec_size, lower_bound);
upper_index = get_upper_bound_d(vec_data, vec_size, upper_bound);
upper_index = CX_MAX(upper_index - 1, 0);
/* Stop if no outliers were found */
if ((lower_index == 0) && (upper_index == vec_size - 1))
break;
/* truncate vector */
vec_data = vec_data + lower_index;
vec_data_err = vec_data_err + lower_index;
vec_size = upper_index - lower_index + 1;
}
/* COMPUTE THE KAPPA-SIGMA CLIP MEAN */
get_mean_err(vec_data, vec_data_err, vec_size, mean_ks, mean_ks_err);
if (naccepted) *naccepted = vec_size;
if (reject_low) *reject_low = lower_bound;
if (reject_high) *reject_high = upper_bound;
/* CLEAN, AND RETURN */
if (!inplace) {
cpl_vector_delete(vec_image);
cpl_vector_delete(vec_image_err);
}
return cpl_error_get_code();
}
/*---------------------------------------------------------------------------*/
/**
@internal
@brief Sort an array @a u1 of doubles, and permute an array @a u2
in the same way as @a u1 is permuted.
@param u1 Pointer to the first array.
@param u2 Pointer to the second array.
@return @c CPL_ERROR_NONE or the appropriate error code.
*/
/*---------------------------------------------------------------------------*/
static cpl_error_code hdrl_sort_double_pairs(cpl_vector *u1, cpl_vector *u2)
{
cpl_bivector * bi_all = NULL;
cpl_error_ensure(u1 != NULL, CPL_ERROR_NULL_INPUT,
return CPL_ERROR_NULL_INPUT, "NULL pointer to 1st array");
cpl_error_ensure(u2 != NULL, CPL_ERROR_NULL_INPUT,
return CPL_ERROR_NULL_INPUT, "NULL pointer to 2nd array");
bi_all = cpl_bivector_wrap_vectors(u1, u2);
cpl_bivector_sort(bi_all, bi_all, CPL_SORT_ASCENDING, CPL_SORT_BY_X);
/* cleaning up */
cpl_bivector_unwrap_vectors(bi_all);
return CPL_ERROR_NONE;
}
/**@}*/
/** @endcond */
|