File: hdrl_spectrum_resample.c

package info (click to toggle)
cpl-plugin-amber 4.4.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 9,340 kB
  • sloc: ansic: 89,588; sh: 4,337; makefile: 620; python: 295
file content (1141 lines) | stat: -rw-r--r-- 41,011 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
/*
 * This file is part of the HDRL
 * Copyright (C) 2017 European Southern Observatory
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

/*-----------------------------------------------------------------------------
                                   Includes
 -----------------------------------------------------------------------------*/

#include "hdrl_spectrum_resample.h"
#include "hdrl_spectrum_defs.h"
#include "hdrl_parameter.h"
#include "hdrl_utils.h"

#include <math.h>
#include <stdlib.h>
#include <string.h>

#include <gsl/gsl_blas.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_spline.h>
#include <gsl/gsl_bspline.h>
#include <gsl/gsl_multifit.h>

/*-----------------------------------------------------------------------------
                     Private Functions and Data Structures
 -----------------------------------------------------------------------------*/
/*Allocate gsl workspace*/
static inline
gsl_bspline_workspace * alloc_workspace(int k, int nCoeff,
        const double * x_dest, const cpl_size sample_len);

/*Filling gsl structs for fitting*/
static inline int
fit_matrixes(const double * x_raw, const double * y_raw,
        const cpl_size sample_len, const int nCoeff,
        gsl_bspline_workspace * ws, gsl_vector* B,
        gsl_vector* c, gsl_matrix * cov);

/*Private function used for the fit*/
static inline cpl_error_code
hdrl_spectrum1D_bspline_fit_internal
(const double* x_raw, const double* y_raw, const cpl_size sample_len,
const cpl_array * lambdas_dest, const cpl_size lambdas_dest_start,
const cpl_size lambdas_dest_stop, cpl_image * flux_dest,
const int k, const int nCoeff);

/*Private function used for the windowed fit*/
static inline cpl_error_code
hdrl_spectrum1D_fit_windowed_internal
(const double* x_raw, const double* y_raw, const cpl_size sample_len,
 const cpl_array * lambdas_dest, cpl_image * flux_dest, const int k,
 const int nCoeff, const long window, const double factor);

/* finds the closest element to l in arr*/
static inline cpl_size
get_closest_lambda(const double *arr, const cpl_size num_els, const double l);

/*See doc for hdrl_spectrum1D_resample*/
static inline hdrl_spectrum1D *
resample_internal(const hdrl_spectrum1D * self,
        const cpl_array * lambdas_dest, const hdrl_parameter * par);


static inline cpl_error_code
integrate_internal(double * x, const double * y, const double * y_var,
        const cpl_size sample_len, const cpl_array * arg_lambdas_dest,
        hdrl_image * flux_dest);

static inline cpl_boolean
is_destination_outside_source_spectrum(const double * source,
        const cpl_size source_length, const double dest_start,
        const double dest_stop);

static inline double
integrate(const double start_dest, const double stop_dest,
        cpl_size * source_idx, const double * x, const double * y,
        const cpl_size sample_len);

static inline double
get_stop(const double * v, const cpl_size length, const cpl_size i);

static inline double
get_start(const double * v, const cpl_size i);


/*Parameter used for the interpolation*/
typedef struct {
    HDRL_PARAMETER_HEAD;
    hdrl_spectrum1D_interpolation_method method;
} hdrl_spectrum1D_resample_interpolate_parameter;

static hdrl_parameter_typeobj
hdrl_spectrum1D_resample_interpolate_parameter_type = {
    HDRL_PARAMETER_SPECTRUM1D_RESAMPLE_INTERPOLATE,            /* type */
    (hdrl_alloc *)&cpl_malloc,                                 /* fp_alloc */
    (hdrl_free *)&cpl_free,                                    /* fp_free */
    NULL,                                                      /* fp_destroy */
    sizeof(hdrl_spectrum1D_resample_interpolate_parameter),    /* obj_size */
};

/*Parameter used for the integration*/
typedef struct {
    HDRL_PARAMETER_HEAD;
} hdrl_spectrum1D_resample_integrate_parameter;

static hdrl_parameter_typeobj
hdrl_spectrum1D_resample_integrate_parameter_type = {
    HDRL_PARAMETER_SPECTRUM1D_RESAMPLE_INTEGRATE,           /* type */
    (hdrl_alloc *)&cpl_malloc,                              /* fp_alloc */
    (hdrl_free *)&cpl_free,                                 /* fp_free */
    NULL,                                                   /* fp_destroy */
    sizeof(hdrl_spectrum1D_resample_integrate_parameter),   /* obj_size */
};


/*getter for the type of the interpolation*/
hdrl_spectrum1D_interpolation_method
hdrl_spectrum1D_resample_interpolate_parameter_get_method(const hdrl_parameter * par){
    cpl_ensure(par != NULL, CPL_ERROR_NULL_INPUT, 0);
    cpl_ensure(hdrl_parameter_get_parameter_enum(par)
            == HDRL_PARAMETER_SPECTRUM1D_RESAMPLE_INTERPOLATE,
            CPL_ERROR_INCOMPATIBLE_INPUT, 0);

    const hdrl_spectrum1D_resample_interpolate_parameter * p =
             (const hdrl_spectrum1D_resample_interpolate_parameter *)par;

    return p->method;
}

/*Parameter used for the fit*/
typedef struct {
    HDRL_PARAMETER_HEAD;
    int k;
    int nCoeff;
    long window;
    double factor;
} hdrl_spectrum1D_resample_fit_parameter;

static hdrl_parameter_typeobj
hdrl_spectrum1D_resample_fit_parameter_type = {
    HDRL_PARAMETER_SPECTRUM1D_RESAMPLE_FIT,         /* type */
    (hdrl_alloc *)&cpl_malloc,                      /* fp_alloc */
    (hdrl_free *)&cpl_free,                         /* fp_free */
    NULL,                                           /* fp_destroy */
    sizeof(hdrl_spectrum1D_resample_fit_parameter), /* obj_size */
};

/*getter for the k parameter in fit*/
int hdrl_spectrum1D_resample_fit_parameter_get_k(const hdrl_parameter * par){

    cpl_ensure(par != NULL, CPL_ERROR_NULL_INPUT, 0);
    cpl_ensure(hdrl_parameter_get_parameter_enum(par)
            == HDRL_PARAMETER_SPECTRUM1D_RESAMPLE_FIT,
            CPL_ERROR_INCOMPATIBLE_INPUT, 0);

    const hdrl_spectrum1D_resample_fit_parameter * p =
            (const hdrl_spectrum1D_resample_fit_parameter *)par;
    return p->k;
}

/*getter for the nCoeff parameter in fit*/
int hdrl_spectrum1D_resample_fit_parameter_get_nCoeff
(const hdrl_parameter * par){

    cpl_ensure(par != NULL, CPL_ERROR_NULL_INPUT, 0);
    cpl_ensure(hdrl_parameter_get_parameter_enum(par)
            == HDRL_PARAMETER_SPECTRUM1D_RESAMPLE_FIT,
            CPL_ERROR_INCOMPATIBLE_INPUT, 0);

    const hdrl_spectrum1D_resample_fit_parameter * p =
            (const hdrl_spectrum1D_resample_fit_parameter *)par;
    return p->nCoeff;
}

/*getter for the window parameter in fit*/
long hdrl_spectrum1D_resample_fit_parameter_get_window
(const hdrl_parameter * par){

    cpl_ensure(par != NULL, CPL_ERROR_NULL_INPUT, 0);
    cpl_ensure(hdrl_parameter_get_parameter_enum(par)
            == HDRL_PARAMETER_SPECTRUM1D_RESAMPLE_FIT,
            CPL_ERROR_INCOMPATIBLE_INPUT, 0);

    const hdrl_spectrum1D_resample_fit_parameter * p =
            (const hdrl_spectrum1D_resample_fit_parameter *)par;
    return p->window;
}

/*getter for the window parameter in fit*/
long hdrl_spectrum1D_resample_fit_parameter_get_factor
(const hdrl_parameter * par){

    cpl_ensure(par != NULL, CPL_ERROR_NULL_INPUT, 0);
    cpl_ensure(hdrl_parameter_get_parameter_enum(par)
            == HDRL_PARAMETER_SPECTRUM1D_RESAMPLE_FIT,
            CPL_ERROR_INCOMPATIBLE_INPUT, 0);

    const hdrl_spectrum1D_resample_fit_parameter * p =
            (const hdrl_spectrum1D_resample_fit_parameter *)par;
    return p->factor;
}

/**
 * @addtogroup hdrl_spectrum1D
 * @{
 */
/*-----------------------------------------------------------------------------
                               Functions
 -----------------------------------------------------------------------------*/

/* ---------------------------------------------------------------------------*/
/**
 * @brief constructor for the hdrl_parameter in the case of interpolation
 * @param method        interpolation methods, see the enum
 *                      hdrl_spectrum1D_interpolation_method
 *
 * @return the constructed parameter
 */
/* ---------------------------------------------------------------------------*/
hdrl_parameter* hdrl_spectrum1D_resample_interpolate_parameter_create
(const hdrl_spectrum1D_interpolation_method method){
    hdrl_spectrum1D_resample_interpolate_parameter * p
    = (hdrl_spectrum1D_resample_interpolate_parameter *)
       hdrl_parameter_new(&hdrl_spectrum1D_resample_interpolate_parameter_type);
    p->method = method;
    return (hdrl_parameter*) p;
}

/* ---------------------------------------------------------------------------*/
/**
 * @brief constructor for the hdrl_parameter in the case of integration
 *
 * @return the constructed parameter
 */
/* ---------------------------------------------------------------------------*/
hdrl_parameter* hdrl_spectrum1D_resample_integrate_parameter_create(void){
    hdrl_spectrum1D_resample_integrate_parameter * p
      = (hdrl_spectrum1D_resample_integrate_parameter *)
         hdrl_parameter_new(&hdrl_spectrum1D_resample_integrate_parameter_type);
    return (hdrl_parameter*) p;
}


hdrl_parameter * hdrl_spectrum1D_resample_interpolate_parameter_parse_parlist(
        const cpl_parameterlist * parlist, const char * prefix){

    cpl_ensure(prefix && parlist, CPL_ERROR_NULL_INPUT, NULL);

    /* Get the Method parameter */
    char * name = hdrl_join_string(".", 2, prefix, "method");

    const cpl_parameter * par = cpl_parameterlist_find_const(parlist, name);
    const char          * value = cpl_parameter_get_string(par);
    if (value == NULL) {
        cpl_error_set_message(cpl_func, CPL_ERROR_DATA_NOT_FOUND,
                              "Parameter %s not found", name);
        cpl_free(name);
        return NULL;
    }

    hdrl_spectrum1D_interpolation_method met = hdrl_spectrum1D_interp_linear;
    /* Switch on the methods */
    if(!strcmp(value, "LINEAR"))
       met = hdrl_spectrum1D_interp_linear;

    else if(!strcmp(value, "CSPLINE"))
       met = hdrl_spectrum1D_interp_cspline;

    else if (!strcmp(value, "AKIMA"))
       met = hdrl_spectrum1D_interp_akima;

    else{
      cpl_error_set_message(cpl_func, CPL_ERROR_DATA_NOT_FOUND,
                                    "Interpolation method %s not found", value);
      cpl_free(name);
      return NULL;
    }

    cpl_free(name);
    return hdrl_spectrum1D_resample_interpolate_parameter_create(met);
}

cpl_parameterlist *
hdrl_spectrum1D_resample_interpolate_parameter_create_parlist(const char * base_context,
        const char * prefix, const char * method_def) {

    cpl_ensure(base_context && prefix, CPL_ERROR_NULL_INPUT, NULL);
    char                *   name ;
    cpl_parameterlist   *   parlist = cpl_parameterlist_new();
    cpl_parameter       *   p ;
    char                *   context = hdrl_join_string(".", 2, base_context, prefix);

    /* --prefix.method */
    name = hdrl_join_string(".", 2, context, "method");
    p = cpl_parameter_new_enum(name, CPL_TYPE_STRING,
       "Method used for Spectrum1D interpolation", context,
       method_def, 3, "LINEAR", "CSPLINE", "AKIMA");
    cpl_free(name) ;
    name = hdrl_join_string(".", 2, prefix, "method");
    cpl_parameter_set_alias(p, CPL_PARAMETER_MODE_CLI, name);
    cpl_parameter_disable(p, CPL_PARAMETER_MODE_ENV);
    cpl_free(name) ;
    cpl_parameterlist_append(parlist, p);

    cpl_free(context);
    return parlist;
}


/* ---------------------------------------------------------------------------*/
/**
 * @brief constructor for the hdrl_parameter in the case of interpolation
 * @param k             order of the B-spline
 * @param nCoeff        number of coefficients used for the fit
 *
 * @return the constructed parameter
 */
/* ---------------------------------------------------------------------------*/
hdrl_parameter* hdrl_spectrum1D_resample_fit_parameter_create(
        const int k, const int nCoeff){

    hdrl_spectrum1D_resample_fit_parameter * p
    = (hdrl_spectrum1D_resample_fit_parameter *)
       hdrl_parameter_new(&hdrl_spectrum1D_resample_fit_parameter_type);
    p->k = k;
    p->nCoeff = nCoeff;
    p->window = 0;
    p->factor = 1.0;
    return (hdrl_parameter*) p;
}

/* ---------------------------------------------------------------------------*/
/**
 * @brief constructor for the hdrl_parameter in the case of interpolation
 * @param k             order of the B-spline
 * @param nCoeff        number of coefficients used for the fit
 * @param window        number of destination wavelengths whose flux values are
 *                      computed using the same model
 * @param factor        Given window2 = window * factor. window2 is the number of
 *                      source wavelengths used to compute the fit model
 *
 * @return the constructed parameter, NULL in case of error
 *
 * @note window must be greater than 0 and factor greater or equal than 1.0
 */
/* ---------------------------------------------------------------------------*/
hdrl_parameter* hdrl_spectrum1D_resample_fit_windowed_parameter_create(
        const int k, const int nCoeff, const long window, const double factor){

    cpl_ensure(window > 0, CPL_ERROR_ILLEGAL_INPUT, NULL);
    cpl_ensure(factor >= 1.0,  CPL_ERROR_ILLEGAL_INPUT, NULL);

    hdrl_spectrum1D_resample_fit_parameter * p
    = (hdrl_spectrum1D_resample_fit_parameter *)
       hdrl_parameter_new(&hdrl_spectrum1D_resample_fit_parameter_type);
    p->k = k;
    p->nCoeff = nCoeff;
    p->window = window;
    p->factor = factor;
    return (hdrl_parameter*) p;
}

cpl_error_code
hdrl_resample_parameter_verify(const hdrl_parameter * par){

    cpl_ensure_code(par != NULL, CPL_ERROR_NULL_INPUT);

    hdrl_parameter_enum method = hdrl_parameter_get_parameter_enum(par);

    cpl_ensure_code(method == HDRL_PARAMETER_SPECTRUM1D_RESAMPLE_INTERPOLATE ||
                    method == HDRL_PARAMETER_SPECTRUM1D_RESAMPLE_FIT ||
                    method == HDRL_PARAMETER_SPECTRUM1D_RESAMPLE_INTEGRATE,
                    CPL_ERROR_INCOMPATIBLE_INPUT);

    return CPL_ERROR_NONE;
}

/* ---------------------------------------------------------------------------*/
/**
 * @brief resample a hdrl_spectrum1D on the wavelengths contained in waves
 * @param self          the spectrum to be resampled
 * @param waves         the waves the spectrum has to be resampled on
 * @param par           hdrl_parameter, see
 * hdrl_spectrum1D_resample_fit_parameter_create(),
 * hdrl_spectrum1D_resample_interpolate_parameter_create() or
 * hdrl_spectrum1D_resample_integrate_parameter_create().
 *
 * @return the resampled spectrum, NULL in case of error (see below).
 *
 * @note providing a spectrum with sorted, strictly monotonic increasing wavelength
 * values will provide the best performance. If the spectrum is not sorted, the
 * routine will create a copy of it and sort the copy. In case of duplicated
 * wavelengths they are collapsed in a single wavelength and the corresponding
 * flux is calculated as the median of the fluxes. Error propagation is performed
 * through linear interpolation of the variance (error^2) of the spectrum in case
 * of fit or interpolation. In case of integration we integrate the variance using
 * the same weights used for the flux. The integration is done assuming that the
 * flux is constant inside the bin and that the bin is centered on the sample.
 * The only exceptions are the first bin (it starts at the sample) and the last
 * bin (it ends at the sample).
 *
 * Possible cpl-error-code set in this function:
 * - CPL_ERROR_NULL_INPUT: if any of the pointers are NULL
 * - CPL_ERROR_INCOMPATIBLE_INPUT: if the scale of self and waves are different
 *  or if par cannot be casted to any of the resample parameters (fit,
 *  interpolation, integration)
 */
/* ---------------------------------------------------------------------------*/
hdrl_spectrum1D *
hdrl_spectrum1D_resample(const hdrl_spectrum1D * self,
                         const hdrl_spectrum1D_wavelength* waves,
                         const hdrl_parameter* par){

    cpl_ensure(self != NULL, CPL_ERROR_NULL_INPUT, NULL);
    cpl_ensure(self-> flux != NULL, CPL_ERROR_NULL_INPUT, NULL);

    cpl_ensure(waves != NULL, CPL_ERROR_NULL_INPUT, NULL);
    cpl_ensure(waves->wavelength != NULL, CPL_ERROR_NULL_INPUT, NULL);

    cpl_ensure(self->wave_scale == waves->scale, CPL_ERROR_INCOMPATIBLE_INPUT, NULL);

    if(hdrl_resample_parameter_verify(par)) return NULL;

    /* if the two spectra are already compatible and we not fitting,
     * simply return a copy of self */
    hdrl_spectrum1D_wavelength self_w = hdrl_spectrum1D_get_wavelength(self);
    if(hdrl_spectrum1D_are_spectra_compatible(&self_w, waves) &&
    		hdrl_parameter_get_parameter_enum(par) != HDRL_PARAMETER_SPECTRUM1D_RESAMPLE_FIT)
        return hdrl_spectrum1D_duplicate(self);

    return resample_internal(self, waves->wavelength, par);
}

/* ---------------------------------------------------------------------------*/
/**
 * @brief resample a hdrl_spectrum1D on the wavelengths contained in waves
 * @param self          the spectrum to be resampled
 * @param waves         the waves the spectrum has to be resampled on
 * @param par           hdrl_parameter, see
 * hdrl_spectrum1D_resample_fit_parameter_create(),
 * hdrl_spectrum1D_resample_interpolate_parameter_create() or
 * hdrl_spectrum1D_resample_integrate_parameter_create().
 *
 * @return the resampled spectrum, NULL in case of error (see below).
 *
 * @note providing a spectrum with sorted, strictly monotonic increasing wavelength
 * values will provide the best performance. If the spectrum is not sorted, the
 * routine will create a copy of it and sort the copy. In case of duplicated
 * wavelengths they are collapsed in a single wavelength and the corresponding
 * flux is calculated as the median of the fluxes. Error propagation is performed
 * through linear interpolation of the variance (error^2) of the spectrum in case
 * of fit or interpolation. In case of integration we integrate the variance using
 * the same weights used for the flux. The integration is done assuming that the
 * flux is constant inside the bin and that the bin is centered on the sample.
 * The only exceptions are the first bin (it starts at the sample) and the last
 * bin (it ends at the sample).
 *
 * Possible cpl-error-code set in this function:
 * - CPL_ERROR_NULL_INPUT: if any of the pointers are NULL
 * - CPL_ERROR_INCOMPATIBLE_INPUT: if par cannot be casted to any of the resample
 *   parameters (fit, interpolation, integration)
 */
/* ---------------------------------------------------------------------------*/
hdrl_spectrum1D *
hdrl_spectrum1D_resample_on_array(const hdrl_spectrum1D * self,
                                  const cpl_array * waves,
                                  const hdrl_parameter* par){

    cpl_ensure(waves != NULL, CPL_ERROR_NULL_INPUT, NULL);
    cpl_ensure(self != NULL, CPL_ERROR_NULL_INPUT, NULL);
    cpl_ensure(self-> flux != NULL, CPL_ERROR_NULL_INPUT, NULL);
    cpl_ensure(par != NULL, CPL_ERROR_NULL_INPUT, NULL);

    if(hdrl_resample_parameter_verify(par)) return NULL;

    /* if the two spectra are already compatible and we NOT fitting,
     * simply return a copy of self */
    hdrl_spectrum1D_wavelength self_w = hdrl_spectrum1D_get_wavelength(self);
    if(hdrl_parameter_get_parameter_enum(par) == HDRL_PARAMETER_SPECTRUM1D_RESAMPLE_INTERPOLATE &&
    		hdrl_spectrum1D_are_wavelengths_compatible(self_w.wavelength, waves))
        return hdrl_spectrum1D_duplicate(self);

    hdrl_spectrum1D * to_ret = resample_internal(self, waves, par);

    return to_ret;
}

/*-----------------------------------------------------------------------------
                    Private Functions Implementation
 -----------------------------------------------------------------------------*/

/*wrapper around the allocation function provided by gsl. It maps our enum in
 * gls types.*/
static inline gsl_spline * get_interp_spline
(const hdrl_spectrum1D_interpolation_method method, const int sample_len){

    switch(method){
    case hdrl_spectrum1D_interp_linear:
        return gsl_spline_alloc (gsl_interp_linear, sample_len);
    case hdrl_spectrum1D_interp_cspline:
        return gsl_spline_alloc (gsl_interp_cspline, sample_len);
    case hdrl_spectrum1D_interp_akima:
        return gsl_spline_alloc (gsl_interp_akima, sample_len);
    default:
        cpl_ensure(0, CPL_ERROR_ILLEGAL_INPUT, NULL);
    }
    /*To avoid warning*/
    return NULL;
}

/* cleanup for the gsl interpolation structs*/
static inline void
cleanup_gsl_interpolate(gsl_interp_accel ** acc_flux, gsl_spline ** spline_flux){
    if(acc_flux != NULL && *acc_flux != NULL){
        gsl_interp_accel_free (*acc_flux);
	*acc_flux = NULL;
    }

    if(spline_flux != NULL && *spline_flux != NULL){
        gsl_spline_free (*spline_flux);
	*spline_flux = NULL;
    }
}
/*Init of the gls interpolation data structures.
 * If fails, the memory is cleaned-up */
static inline cpl_error_code
init_gsl_interpolate(
        const double *x, const double *y, const cpl_size sample_len,
        const hdrl_spectrum1D_interpolation_method method,
        gsl_interp_accel ** acc_flux, gsl_spline ** spline_flux){

    *acc_flux = gsl_interp_accel_alloc ();

    cpl_ensure_code(*acc_flux, CPL_ERROR_UNSPECIFIED);

    *spline_flux = get_interp_spline(method, sample_len);

    if(!*spline_flux){
        cleanup_gsl_interpolate(acc_flux, spline_flux);
        cpl_ensure_code(0, CPL_ERROR_UNSPECIFIED);
    }

    int fail = gsl_spline_init(*spline_flux, x, y, sample_len);

    if(fail){
        cleanup_gsl_interpolate(acc_flux, spline_flux);
        cpl_ensure_code(0, CPL_ERROR_UNSPECIFIED);
    }

    return CPL_ERROR_NONE;
}

/*Wrapper around gsl_spline_eval. If x is outside the interval provided during
 * init phase we return NAN. GSL would abort the program.*/
static inline
double spline_eval_internal
(const gsl_spline * spline, double x, gsl_interp_accel * a, cpl_boolean * is_rej){

    *is_rej = x < spline->x[0] || x > spline->x[spline->size - 1];

    if (*is_rej){
        return NAN;
    }

    return gsl_spline_eval(spline, x, a);
}

static inline cpl_size
get_closest_lambda(const double *arr, const cpl_size num_els, const double l){

    cpl_size best_idx = 0;
    double smallest_diff = fabs(arr[0] - l);

    for(cpl_size i = 1; i < num_els; i++){
        const double diff = fabs(arr[i] - l);

        if(diff < smallest_diff){
            smallest_diff = diff;
            best_idx = i;
        }

        /*we assume arr sorted*/
        if(arr[i] >= l) break;
    }
    return best_idx;
}

static inline cpl_error_code
fill_cpl_image_with_interpolation(const double *x, const double *y,
        const cpl_size sample_len, const hdrl_spectrum1D_interpolation_method method,
        const cpl_array * lambdas_dest, cpl_image * dest){

    cpl_size dest_len = cpl_array_get_size(lambdas_dest);

    gsl_interp_accel * acc_flux = NULL;
    gsl_spline * spline_flux = NULL;

    cpl_error_code fail =
            init_gsl_interpolate(x, y, sample_len, method, &acc_flux, &spline_flux);

    cpl_ensure_code(fail == CPL_ERROR_NONE, fail);

    for(cpl_size i = 0; i < dest_len; i++){
        const double lambda = cpl_array_get(lambdas_dest, i, NULL);
        cpl_boolean is_rejected = CPL_FALSE;
        const double val = spline_eval_internal(spline_flux, lambda,
                acc_flux, &is_rejected);
        if(is_rejected){
            cpl_image_reject(dest, i + 1, 1);
        }
        else{
            cpl_image_set(dest, i + 1, 1, val);
        }
    }
    cleanup_gsl_interpolate(&acc_flux, &spline_flux);

    return CPL_ERROR_NONE;
}

static inline double
get_min(const double * x, cpl_size length){
	double best = x[0];
	for(cpl_size i = 1; i < length; ++i){
		if(x[i] < best) best = x[i];
	}
	return best;
}

static inline double
get_max(const double * x, cpl_size length){
	double best = x[0];
	for(cpl_size i = 1; i < length; ++i){
		if(x[i] > best) best = x[i];
	}
	return best;
}

static inline
gsl_bspline_workspace * alloc_workspace(int k, int nCoeff,
        const double * x_dest, const cpl_size sample_len){

    const int nKnots = nCoeff + 2 - k;

    gsl_bspline_workspace  * ws = gsl_bspline_alloc(k, nKnots);

    double lambda_min = get_min(x_dest, sample_len);
    double lambda_max = get_max(x_dest, sample_len);

    gsl_bspline_knots_uniform(lambda_min, lambda_max, ws);
    return ws;
}

static inline cpl_error_code
hdrl_spectrum1D_fit_windowed_internal
(const double* x_raw, const double* y_raw, const cpl_size sample_len,
    const cpl_array * lambdas_dest, cpl_image * flux_dest, const int k,
    const int nCoeff, const long window, const double factor){

    const cpl_size dest_size = cpl_array_get_size(lambdas_dest);

    const cpl_size fit_win = (cpl_size)((double)window * factor);
    const cpl_size extra_samples_for_fit = (fit_win - window) / 2;

    for(cpl_size dest_start = 0; dest_start < dest_size; dest_start += window){

        const cpl_size dest_stop = CPL_MIN(dest_size - 1, dest_start + window - 1);

        const double min_dest_lambda =
                cpl_array_get(lambdas_dest, dest_start, NULL);
        const double max_dest_lambda =
                cpl_array_get(lambdas_dest, dest_stop, NULL);

        /*get corresponding indexes in x_raw (we need to be sure that
         * min_dest_lambda and max_dest_lambda are inside the interval,
         * hence the +1 and -1)*/
        cpl_size raw_start =
                get_closest_lambda(x_raw, sample_len, min_dest_lambda) - 1;
        cpl_size raw_end =
                get_closest_lambda(x_raw, sample_len, max_dest_lambda) + 1;

        /*expand the fit window*/
        raw_end += extra_samples_for_fit;
        raw_start -= extra_samples_for_fit;

        raw_end = CPL_MIN(sample_len - 1, raw_end);
        raw_start = CPL_MAX(0, raw_start);

        const cpl_size win_len = raw_end - raw_start + 1;

        cpl_error_code fail = hdrl_spectrum1D_bspline_fit_internal(
        x_raw + raw_start, y_raw + raw_start, win_len,
        lambdas_dest, dest_start, dest_stop, flux_dest, k, nCoeff);

        if(fail) return fail;
    }

   return  CPL_ERROR_NONE;
}

static inline cpl_error_code
hdrl_spectrum1D_bspline_fit_internal
(const double* x_raw, const double* y_raw,
const cpl_size sample_len, const cpl_array * lambdas_dest,
const cpl_size lambdas_dest_start, const cpl_size lambdas_dest_stop,
cpl_image * flux_dest, const int k, const int nCoeff){

    cpl_ensure_code(sample_len >= nCoeff, CPL_ERROR_INCOMPATIBLE_INPUT);

    gsl_vector* B = gsl_vector_alloc(nCoeff);
    gsl_vector* c = gsl_vector_alloc(nCoeff);
    gsl_matrix * cov = gsl_matrix_alloc(nCoeff, nCoeff);
    gsl_bspline_workspace * ws = alloc_workspace(k, nCoeff, x_raw, sample_len);

    int fail = fit_matrixes(x_raw, y_raw, sample_len, nCoeff, ws, B, c, cov);

    cpl_error_code error = !fail ? CPL_ERROR_NONE : CPL_ERROR_UNSPECIFIED;
    const double x_raw_min = x_raw[0];
    const double x_raw_max = x_raw[sample_len - 1];

    if(!error)
    {
        cpl_size dest_len = cpl_array_get_size(lambdas_dest);

           for (cpl_size i = CPL_MAX(0, lambdas_dest_start);
                   i <= CPL_MIN(dest_len - 1, lambdas_dest_stop); i++)
           {
               const double x_dest = cpl_array_get(lambdas_dest, i, NULL);

               /*If outside boundaries reject*/
               if(x_dest < x_raw_min || x_dest > x_raw_max){
                   cpl_image_reject(flux_dest, i + 1, 1);
                   continue;
               }

               gsl_bspline_eval(x_dest, B, ws);
               double y_dest = 0.0, irrelevant = 0.0;
               gsl_multifit_linear_est(B, c, cov, &y_dest, &irrelevant);

               cpl_image_set(flux_dest, i + 1, 1, y_dest);
           }
    }

    gsl_matrix_free(cov);
    gsl_vector_free(B);
    gsl_vector_free(c);
    gsl_bspline_free(ws);

    return error;
}

static inline
cpl_size count_equals_from_i
(const double * x, const cpl_size i, const cpl_size sample_len){

    cpl_size idx = i;
    while( (idx < sample_len - 1) && x[idx] == x[idx + 1])
                idx++;

    return idx - i + 1;
}

static inline int compare_d(const void * a, const void * b){
    const double * a_d = (const double*)a;
    const double * b_d = (const double*)b;

    const double delta = *a_d - *b_d;
    if(delta > 0.0) return 1;
    if(delta < 0.0) return -1;
    return 0;
}

static inline
double get_median(double * x, const cpl_size first, const cpl_size n){

    double * v = x + first;
    qsort(v, n, sizeof(x[0]), compare_d);

    if(n % 2 != 0) return v[n / 2];

    return (v[n / 2] + v[(n - 1)/2]) / 2.0;
}

cpl_size
hdrl_spectrum1D_resample_filter_dups_and_substitute_with_median(double * x,
        double * y1, double * y2, cpl_size sample_len){

    for(cpl_size i = 0; i < sample_len - 1; i++){

        const cpl_size n_equals = count_equals_from_i(x, i, sample_len);

        if(n_equals <= 1) continue;

        y1[i] = get_median(y1, i, n_equals);
        y2[i] = get_median(y2, i, n_equals);

        const cpl_size num_els_to_copy = sample_len - (i + n_equals);
        const cpl_size num_bytes = sizeof(double) * num_els_to_copy;

        if(num_bytes > 0){
            /* using memmove because memory overlaps*/
            memmove( x + i + 1,  x + i + n_equals, (size_t)num_bytes);
            memmove(y1 + i + 1, y1 + i + n_equals, (size_t)num_bytes);
            memmove(y2 + i + 1, y2 + i + n_equals, (size_t)num_bytes);
        }
        /* one of the n_equals elements is survived (it is median now), hence the
         * -1*/
        sample_len -= n_equals - 1;
    }

    return sample_len;
}


static inline int
fit_matrixes(const double * x_raw, const double * y_raw,
        const cpl_size sample_len, const int nCoeff,
        gsl_bspline_workspace * ws, gsl_vector* B,
        gsl_vector* c, gsl_matrix * cov){

    gsl_matrix* X = gsl_matrix_alloc(sample_len, nCoeff);

    for(cpl_size i = 0; i < sample_len; ++i){
        int fail = gsl_bspline_eval(x_raw[i], B, ws);
        if(fail) continue;
        for(cpl_size j = 0; j < nCoeff; j++){
            gsl_matrix_set(X, i, j, gsl_vector_get(B, j));
        }
    }

    double chisq = 0.0;
    gsl_vector_const_view y = gsl_vector_const_view_array(y_raw, sample_len);
    gsl_multifit_linear_workspace* mw =
            gsl_multifit_linear_alloc(sample_len, nCoeff);

    const int error = gsl_multifit_linear(X, &y.vector, c, cov, &chisq, mw);

    gsl_multifit_linear_free(mw);
    gsl_matrix_free(X);

    return error;
}

static inline cpl_error_code
resample_with_interpol_on_variance(const hdrl_parameter * par,
        const cpl_boolean interpolate, const double * x, const double * y,
        const double * y_var, const cpl_size sample_len,
        const cpl_array * lambdas_dest, hdrl_image * flux_dest){

    cpl_error_code fail = CPL_ERROR_NONE;

    if(interpolate){
        hdrl_spectrum1D_interpolation_method int_met =
                hdrl_spectrum1D_resample_interpolate_parameter_get_method(par);

        fail = fill_cpl_image_with_interpolation(x, y, sample_len, int_met,
                        lambdas_dest, hdrl_image_get_image(flux_dest));
    } else {

        int k = hdrl_spectrum1D_resample_fit_parameter_get_k(par);
        int nCoeff = hdrl_spectrum1D_resample_fit_parameter_get_nCoeff(par);
        long window1 = hdrl_spectrum1D_resample_fit_parameter_get_window(par);
        double factor= hdrl_spectrum1D_resample_fit_parameter_get_factor(par);

        if(window1 == 0){
            fail = hdrl_spectrum1D_bspline_fit_internal(x, y,
                    sample_len, lambdas_dest, 0,
                    cpl_array_get_size(lambdas_dest) - 1,
                    hdrl_image_get_image(flux_dest), k, nCoeff);
        } else{
            fail = hdrl_spectrum1D_fit_windowed_internal(x, y,
                            sample_len, lambdas_dest,
                            hdrl_image_get_image(flux_dest), k,
                            nCoeff, window1, factor);
        }
    }

    if(!fail){
        /* linear interpolate variance */
        fill_cpl_image_with_interpolation(x, y_var, sample_len,
                hdrl_spectrum1D_interp_linear,
                lambdas_dest, hdrl_image_get_error(flux_dest));
        /* convert variance into error taking the square root*/
        cpl_image_power(hdrl_image_get_error(flux_dest), 0.5);
    }

    return fail;
}

static inline double
get_start(const double * v, const cpl_size i){

    if(i <= 0){
        return v[0];
    }

    const double post = v[i];
    const double pre = v[i - 1];

    return (post + pre) / 2.0;
}

static inline double
get_stop(const double * v, const cpl_size length, const cpl_size i){

    if(i >= length - 1){
        return v[length - 1];
    }

    const double post = v[i + 1];
    const double pre = v[i];

    return (post + pre) / 2.0;
}


static inline cpl_boolean
is_destination_outside_source_spectrum(const double * source,
        const cpl_size source_length, const double dest_start,
        const double dest_stop){
    /*edge case, source cover a smaller interval than dest, hence starting and/or
     * ending bins in destination might be NAN*/
    const double source_lower_bound = get_start(source, 0);
    const double source_upper_bound = get_stop(source, source_length, source_length - 1);

    /* destination starts before the start of the first bin*/
    if(dest_start < source_lower_bound) return CPL_TRUE;
    /* destination ends after the end of the last bin*/
    if(dest_stop > source_upper_bound) return CPL_TRUE;

    return CPL_FALSE;
}


static inline double
integrate(const double start_dest, const double stop_dest,
        cpl_size * source_idx, const double * x, const double * y,
        const cpl_size sample_len){

    double start_source = NAN;
    double stop_source = NAN;
    double val = 0.0;

    if(is_destination_outside_source_spectrum(x, sample_len, start_dest, stop_dest))
        return NAN;

    /*area of destination bin*/
    const double den = stop_dest - start_dest;
    *source_idx = CPL_MIN(*source_idx, sample_len - 1);

    do{
        /*start and stop of source bin*/
        start_source = get_start(x, *source_idx);
        stop_source = get_stop(x, sample_len, *source_idx);

        /* There is no intersection, source starts after the end of dest.
         * We are done with this bin, go back one step so that the next
         * destination can use the source bin. */
        if(start_source >= stop_dest) {
            *source_idx = CPL_MAX(*source_idx - 1, 0);
            break;
        }

        /* If stop_source <= start_dest, there is no intersection,
         * source ends before the start of dest. We can skip this element of source
         * increase the index so that the next element can be used. We are sure
         * that there will be an acceptable element because we already checked boundaries
         * before starting the loop.*/
        if(stop_source > start_dest){
            /*Get common area*/
            const double common_slice_start = CPL_MAX(start_source, start_dest);
            const double common_slice_stop = CPL_MIN(stop_source, stop_dest);
            const double num = common_slice_stop - common_slice_start;

            val += y[*source_idx] * num / den;
        }

        *source_idx = *source_idx + 1;

    }while(*source_idx < sample_len);

    return val;
}

static inline cpl_error_code
integrate_internal(double * x, const double * y, const double * y_var,
        const cpl_size sample_len, const cpl_array * arg_lambdas_dest,
        hdrl_image * flux_dest){

    const cpl_size size_dest = cpl_array_get_size(arg_lambdas_dest);
    cpl_bivector * lamb_dest = cpl_bivector_new(size_dest);

    for(cpl_size i = 0; i < size_dest ; ++i){
        const double val = cpl_array_get(arg_lambdas_dest, i, NULL);
        cpl_vector_set(cpl_bivector_get_x(lamb_dest), i, val);
        cpl_vector_set(cpl_bivector_get_y(lamb_dest), i, i);
    }
    /*Sort dest lambdas keeping track of the original position*/
    cpl_bivector_sort(lamb_dest, lamb_dest, CPL_SORT_ASCENDING, CPL_SORT_BY_X);
    cpl_size source_idx = 0;
    const double * lambdas_dest_sorted =
            cpl_vector_get_data_const(cpl_bivector_get_x(lamb_dest));

    for(cpl_size i = 0; i < size_dest; ++i){

        const double start_destination = get_start(lambdas_dest_sorted, i);
        const double stop_destination = get_stop(lambdas_dest_sorted, size_dest , i);

        /*copy index before increase for error computation*/
        cpl_size old_idx = source_idx;
        const double val = integrate(start_destination, stop_destination,
                &source_idx, x, y, sample_len);

        const double val_e = sqrt(integrate(start_destination, stop_destination,
                        &old_idx, x, y_var, sample_len));

        const cpl_size dest_idx =
                        (cpl_size) cpl_vector_get(cpl_bivector_get_y(lamb_dest), i);

        if(!isfinite(val) || !isfinite(val_e)) {
            hdrl_image_reject(flux_dest, dest_idx + 1, 1);
            continue;
        }

        hdrl_image_set_pixel(flux_dest, dest_idx + 1, 1, (hdrl_value){val, val_e});
    }

    cpl_bivector_delete(lamb_dest);

    return CPL_ERROR_NONE;
}

static inline hdrl_spectrum1D *
resample_internal(const hdrl_spectrum1D * self,
        const cpl_array * lambdas_dest, const hdrl_parameter * par){

    const cpl_size f_len = hdrl_spectrum1D_get_size(self);
    cpl_size sample_len = 0;

    double * y = cpl_calloc(f_len, sizeof(double));
    double * y_var = cpl_calloc(f_len, sizeof(double));
    double * x = cpl_calloc(f_len, sizeof(double));

    const cpl_boolean reject_bad_pix =
            hdrl_parameter_get_parameter_enum(par) != HDRL_PARAMETER_SPECTRUM1D_RESAMPLE_INTEGRATE;

    for(cpl_size i = 0; i < f_len; i++){

        int rej = 0;
        const hdrl_value v =  hdrl_spectrum1D_get_flux_value(self, i, &rej);
        rej = rej || !isfinite((double)v.data) || !isfinite((double)v.error);

        if(reject_bad_pix && rej) continue;

        y[sample_len] = rej ? NAN : v.data;
        /*We interpolate the VARIANCE*/
        y_var[sample_len] = rej ? NAN : pow(v.error, 2.0);
        x[sample_len] = hdrl_spectrum1D_get_wavelength_value(self, i, NULL);
        sample_len++;
    }

    if(sample_len == 0){
        cpl_free(x);
        cpl_free(y);
        cpl_free(y_var);
        cpl_ensure(CPL_FALSE, CPL_ERROR_INCOMPATIBLE_INPUT, NULL);
    }

    /* If wavelengths are not strictly increasing, sort and collapse in case of
     * duplicate wavelengths. */
    if(!hdrl_is_strictly_monotonic_increasing(x, sample_len)){
        /* we need to sort the three arrays so x is strictly increasing*/
        hdrl_sort_on_x(x, y, y_var, sample_len, CPL_FALSE);
        /* remove duplicated lambdas and substitute flux with median*/
        sample_len =
                hdrl_spectrum1D_resample_filter_dups_and_substitute_with_median
                (x, y, y_var, sample_len);
    }

    if(sample_len == 0){
        cpl_free(x);
        cpl_free(y);
        cpl_free(y_var);
        cpl_ensure(CPL_FALSE, CPL_ERROR_INCOMPATIBLE_INPUT, NULL);
    }

    cpl_size dest_len = cpl_array_get_size(lambdas_dest);
    hdrl_image * flux_dest = hdrl_image_new(dest_len, 1);

    cpl_error_code fail = CPL_ERROR_NONE;

    hdrl_parameter_enum method = hdrl_parameter_get_parameter_enum(par);

    if(method != HDRL_PARAMETER_SPECTRUM1D_RESAMPLE_INTEGRATE){
        const cpl_boolean is_interpolation =
                method == HDRL_PARAMETER_SPECTRUM1D_RESAMPLE_INTERPOLATE;
        fail = resample_with_interpol_on_variance(par, is_interpolation, x, y,
                y_var, sample_len, lambdas_dest, flux_dest);
    }
    else{
        fail = integrate_internal(x, y, y_var, sample_len, lambdas_dest,
                flux_dest);
    }
    cpl_free(x);
    cpl_free(y);
    cpl_free(y_var);

    hdrl_spectrum1D * to_ret = NULL;

    if(fail == CPL_ERROR_NONE)
    {
        const cpl_image * img = hdrl_image_get_image_const(flux_dest);
        const cpl_image * img_e = hdrl_image_get_error_const(flux_dest);
        to_ret = hdrl_spectrum1D_create(img, img_e, lambdas_dest,
                self->wave_scale);
    }
    hdrl_image_delete(flux_dest);

    cpl_ensure(fail == CPL_ERROR_NONE, fail, NULL);

    return to_ret;
}
/**@}*/