1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
|
/*
* This file is part of the HDRL
* Copyright (C) 2017 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/*-----------------------------------------------------------------------------
Includes
-----------------------------------------------------------------------------*/
#include "hdrl_spectrum_shift.h"
#include "hdrl_parameter.h"
#include "hdrl_spectrum_resample.h"
#include <math.h>
/**
*
* @addtogroup hdrl_spectrum1D
*
*/
/*----------------------------------------------------------------------------*/
/**@{*/
/*-----------------------------------------------------------------------------
Private Functions
-----------------------------------------------------------------------------*/
static inline hdrl_data_t
hdrl_spectrum1D_compute_min_fit(const hdrl_spectrum1D * s,
const hdrl_parameter * shift_par);
static inline cpl_bivector * get_win(hdrl_data_t wmin, hdrl_data_t wmax);
static inline cpl_array *
convert_to_sorted_array(const hdrl_spectrum1D * s1);
static inline hdrl_data_t
hdrl_shift_fit_parameter_get_fit_half_win(const hdrl_parameter * par);
static inline hdrl_data_t
hdrl_shift_fit_parameter_get_fit_wmax(const hdrl_parameter * par);
static inline hdrl_data_t
hdrl_shift_fit_parameter_get_fit_wmin(const hdrl_parameter * par);
static inline hdrl_data_t
hdrl_shift_fit_parameter_get_range_wmin(const hdrl_parameter * par);
static inline hdrl_data_t
hdrl_shift_fit_parameter_get_range_wmax(const hdrl_parameter * par);
static inline hdrl_data_t
hdrl_shift_fit_parameter_get_wguess(const hdrl_parameter * par);
static inline hdrl_spectrum1D *
get_polyfit_for_slope(const int degree, const hdrl_spectrum1D * s,
const cpl_array * wlengths);
static inline hdrl_spectrum1D *
hdrl_spectrum1D_fit(const hdrl_spectrum1D * obs, const int degree,
const hdrl_data_t wmin, const hdrl_data_t wmax);
/*-----------------------------------------------------------------------------
Functions
-----------------------------------------------------------------------------*/
/**
* @brief The function computes the shift between the two spectra.
*
* @param s1 first spectrum
* @param s2 second spectrum
* @param half_win half window where the correlation will be calculated
* @param normalize normalize mean and stdev in cross-correlation calculation
* @return estimation of the shift after gaussian fit.
*
* Possible cpl-error-code set in this function:
* - CPL_ERROR_NULL_INPUT: s1 or s2 is NULL;
* - CPL_ERROR_INCOMPATIBLE_INPUT: if wavelengths are not uniformly sampled,
* or if the two spectra are not compatible;
*/
/* ---------------------------------------------------------------------------*/
hdrl_xcorrelation_result *
hdrl_spectrum1D_compute_shift_xcorrelation(const hdrl_spectrum1D * s1,
const hdrl_spectrum1D * s2,
cpl_size half_win,
const cpl_boolean normalize){
cpl_ensure(s1 != NULL, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(s2 != NULL, CPL_ERROR_NULL_INPUT, NULL);
{
const hdrl_spectrum1D_wavelength wav1 = hdrl_spectrum1D_get_wavelength(s1);
const hdrl_spectrum1D_wavelength wav2 = hdrl_spectrum1D_get_wavelength(s2);
cpl_ensure(hdrl_spectrum1D_are_spectra_compatible(&wav1, &wav2),
CPL_ERROR_INCOMPATIBLE_INPUT, NULL);
}
double bin = 0.0;
cpl_ensure(hdrl_spectrum1D_is_uniformly_sampled(s1, &bin),
CPL_ERROR_INCOMPATIBLE_INPUT, NULL);
cpl_array * f1 = convert_to_sorted_array(s1);
cpl_array * f2 = convert_to_sorted_array(s2);
hdrl_xcorrelation_result * to_ret = hdrl_compute_offset_gaussian(f2, f1,
half_win, normalize, bin, 0.0005);
cpl_array_delete(f1);
cpl_array_delete(f2);
return to_ret;
}
/*Parameter used for the shift slope calculation*/
typedef struct {
HDRL_PARAMETER_HEAD;
hdrl_data_t wguess;
hdrl_data_t range_wmin;
hdrl_data_t range_wmax;
hdrl_data_t fit_wmin;
hdrl_data_t fit_wmax;
hdrl_data_t fit_half_win;
} hdrl_spectrum1D_shift_parameter;
static hdrl_parameter_typeobj
hdrl_shift_fit_parameters_type = {
HDRL_PARAMETER_SPECTRUM1D_SHIFT, /* type */
(hdrl_alloc *)&cpl_malloc, /* fp_alloc */
(hdrl_free *)&cpl_free, /* fp_free */
NULL, /* fp_destroy */
sizeof(hdrl_spectrum1D_shift_parameter), /* obj_size */
};
/* ---------------------------------------------------------------------------*/
/**
* @brief The function create a hdrl_spectrum1D_shift_parameter to be used in
* hdrl_spectrum1D_compute_shift_fit.
*
* @param wguess Reference line wavelength position
* @param range_wmin Minimum of wavelength box for line fit
* @param range_wmax Maximum of wavelength box for line fit
* @param fit_wmin Minimum wavelength value used to fit line slope
* @param fit_wmax Maximum wavelength value used to fit line slope
* @param fit_half_win Half box where polynomial fit is performed
* @return the constructed hdrl_parameter.
*/
/* ---------------------------------------------------------------------------*/
hdrl_parameter *
hdrl_spectrum1D_shift_fit_parameter_create(const hdrl_data_t wguess,
const hdrl_data_t range_wmin, const hdrl_data_t range_wmax,
const hdrl_data_t fit_wmin, const hdrl_data_t fit_wmax,
const hdrl_data_t fit_half_win){
hdrl_spectrum1D_shift_parameter * p
= (hdrl_spectrum1D_shift_parameter *)
hdrl_parameter_new(&hdrl_shift_fit_parameters_type);
p->fit_half_win = fit_half_win;
p->fit_wmax = fit_wmax;
p->fit_wmin = fit_wmin;
p->range_wmax = range_wmax;
p->range_wmin = range_wmin;
p->wguess = wguess;
return (hdrl_parameter*) p;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief The function compute the shift due to radial velocity. If wguess is
* the reference line and wfound is its position in the obs spectrum, the function
* returns (wfound - wguess) / wguess. The algorithm generate a smoothed fit of the
* spectrum, between [range_wmin, range_wmax] but the wavelengths between [fit_wim,
* fit_wmax] are ignored when fitting. obs is then divided by the fitted spectrum.
* The ratio is then smoothed again via fitting inside the window [wguess - fit_half_win,
* wguess + fit_half_win]. The wavelength corresponding to the minimum value is wfound.
*
* @param obs The spectrum the shift has to be computed on
* @param par The shift parameter, see hdrl_spectrum1D_shift_fit_parameter_create
*
* @return (wfound - wguess) / wguess.
*/
/* ---------------------------------------------------------------------------*/
hdrl_data_t
hdrl_spectrum1D_compute_shift_fit(const hdrl_spectrum1D * obs,
const hdrl_parameter * par){
cpl_ensure(par != NULL, CPL_ERROR_NULL_INPUT, 0.0);
cpl_ensure(hdrl_parameter_get_parameter_enum(par)
== HDRL_PARAMETER_SPECTRUM1D_SHIFT, CPL_ERROR_ILLEGAL_INPUT, 0.0);
cpl_ensure(hdrl_shift_fit_parameter_get_range_wmin(par)
< hdrl_shift_fit_parameter_get_range_wmax(par), CPL_ERROR_ILLEGAL_INPUT, 0.0);
cpl_ensure(hdrl_shift_fit_parameter_get_fit_wmin(par)
< hdrl_shift_fit_parameter_get_fit_wmax(par), CPL_ERROR_ILLEGAL_INPUT, 0.0);
cpl_ensure(hdrl_shift_fit_parameter_get_range_wmin(par)
< hdrl_shift_fit_parameter_get_fit_wmin(par), CPL_ERROR_ILLEGAL_INPUT, 0.0);
cpl_ensure(hdrl_shift_fit_parameter_get_range_wmax(par)
> hdrl_shift_fit_parameter_get_fit_wmax(par), CPL_ERROR_ILLEGAL_INPUT, 0.0);
cpl_bivector * win = get_win(hdrl_shift_fit_parameter_get_range_wmin(par),
hdrl_shift_fit_parameter_get_range_wmax(par));
hdrl_spectrum1D * obs_sel = hdrl_spectrum1D_select_wavelengths(obs, win, CPL_TRUE);
{
const int degree = 4;
hdrl_spectrum1D * obs_fitted = hdrl_spectrum1D_fit(obs_sel, degree,
hdrl_shift_fit_parameter_get_fit_wmin(par),
hdrl_shift_fit_parameter_get_fit_wmax(par));
cpl_ensure(obs_fitted != NULL, CPL_ERROR_ILLEGAL_OUTPUT, 0.0);
hdrl_spectrum1D_div_spectrum(obs_sel, obs_fitted);
hdrl_spectrum1D_add_scalar(obs_sel, (hdrl_value){2.0, 0.0});
hdrl_spectrum1D_delete(&obs_fitted);
}
hdrl_data_t min_wlen = hdrl_spectrum1D_compute_min_fit(obs_sel, par);
hdrl_spectrum1D_delete(&obs_sel);
cpl_bivector_delete(win);
const hdrl_data_t wguess = hdrl_shift_fit_parameter_get_wguess(par);
const hdrl_data_t offset = (min_wlen - wguess)/wguess;
return offset;
}
/*-----------------------------------------------------------------------------
Private Functions Implementation
-----------------------------------------------------------------------------*/
cpl_size convert_to_matrix_and_vector(cpl_matrix ** x, cpl_vector ** values,
const hdrl_spectrum1D * s){
*x = NULL;
*values = NULL;
const cpl_size sz = hdrl_spectrum1D_get_size(s);
double * x_vals = cpl_calloc(sz, sizeof(double));
double * p_values = cpl_calloc(sz, sizeof(double));
cpl_size real_sz = 0;
for(cpl_size i = 0; i < sz; ++i){
int rej = 0;
hdrl_data_t f = hdrl_spectrum1D_get_flux_value(s, i, &rej).data;
if(rej) continue;
hdrl_data_t w = hdrl_spectrum1D_get_wavelength_value(s, i, &rej);
x_vals[real_sz] = w;
p_values[real_sz] = f;
real_sz++;
}
if(real_sz == 0){
*values = NULL;
*x = NULL;
cpl_free(x_vals);
cpl_free(p_values);
return real_sz;
}
*values = cpl_vector_wrap(real_sz, p_values);
*x = cpl_matrix_wrap(1, real_sz, x_vals);
return real_sz;
}
static inline cpl_polynomial *
polynomial_fit_1d_create(
const hdrl_spectrum1D * s,
int degree)
{
cpl_polynomial * fit1d = cpl_polynomial_new(1);
double rechisq = 0;
cpl_size loc_deg=(cpl_size)degree;
cpl_matrix * samppos = NULL;
cpl_vector * values = NULL;
const cpl_size x_size = convert_to_matrix_and_vector(&samppos, &values, s);
cpl_ensure(x_size > 0, CPL_ERROR_ILLEGAL_OUTPUT, NULL);
cpl_vector * fitresidual = cpl_vector_new(x_size);
cpl_polynomial_fit(fit1d, samppos, NULL, values, NULL,
CPL_FALSE, NULL, &loc_deg);
cpl_ensure(!cpl_error_get_code(), cpl_error_get_code(), NULL);
if ( x_size > (degree + 1) ) {
cpl_vector_fill_polynomial_fit_residual(fitresidual, values, NULL, fit1d,
samppos, &rechisq);
cpl_ensure(!cpl_error_get_code(), cpl_error_get_code(), NULL);
}
cpl_matrix_delete(samppos);
cpl_vector_delete(fitresidual);
cpl_vector_delete(values);
return fit1d;
}
static inline hdrl_spectrum1D *
get_polyfit_for_slope(const int degree, const hdrl_spectrum1D * s,
const cpl_array * wlengths){
const hdrl_spectrum1D_wave_scale scale = hdrl_spectrum1D_get_scale(s);
cpl_polynomial* pfit = polynomial_fit_1d_create(s, degree);
cpl_ensure(pfit != NULL, CPL_ERROR_ILLEGAL_OUTPUT, NULL);
const cpl_size sz = cpl_array_get_size(wlengths);
cpl_image * new_flux = cpl_image_new(sz, 1, HDRL_TYPE_DATA);
for(cpl_size i = 0; i < sz; ++i){
double v = cpl_polynomial_eval_1d( pfit, cpl_array_get(wlengths, i, NULL), NULL);
cpl_image_set(new_flux, i + 1, 1, v);
}
hdrl_spectrum1D * to_ret = hdrl_spectrum1D_create_error_free(new_flux, wlengths, scale);
cpl_polynomial_delete(pfit);
cpl_image_delete(new_flux);
return to_ret;
}
/* Fits obs with a polynomial of degree "degree". The wavelengths between wmin and wmax
* are ignored when building the fit. */
static inline hdrl_spectrum1D *
hdrl_spectrum1D_fit(
const hdrl_spectrum1D * obs, const int degree, const hdrl_data_t wmin,
const hdrl_data_t wmax){
cpl_bivector * win = get_win(wmin, wmax);
hdrl_spectrum1D * obs_sel = hdrl_spectrum1D_select_wavelengths(obs, win, CPL_FALSE);
cpl_ensure(obs_sel != NULL, CPL_ERROR_ILLEGAL_OUTPUT, NULL);
hdrl_spectrum1D * obs_fitted = get_polyfit_for_slope(degree, obs_sel,
hdrl_spectrum1D_get_wavelength(obs).wavelength);
cpl_ensure(obs_fitted != NULL, CPL_ERROR_ILLEGAL_OUTPUT, NULL);
cpl_bivector_delete(win);
hdrl_spectrum1D_delete(&obs_sel);
return obs_fitted;
}
static inline hdrl_data_t
hdrl_spectrum1D_compute_min_fit(const hdrl_spectrum1D * s,
const hdrl_parameter * shift_par){
const hdrl_data_t wguess = hdrl_shift_fit_parameter_get_wguess(shift_par);
const hdrl_data_t fit_half_win =
hdrl_shift_fit_parameter_get_fit_half_win(shift_par);
cpl_bivector * win = get_win(wguess - fit_half_win, wguess + fit_half_win);
hdrl_spectrum1D * s_core =
hdrl_spectrum1D_select_wavelengths(s, win, CPL_TRUE);
hdrl_spectrum1D_wavelength waves = hdrl_spectrum1D_get_wavelength(s_core);
hdrl_spectrum1D * s_resampled =
get_polyfit_for_slope(4, s_core, waves.wavelength);
cpl_bivector_delete(win);
hdrl_spectrum1D_delete(&s_core);
const hdrl_image * flux = hdrl_spectrum1D_get_flux(s_resampled);
cpl_size x = 0, y = 0;
cpl_image_get_minpos(hdrl_image_get_image_const(flux), &x, &y);
const hdrl_data_t real_min =
hdrl_spectrum1D_get_wavelength_value(s_resampled, x - 1, NULL);
hdrl_spectrum1D_delete(&s_resampled);
return real_min;
}
static inline cpl_bivector * get_win(hdrl_data_t wmin, hdrl_data_t wmax){
cpl_bivector * v = cpl_bivector_new(1);
cpl_vector_set(cpl_bivector_get_x(v), 0, wmin);
cpl_vector_set(cpl_bivector_get_y(v), 0, wmax);
return v;
}
/* Converts the flux spectrum to an array of double. Rejected pixels are mapped
* to NAN. */
static inline cpl_array *
convert_to_sorted_array(const hdrl_spectrum1D * s1){
const cpl_size sz = hdrl_spectrum1D_get_size(s1);
double * flx = cpl_calloc(sz, sizeof(double));
double * wav = cpl_calloc(sz, sizeof(double));
double * is_rej = cpl_calloc(sz, sizeof(double));
for(cpl_size i = 0; i < sz; ++i){
int rej = 0;
flx[i] = hdrl_spectrum1D_get_flux_value(s1, i, &rej).data;
is_rej[i] = rej;
wav[i] = hdrl_spectrum1D_get_wavelength_value(s1, i, NULL);
}
hdrl_sort_on_x(wav, flx, is_rej, sz, CPL_FALSE);
cpl_free(wav);
cpl_array * to_ret = cpl_array_wrap_double(flx, sz);
for(cpl_size i = 0; i < sz; ++i){
if(fabs(is_rej[i]) < 1e-4) continue;
cpl_array_set_invalid(to_ret, i);
}
cpl_free(is_rej);
return to_ret;
}
static inline hdrl_data_t
hdrl_shift_fit_parameter_get_fit_half_win(const hdrl_parameter * par){
cpl_ensure(par != NULL, CPL_ERROR_NULL_INPUT, 0.0);
cpl_ensure(hdrl_parameter_get_parameter_enum(par)
== HDRL_PARAMETER_SPECTRUM1D_SHIFT, CPL_ERROR_ILLEGAL_INPUT, 0.0);
const hdrl_spectrum1D_shift_parameter * p =
(const hdrl_spectrum1D_shift_parameter *)par;
return p->fit_half_win;
}
static inline hdrl_data_t
hdrl_shift_fit_parameter_get_fit_wmax(const hdrl_parameter * par){
cpl_ensure(par != NULL, CPL_ERROR_NULL_INPUT, 0.0);
cpl_ensure(hdrl_parameter_get_parameter_enum(par)
== HDRL_PARAMETER_SPECTRUM1D_SHIFT, CPL_ERROR_ILLEGAL_INPUT, 0.0);
const hdrl_spectrum1D_shift_parameter * p =
(const hdrl_spectrum1D_shift_parameter *)par;
return p->fit_wmax;
}
static inline hdrl_data_t
hdrl_shift_fit_parameter_get_fit_wmin(const hdrl_parameter * par){
cpl_ensure(par != NULL, CPL_ERROR_NULL_INPUT, 0.0);
cpl_ensure(hdrl_parameter_get_parameter_enum(par)
== HDRL_PARAMETER_SPECTRUM1D_SHIFT, CPL_ERROR_ILLEGAL_INPUT, 0.0);
const hdrl_spectrum1D_shift_parameter * p =
(const hdrl_spectrum1D_shift_parameter *)par;
return p->fit_wmin;
}
static inline hdrl_data_t
hdrl_shift_fit_parameter_get_range_wmin(const hdrl_parameter * par){
cpl_ensure(par != NULL, CPL_ERROR_NULL_INPUT, 0.0);
cpl_ensure(hdrl_parameter_get_parameter_enum(par)
== HDRL_PARAMETER_SPECTRUM1D_SHIFT, CPL_ERROR_ILLEGAL_INPUT, 0.0);
const hdrl_spectrum1D_shift_parameter * p =
(const hdrl_spectrum1D_shift_parameter *)par;
return p->range_wmin;
}
static inline hdrl_data_t
hdrl_shift_fit_parameter_get_range_wmax(const hdrl_parameter * par){
cpl_ensure(par != NULL, CPL_ERROR_NULL_INPUT, 0.0);
cpl_ensure(hdrl_parameter_get_parameter_enum(par)
== HDRL_PARAMETER_SPECTRUM1D_SHIFT, CPL_ERROR_ILLEGAL_INPUT, 0.0);
const hdrl_spectrum1D_shift_parameter * p =
(const hdrl_spectrum1D_shift_parameter *)par;
return p->range_wmax;
}
static inline hdrl_data_t
hdrl_shift_fit_parameter_get_wguess(const hdrl_parameter * par){
cpl_ensure(par != NULL, CPL_ERROR_NULL_INPUT, 0.0);
cpl_ensure(hdrl_parameter_get_parameter_enum(par)
== HDRL_PARAMETER_SPECTRUM1D_SHIFT, CPL_ERROR_ILLEGAL_INPUT, 0.0);
const hdrl_spectrum1D_shift_parameter * p =
(const hdrl_spectrum1D_shift_parameter *)par;
return p->wguess;
}
/**@}*/
|