1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
|
/*
* This file is part of the HDRL
* Copyright (C) 2014 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/*-----------------------------------------------------------------------------
Includes
-----------------------------------------------------------------------------*/
/* for j1 */
#define _XOPEN_SOURCE 600
#include "hdrl_strehl.h"
#include "hdrl_image.h"
#include "hdrl_types.h"
#include "hdrl_utils.h"
#include <cpl.h>
#include <assert.h>
#include <math.h>
#include <stdint.h>
/*-----------------------------------------------------------------------------
Static
-----------------------------------------------------------------------------*/
static hdrl_strehl_result bad_result = {
{NAN, NAN},
NAN, NAN,
{NAN, NAN},
{NAN, NAN},
{NAN, NAN},
NAN,
0
};
/**
*
* @defgroup hdrl_strehl Strehl Computation
*
* @brief
* Function to compute the Strehl ratio on an image.
*
* The most commonly used metrics for evaluating the AO correction is the Strehl
* ratio. The Strehl ratio is defined as the ratio of the peak image intensity
* from a point source compared to the maximum attainable intensity using an
* ideal optical system limited only by diffraction over the telescope aperture.
* The Strehl ratio is very frequently used to perform the quality control of
* the scientific data obtained with the AO assisted instrumentation.
*
* The calculation is performed by calling the top-level function
* hdrl_strehl_compute() and the parameters passed to this function can be
* created by calling hdrl_strehl_parameter_create().
*
*/
/*----------------------------------------------------------------------------*/
/**@{*/
/*-----------------------------------------------------------------------------
Strehl parameters Definition
-----------------------------------------------------------------------------*/
/** @cond PRIVATE */
typedef struct {
HDRL_PARAMETER_HEAD;
double wavelength ;
double m1 ;
double m2 ;
double pixel_scale_x;
double pixel_scale_y;
double flux_radius;
double bkg_radius_low;
double bkg_radius_high;
} hdrl_strehl_parameter;
/* parameter type */
static hdrl_parameter_typeobj hdrl_strehl_parameter_type = {
HDRL_PARAMETER_STREHL, /* type */
(hdrl_alloc *)&cpl_malloc, /* fp_alloc */
(hdrl_free *)&cpl_free, /* fp_free */
NULL, /* fp_destroy */
sizeof(hdrl_strehl_parameter), /* obj_size */
};
/*----------------------------------------------------------------------------*/
/**
* @internal
* @brief Verify basic correctness of the Strehl parameters
* @param param Strehl parameters
* @return CPL_ERROR_NONE if everything is ok, an error code otherwise
*/
/*----------------------------------------------------------------------------*/
static cpl_error_code
hdrl_strehl_parameter_verify(const hdrl_parameter * param)
{
cpl_error_ensure(param != NULL, CPL_ERROR_NULL_INPUT,
return CPL_ERROR_NULL_INPUT, "NULL Input Parameters");
cpl_error_ensure(hdrl_strehl_parameter_check(param),
CPL_ERROR_ILLEGAL_INPUT, return CPL_ERROR_ILLEGAL_INPUT,
"Expected Strehl parameter") ;
const hdrl_strehl_parameter * param_loc = (const hdrl_strehl_parameter *)param ;
cpl_error_ensure(param_loc->wavelength >= 0, CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT, "wavelength must be >=0");
cpl_error_ensure(param_loc->m1 >= 0, CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT, "m1 radius must be >=0");
cpl_error_ensure(param_loc->m2 >= 0, CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT, "m2 radius must be >=0");
cpl_error_ensure(param_loc->m1 > param_loc->m2, CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT,
"m1 radius must be larger than m2 radius");
cpl_error_ensure(param_loc->pixel_scale_x >= 0, CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT, "pixel_scale_x must be >=0");
cpl_error_ensure(param_loc->pixel_scale_y >= 0, CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT, "pixel_scale_y must be >=0");
cpl_error_ensure(param_loc->flux_radius >= 0, CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT, "flux_radius must be >=0");
cpl_error_ensure(param_loc->m1 >= param_loc->m2, CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT, "m1 must be >=m2");
if (param_loc->bkg_radius_low > 0) {
cpl_error_ensure(param_loc->bkg_radius_low >= param_loc->flux_radius,
CPL_ERROR_ILLEGAL_INPUT,return CPL_ERROR_ILLEGAL_INPUT,
"bkg_radius_low must be >=flux_radius");
cpl_error_ensure(param_loc->bkg_radius_high > param_loc->bkg_radius_low,
CPL_ERROR_ILLEGAL_INPUT,return CPL_ERROR_ILLEGAL_INPUT,
"bkg_radius_high must be >bkg_radius_low");
}
else {
cpl_error_ensure(param_loc->bkg_radius_high < 0,
CPL_ERROR_ILLEGAL_INPUT, return CPL_ERROR_ILLEGAL_INPUT,
"bkg_radius_high must be < 0 if bkg_radius_low is < 0");
}
return CPL_ERROR_NONE ;
}
/** @endcond */
/*----------------------------------------------------------------------------*/
/**
* @brief Creates Strehl Parameters object
*
* @param wavelength Nominal filter wavelength [m]
* @param m1_radius primary mirror radius [m]
* @param m2_radius obstruction radius [m]
* @param pixel_scale_x image X pixel scale in [arcsec]
* @param pixel_scale_y image Y pixel scale in [arcsec]
* @param flux_radius radius used to sum the flux [arcsec]
* @param bkg_radius_low radius used to determine the background [arcsec]
* @param bkg_radius_high radius used to determine the background [arcsec]
*
* @return The Strehl parameters object.
* It needs to be deallocated with hdrl_parameter_delete()
* @see hdrl_parameter_delete()
* @see hdrl_strehl_compute()
* The method creates a parameter to compute the Strehl
*/
hdrl_parameter * hdrl_strehl_parameter_create(double wavelength,
double m1_radius, double m2_radius,
double pixel_scale_x, double pixel_scale_y, double flux_radius,
double bkg_radius_low, double bkg_radius_high) {
hdrl_strehl_parameter * p = (hdrl_strehl_parameter *)
hdrl_parameter_new(&hdrl_strehl_parameter_type);
p->wavelength = wavelength ;
p->m1 = m1_radius;
p->m2 = m2_radius;
p->pixel_scale_x = pixel_scale_x;
p->pixel_scale_y = pixel_scale_y;
p->flux_radius = flux_radius;
p->bkg_radius_low = bkg_radius_low;
p->bkg_radius_high = bkg_radius_high;
if (hdrl_strehl_parameter_verify((hdrl_parameter *)p)) {
cpl_free(p);
return NULL;
}
return (hdrl_parameter *)p;
}
/*----------------------------------------------------------------------------*/
/**
* @brief Check that the parameter is a Strehl parameter
* @param self The parameter to check
* @return True or False
*/
/*----------------------------------------------------------------------------*/
cpl_boolean hdrl_strehl_parameter_check(const hdrl_parameter * self)
{
return hdrl_parameter_check_type(self, &hdrl_strehl_parameter_type);
}
/*----------------------------------------------------------------------------*/
/**
* @brief Access the wavelength in the Strehl parameter
* @param p The Strehl parameter
* @return The wavelength value
*/
/*----------------------------------------------------------------------------*/
double hdrl_strehl_parameter_get_wavelength(
const hdrl_parameter * p)
{
cpl_ensure(p, CPL_ERROR_NULL_INPUT, -1.0);
return p != NULL ? ((const hdrl_strehl_parameter *)p)->wavelength : 0.;
}
/*----------------------------------------------------------------------------*/
/**
* @brief Access the primary mirror radius in the Strehl parameter
* @param p The Strehl parameter
* @return The primary mirror radius value
*/
/*----------------------------------------------------------------------------*/
double hdrl_strehl_parameter_get_m1(
const hdrl_parameter * p)
{
cpl_ensure(p, CPL_ERROR_NULL_INPUT, -1.0);
return p != NULL ? ((const hdrl_strehl_parameter *)p)->m1 : 0.;
}
/*----------------------------------------------------------------------------*/
/**
* @brief Access the obstruction radius in the Strehl parameter
* @param p The Strehl parameter
* @return The obstruction radius value
*/
/*----------------------------------------------------------------------------*/
double hdrl_strehl_parameter_get_m2(
const hdrl_parameter * p)
{
cpl_ensure(p, CPL_ERROR_NULL_INPUT, -1.0);
return p != NULL ? ((const hdrl_strehl_parameter *)p)->m2 : 0.;
}
/*----------------------------------------------------------------------------*/
/**
* @brief Access the image X pixel scale in the Strehl parameter
* @param p The Strehl parameter
* @return The image X pixel scale value
*/
/*----------------------------------------------------------------------------*/
double hdrl_strehl_parameter_get_pixel_scale_x(
const hdrl_parameter * p)
{
cpl_ensure(p, CPL_ERROR_NULL_INPUT, -1.0);
return p != NULL ? ((const hdrl_strehl_parameter *)p)->pixel_scale_x : 0.;
}
/*----------------------------------------------------------------------------*/
/**
* @brief Access the image Y pixel scale in the Strehl parameter
* @param p The Strehl parameter
* @return The image Y pixel scale value
*/
/*----------------------------------------------------------------------------*/
double hdrl_strehl_parameter_get_pixel_scale_y(
const hdrl_parameter * p)
{
cpl_ensure(p, CPL_ERROR_NULL_INPUT, -1.0);
return p != NULL ? ((const hdrl_strehl_parameter *)p)->pixel_scale_y : 0.;
}
/*----------------------------------------------------------------------------*/
/**
* @brief Access the total flux radius in the Strehl parameter
* @param p The Strehl parameter
* @return The total flux radius value
*/
/*----------------------------------------------------------------------------*/
double hdrl_strehl_parameter_get_flux_radius(
const hdrl_parameter * p)
{
cpl_ensure(p, CPL_ERROR_NULL_INPUT, -1.0);
return p != NULL ? ((const hdrl_strehl_parameter *)p)->flux_radius : 0.;
}
/*----------------------------------------------------------------------------*/
/**
* @brief Access the background region internal radius in the Strehl parameter
* @param p The Strehl parameter
* @return The background region internal radius value
*/
/*----------------------------------------------------------------------------*/
double hdrl_strehl_parameter_get_bkg_radius_low(
const hdrl_parameter * p)
{
cpl_ensure(p, CPL_ERROR_NULL_INPUT, -1.0);
return p != NULL ? ((const hdrl_strehl_parameter *)p)->bkg_radius_low : 0.;
}
/*----------------------------------------------------------------------------*/
/**
* @brief Access the background region external radius in the Strehl parameter
* @param p The Strehl parameter
* @return The background region external radius value
*/
/*----------------------------------------------------------------------------*/
double hdrl_strehl_parameter_get_bkg_radius_high(
const hdrl_parameter * p)
{
cpl_ensure(p, CPL_ERROR_NULL_INPUT, -1.0);
return p != NULL ? ((const hdrl_strehl_parameter *)p)->bkg_radius_high : 0.;
}
/*----------------------------------------------------------------------------*/
/**
* @brief Create parameter list for the Strehl computation
* @param base_context base context of parameter (e.g. recipe name)
* @param prefix prefix of parameter, may be an empty string
* @param par hdrl_parameter defining the defaults
* @see hdrl_strehl_parameter_create()
*
*
* Creates a parameter list with the Strehl parameters:
* - base_context.prefix.wavelength
* - base_context.prefix.m1
* - base_context.prefix.m2
* - base_context.prefix.pixel-scale-x
* - base_context.prefix.pixel-scale-y
* - base_context.prefix.flux-radius
* - base_context.prefix.bkg-radius-low
* - base_context.prefix.bkg-radius-high
*
* The CLI aliases omit the base_context.
*/
/*----------------------------------------------------------------------------*/
cpl_parameterlist * hdrl_strehl_parameter_create_parlist(
const char *base_context,
const char *prefix,
hdrl_parameter *par)
{
cpl_ensure(prefix && base_context && par,
CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(hdrl_strehl_parameter_check(par),
CPL_ERROR_INCOMPATIBLE_INPUT, NULL);
cpl_parameterlist *parlist = cpl_parameterlist_new();
/* --prefix.wavelength */
hdrl_setup_vparameter(parlist, prefix, ".", "", "wavelength", base_context,
"Wavelength [m].", CPL_TYPE_DOUBLE,
hdrl_strehl_parameter_get_wavelength(par));
/* --prefix.m1 */
hdrl_setup_vparameter(parlist, prefix, ".", "", "m1", base_context,
"Telescope radius [m].", CPL_TYPE_DOUBLE,
hdrl_strehl_parameter_get_m1(par));
/* --prefix.m2 */
hdrl_setup_vparameter(parlist, prefix, ".", "", "m2", base_context,
"Telescope obstruction radius [m].", CPL_TYPE_DOUBLE,
hdrl_strehl_parameter_get_m2(par));
/* --prefix.pixscale_x */
hdrl_setup_vparameter(parlist, prefix, ".", "", "pixel-scale-x", base_context,
"Detector X pixel scale on sky [arcsec].",
CPL_TYPE_DOUBLE,
hdrl_strehl_parameter_get_pixel_scale_x(par));
/* --prefix.pixscale_y */
hdrl_setup_vparameter(parlist, prefix, ".", "", "pixel-scale-y", base_context,
"Detector Y pixel scale on sky [arcsec].",
CPL_TYPE_DOUBLE,
hdrl_strehl_parameter_get_pixel_scale_y(par));
/* --prefix.flux_radius */
hdrl_setup_vparameter(parlist, prefix, ".", "", "flux-radius", base_context,
"PSF Flux integration radius [arcsec].",
CPL_TYPE_DOUBLE,
hdrl_strehl_parameter_get_flux_radius(par));
/* --prefix.bkg_radius_low_def */
hdrl_setup_vparameter(parlist, prefix, ".", "", "bkg-radius-low", base_context,
"PSF background inner radii [arcsec].",
CPL_TYPE_DOUBLE,
hdrl_strehl_parameter_get_bkg_radius_low(par));
/* --prefix.bkg_radius_high_def */
hdrl_setup_vparameter(parlist, prefix, ".", "", "bkg-radius-high", base_context,
"PSF background outer radius [arcsec].",
CPL_TYPE_DOUBLE,
hdrl_strehl_parameter_get_bkg_radius_high(par));
if (cpl_error_get_code()) {
cpl_parameterlist_delete(parlist);
return NULL;
}
return parlist;
}
/*----------------------------------------------------------------------------*/
/**
* @brief Parse parameter list to create input parameters for the Strehl
* @param parlist parameter list to parse
* @param prefix prefix of parameter name
* @return Input parameters for the Strehl computation
*
* Reads a parameter list in order to create Strehl parameters.
*
* Expects a parameter list containing:
* - base_context.prefix.wavelength
* - base_context.prefix.m1
* - base_context.prefix.m2
* - base_context.prefix.pixel-scale-x
* - base_context.prefix.pixel-scale-y
* - base_context.prefix.flux-radius
* - base_context.prefix.bkg-radius-low
* - base_context.prefix.bkg-radius-high
*
*/
/*----------------------------------------------------------------------------*/
hdrl_parameter * hdrl_strehl_parameter_parse_parlist(
const cpl_parameterlist * parlist,
const char * prefix)
{
cpl_ensure(prefix && parlist, CPL_ERROR_NULL_INPUT, NULL);
char * name;
const cpl_parameter * par;
double wavelength, m1, m2, pixel_scale_x, pixel_scale_y,
flux_radius, bkg_radius_low,bkg_radius_high;
/* --wavelength */
name = hdrl_join_string(".", 2, prefix, "wavelength");
par=cpl_parameterlist_find_const(parlist, name);
wavelength = cpl_parameter_get_double(par);
cpl_free(name) ;
/* --m1 */
name = hdrl_join_string(".", 2, prefix, "m1");
par=cpl_parameterlist_find_const(parlist, name);
m1 = cpl_parameter_get_double(par);
cpl_free(name) ;
/* --m2 */
name = hdrl_join_string(".", 2, prefix, "m2");
par=cpl_parameterlist_find_const(parlist, name);
m2 = cpl_parameter_get_double(par);
cpl_free(name) ;
/* --pixel_scale_x */
name = hdrl_join_string(".", 2, prefix, "pixel-scale-x");
par=cpl_parameterlist_find_const(parlist, name);
pixel_scale_x = cpl_parameter_get_double(par);
cpl_free(name) ;
/* --pixel_scale_y */
name = hdrl_join_string(".", 2, prefix, "pixel-scale-y");
par=cpl_parameterlist_find_const(parlist, name);
pixel_scale_y = cpl_parameter_get_double(par);
cpl_free(name) ;
/* --flux_radius */
name = hdrl_join_string(".", 2, prefix, "flux-radius");
par=cpl_parameterlist_find_const(parlist, name);
flux_radius = cpl_parameter_get_double(par);
cpl_free(name) ;
/* --bkg_radius_low */
name = hdrl_join_string(".", 2, prefix, "bkg-radius-low");
par=cpl_parameterlist_find_const(parlist, name);
bkg_radius_low = cpl_parameter_get_double(par);
cpl_free(name) ;
/* --bkg_radius_high */
name = hdrl_join_string(".", 2, prefix, "bkg-radius-high");
par=cpl_parameterlist_find_const(parlist, name);
bkg_radius_high = cpl_parameter_get_double(par);
cpl_free(name) ;
if (cpl_error_get_code()) {
cpl_error_set_message(cpl_func, CPL_ERROR_DATA_NOT_FOUND,
"Error while parsing parameterlist with prefix %s", prefix);
return NULL;
} else {
return hdrl_strehl_parameter_create(wavelength, m1,m2,
pixel_scale_x, pixel_scale_y,
flux_radius, bkg_radius_low, bkg_radius_high) ;
}
}
/** @cond PRIVATE */
/* ---------------------------------------------------------------------------*/
/**
* @internal
* @brief mask where mask is valid
* @param himg hdrl image
* @param mask mask defining where to find max
* @return max and its error
*/
/* ---------------------------------------------------------------------------*/
static hdrl_value
hdrl_image_max_where(const hdrl_image * himg, cpl_mask * mask)
{
hdrl_image * tmpimg = hdrl_image_duplicate(himg);
cpl_size px, py;
hdrl_value mx;
hdrl_image_reject_from_mask(tmpimg, mask);
cpl_image_get_maxpos(hdrl_image_get_image(tmpimg), &px, &py);
mx = hdrl_image_get_pixel(tmpimg, px, py, NULL);
hdrl_image_delete(tmpimg);
return mx;
}
/* ---------------------------------------------------------------------------*/
/**
* @internal
* @brief sum where mask is valid
* @param himg hdrl image
* @param mask mask defining where to sum
* @return sum and its error
*/
/* ---------------------------------------------------------------------------*/
static hdrl_value
hdrl_image_sum_where(const hdrl_image * himg, cpl_mask * mask)
{
hdrl_image * tmpimg = hdrl_image_duplicate(himg);
hdrl_value flux;
hdrl_image_reject_from_mask(tmpimg, mask);
flux = hdrl_image_get_sum(tmpimg);
hdrl_image_delete(tmpimg);
return flux;
}
/* ---------------------------------------------------------------------------*/
/**
* @internal
* @brief median where mask is valid
* @param himg hdrl image
* @param mask mask defining where to sum
* @return sum and its error
*/
/* ---------------------------------------------------------------------------*/
static hdrl_value
hdrl_image_median_where(const hdrl_image * himg, cpl_mask * mask)
{
hdrl_image * tmpimg = hdrl_image_duplicate(himg);
hdrl_value flux;
hdrl_image_reject_from_mask(tmpimg, mask);
flux = hdrl_image_get_median(tmpimg);
hdrl_image_delete(tmpimg);
return flux;
}
/* ---------------------------------------------------------------------------*/
/**
* @internal
* @brief stdev where mask is valid
* @param himg hdrl image
* @param mask mask defining where to compute
* @return computed standard deviation
*/
/* ---------------------------------------------------------------------------*/
static double
hdrl_image_stdev_where(const hdrl_image * himg, cpl_mask * mask)
{
hdrl_image * tmpimg = hdrl_image_duplicate(himg);
double mad;
hdrl_image_reject_from_mask(tmpimg, mask);
cpl_image_get_mad(hdrl_image_get_image_const(tmpimg), &mad);
hdrl_image_delete(tmpimg);
return mad * CPL_MATH_STD_MAD;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief compute obstructed Airy disk
*
* @param lam wavelength [m]
* @param m1 radius of primary mirror [m]
* @param m2 radius of secondary mirror [m]
* @param pixscale_x pixel scale in x direction [arcseconds]
* @param pixscale_y pixel scale in y direction [arcseconds]
* @param cx position of center in x direction (FITS) [pixel]
* @param cy position of center in y direction (FITS) [pixel]
* @param nx size of image in x direction [pixel]
* @param ny size of image in y direction [pixel]
*
* Computes an obstructed Airy for one wavelength from following formula:
*
* \f$
* I(r) = \frac{1}{1 - e^2} \left(\frac{2 j_1(r)}{r} - \frac{2 e j_1(er)}{r}\right)^2
* \f$
* with:
* \f$
* e = \frac{m_2}{m_2}
* \;
* r = k m_1 \sin{\theta} = \frac{2 \pi m_1}{\lambda} \sqrt{x^2 + y^2}
* \f$
* See Wikipedia.
*
* The parameters cx and cy define the center of the Airy disk.
* E.g. a value of nx // 2 means the disk will be centered exactly at the
* middle of the central pixel while a value of nx // 2 - 0.5 means the peak of
* the disk will be at the origin and the flux evenly distributed among the
* four neighboring pixels.
*/
/* ---------------------------------------------------------------------------*/
static cpl_image *
compute_psf(double lam, double m1, double m2,
double pixscale_x, double pixscale_y,
double cx, double cy,
size_t nx, size_t ny)
{
cpl_image * psf = cpl_image_new(nx, ny, CPL_TYPE_DOUBLE);
double * data = cpl_image_get_data(psf);
double e = m2 / m1;
double as_2_rad = CPL_MATH_2PI / (360. * 3600);
/* inclusive linear space with pixel center at the middle. integer cx and cy
* will result in a psf exactly centered around the middle of the central
* pixel, cx/cy are in fits convention [1,nx/ny] with pixel origin in the
* middle */
double centerx = (-(nx / 2.) + cx - 1 + 0.5) * pixscale_x;
double centery = (-(ny / 2.) + cy - 1 + 0.5) * pixscale_y;
double xhigh = ((nx - 1) * pixscale_x / 2) - centerx;
double yhigh = ((ny - 1) * pixscale_y / 2) - centery;
double xlow = -((nx - 1) * pixscale_x / 2) - centerx;
double ylow = -((ny - 1) * pixscale_y / 2) - centery;
double step_x = (xhigh - xlow) / (nx - 1);
double step_y = (yhigh - ylow) / (ny - 1);
HDRL_OMP(omp parallel for)
for (size_t iy = 0; iy < ny; iy++) {
double y = iy == ny - 1 ? yhigh : ylow + iy * step_y;
for (size_t ix = 0; ix < nx; ix++) {
double x = ix == nx - 1 ? xhigh : xlow + ix * step_x;
double r = sqrt(x*x + y*y) * as_2_rad * CPL_MATH_2PI * m1 / lam;
if (r == 0.) {
data[iy * nx + ix] = 1.;
}
else {
double airy = (2 * j1(r) / r - 2 * e * j1(e * r) / r);
double c = (1 - e * e);
data[iy * nx + ix] = 1 / (c * c) * airy * airy;
}
}
}
return psf;
}
/*----------------------------------------------------------------------------*/
/**
* @internal
* @brief Find the aperture(s) with the greatest flux
* @param self The aperture object
* @param ind The aperture-indices in order of decreasing flux
* @param nfind Number of indices to find
* @return CPL_ERROR_NONE or the relevant _cpl_error_code_ on error
*
* nfind must be at least 1 and at most the size of the aperture object.
*
* The ind array must be able to hold (at least) nfind integers.
* On success the first nfind elements of ind point to indices of the
* aperture object.
*
* To find the single ind of the aperture with the maximum flux use simply:
* int ind;
* apertures_find_max_flux(self, &ind, 1);
*
*/
/*----------------------------------------------------------------------------*/
static cpl_error_code apertures_find_max_flux(const cpl_apertures * self,
int * ind, int nfind)
{
const int nsize = cpl_apertures_get_size(self);
int ifind;
cpl_ensure_code(nsize > 0, cpl_error_get_code());
cpl_ensure_code(ind, CPL_ERROR_NULL_INPUT);
cpl_ensure_code(nfind > 0, CPL_ERROR_ILLEGAL_INPUT);
cpl_ensure_code(nfind <= nsize, CPL_ERROR_ILLEGAL_INPUT);
for (ifind=0; ifind < nfind; ifind++) {
double maxflux = -1;
int maxind = -1;
int i;
for (i=1; i <= nsize; i++) {
int k;
/* The flux has to be the highest among those not already found */
for (k=0; k < ifind; k++) if (ind[k] == i) break;
if (k == ifind) {
/* i has not been inserted into ind */
const double flux = cpl_apertures_get_flux(self, i);
if (maxind < 0 || flux > maxflux) {
maxind = i;
maxflux = flux;
}
}
}
ind[ifind] = maxind;
}
return CPL_ERROR_NONE;
}
/*----------------------------------------------------------------------------*/
/**
* @internal
* @brief Find the peak flux, peak sum and position of a Gaussian
* @param self Image to process
* @param sigma The initial detection level [ADU]
* @param pxpos On success, the refined X-position [pixel]
* @param pypos On success, the refined Y-position [pixel]
* @param ppeak On success, the refined peak flux [ADU]
* @return CPL_ERROR_NONE or the relevant CPL error code on error
*
* The routine initially determines the approximate position and flux value of
* the PSF with a robust Gaussian fit: first are identified all sources that lie
* 5 sigmas above the median of the image, then is determined the position of
* the barycenter of the region with highest peak. Finally is performed the fit
* of a Gaussian centered on the found barycenter position.
*
*/
/*----------------------------------------------------------------------------*/
static cpl_error_code
gaussian_maxpos(const cpl_image * self,
double sigma,
double * pxpos,
double * pypos,
double * ppeak)
{
/* copied from irplib_strehl.c r163170 */
const cpl_size nx = cpl_image_get_size_x(self);
const cpl_size ny = cpl_image_get_size_y(self);
int iretry = 3; /* Number retries with decreasing sigma */
int ifluxapert = 0;
double med_dist;
const double median = cpl_image_get_median_dev(self, &med_dist);
cpl_mask * selection;
cpl_size nlabels = 0;
cpl_image * labels = NULL;
cpl_apertures * aperts;
cpl_size npixobj;
double objradius;
cpl_size winsize;
cpl_size xposmax, yposmax;
double xposcen, yposcen;
double valmax, valfit = -1.0;
cpl_array * gauss_parameters = NULL;
cpl_errorstate prestate = cpl_errorstate_get();
cpl_error_code code = CPL_ERROR_NONE;
cpl_ensure_code( sigma > 0.0, CPL_ERROR_ILLEGAL_INPUT);
selection = cpl_mask_new(nx, ny);
/* find aperture with signal larger than sigma * median deviation */
for (; iretry > 0 && nlabels == 0; iretry--, sigma *= 0.5) {
/* Compute the threshold */
const double threshold = median + sigma * med_dist;
/* Select the pixel above the threshold */
code = cpl_mask_threshold_image(selection, self, threshold, DBL_MAX,
CPL_BINARY_1);
if (code) break;
/* Labelise the thresholded selection */
cpl_image_delete(labels);
labels = cpl_image_labelise_mask_create(selection, &nlabels);
}
sigma *= 2.0; /* reverse last iteration that found no labels */
cpl_mask_delete(selection);
if (code) {
cpl_image_delete(labels);
return cpl_error_set_where(cpl_func);
} else if (nlabels == 0) {
cpl_image_delete(labels);
return cpl_error_set(cpl_func, CPL_ERROR_DATA_NOT_FOUND);
}
aperts = cpl_apertures_new_from_image(self, labels);
/* Find the aperture with the greatest flux */
code = apertures_find_max_flux(aperts, &ifluxapert, 1);
if (code) {
cpl_apertures_delete(aperts);
cpl_image_delete(labels);
return cpl_error_set(cpl_func, CPL_ERROR_DATA_NOT_FOUND);
}
npixobj = cpl_apertures_get_npix(aperts, ifluxapert);
objradius = sqrt((double)npixobj * CPL_MATH_1_PI);
winsize = CX_MIN(CX_MIN(nx, ny), (3.0 * objradius));
xposmax = cpl_apertures_get_maxpos_x(aperts, ifluxapert);
yposmax = cpl_apertures_get_maxpos_y(aperts, ifluxapert);
xposcen = cpl_apertures_get_centroid_x(aperts, ifluxapert);
yposcen = cpl_apertures_get_centroid_y(aperts, ifluxapert);
valmax = cpl_apertures_get_max(aperts, ifluxapert);
cpl_apertures_delete(aperts);
cpl_image_delete(labels);
cpl_msg_debug(cpl_func, "Object radius at S/R=%g: %g (window-size=%u)",
sigma, objradius, (unsigned)winsize);
cpl_msg_debug(cpl_func, "Object-peak @ (%d, %d) = %g", (int)xposmax,
(int)yposmax, valmax);
/* fit gaussian to get subpixel peak position */
gauss_parameters = cpl_array_new(7, CPL_TYPE_DOUBLE);
cpl_array_set_double(gauss_parameters, 0, median);
code = cpl_fit_image_gaussian(self, NULL, xposmax, yposmax,
winsize, winsize, gauss_parameters,
NULL, NULL, NULL,
NULL, NULL, NULL,
NULL, NULL, NULL);
if (!code) {
const double M_x = cpl_array_get_double(gauss_parameters, 3, NULL);
const double M_y = cpl_array_get_double(gauss_parameters, 4, NULL);
valfit = hcpl_gaussian_eval_2d(gauss_parameters, M_x, M_y);
if (!cpl_errorstate_is_equal(prestate)) {
code = cpl_error_get_code();
} else {
*pxpos = M_x;
*pypos = M_y;
*ppeak = valfit;
cpl_msg_debug(cpl_func, "Gauss-fit @ (%g, %g) = %g",
M_x, M_y, valfit);
}
}
cpl_array_delete(gauss_parameters);
if (code || valfit < valmax) {
cpl_errorstate_set(prestate);
*pxpos = xposcen;
*pypos = yposcen;
*ppeak = valmax;
}
return code ? cpl_error_set_where(cpl_func) : CPL_ERROR_NONE;
}
/*----------------------------------------------------------------------------*/
/**
@internal
@brief create a disk mask
@param im Image to compute from
@param xpos the x position of the disk center [pixel, C indexing]
@param ypos the y position of the disk center [pixel, C indexing]
@param rad the radius [pixel]
@return a mask with valid pixels inside the disk
@note (xpos, ypos) and may be outside the image, if so then a sufficiently
small rad will cause no pixels to be encircled
*/
/*----------------------------------------------------------------------------*/
static cpl_mask *
strehl_disk_mask(const cpl_image * im,
double xpos,
double ypos,
double rad)
{
const intptr_t nx = cpl_image_get_size_x(im);
const intptr_t ny = cpl_image_get_size_y(im);
/* Round down */
const intptr_t lx = (intptr_t)(xpos - rad);
const intptr_t ly = (intptr_t)(ypos - rad);
/* Round up */
const intptr_t ux = (intptr_t)(xpos + rad) + 1;
const intptr_t uy = (intptr_t)(ypos + rad) + 1;
const double sqr = rad * rad;
cpl_mask * m;
/* Check entries */
cpl_ensure(im != NULL, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(rad > 0.0, CPL_ERROR_ILLEGAL_INPUT, NULL);
m = cpl_mask_new(nx, ny);
for (intptr_t j = CX_MAX(ly, 0); j < CX_MIN(uy, ny); j++) {
const double yj = (double)j - ypos;
for (intptr_t i = CX_MAX(lx, 0); i < CX_MIN(ux, nx); i++) {
const double xi = (double)i - xpos;
const double dist = yj * yj + xi * xi;
if (dist <= sqr) {
if (!cpl_image_is_rejected(im, i + 1, j + 1)) {
cpl_mask_set(m, i + 1, j + 1, CPL_BINARY_1);
}
}
}
}
cpl_mask_not(m);
return m;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief rebin image
* @param img image to rebin, size must be a multiple of sampling
* @param sampling rebin factor
* @return rebinned image
*/
/* ---------------------------------------------------------------------------*/
static inline cpl_image * hdrl_rebin(cpl_image * img, size_t sampling)
{
cpl_size lnx = cpl_image_get_size_x(img);
cpl_size lny = cpl_image_get_size_y(img);
cpl_size nx = lnx / sampling;
cpl_size ny = lny / sampling;
cpl_image * n = cpl_image_new(nx, ny, CPL_TYPE_DOUBLE);
double * ld = cpl_image_get_data_double(img);
double * nd = cpl_image_get_data_double(n);
for (size_t iy = 0; iy < (size_t)ny; iy++) {
for (size_t ix = 0; ix < (size_t)nx; ix++) {
for (size_t ly = 0; ly < sampling; ly++) {
for (size_t lx = 0; lx < sampling; lx++) {
nd[iy * nx + ix] += ld[((iy*sampling) + ly) * lnx + lx + (ix*sampling)];
}
}
}
}
return n;
}
#if 0
/* ---------------------------------------------------------------------------*/
/**
* @brief compute encircled energy of psf
* @param lam wavelength
* @param m1 primary mirror radius
* @param m2 obstruction radius
* @param r integration radius
*
*
* \f[
* EE(v_{0}) = \frac{1}{1 - \epsilon^2} \left(1 - J_{0}^{2}(v_{0}) - J_{1}^{2}(v_{0})
* + \epsilon^{2} (1- J_{0}^{2}(v_{0}) - J_{1}^{2}(\epsilon v_{0}))
* -2\epsilon\int_{0}^{v_{0}} J_{1}(\epsilon v) \frac{2J_{1}(v)}{v}dv \right)
* \f]
*
* where
* \f$J_{1}\f$ is the Bessel function or order \f$0\f$,
* \f$J_{1}\f$ is the Bessel function or order \f$1\f$,
* \f$\epsilon = \frac{m_2}{m_2}\f$ is the telescope central obstruction
* (fraction of telescope diameter),
* v is the radial distance from Airy function center (2 * Nyquist/ units), and
* \f$v_{0}\f$ is the maximum radial distance from Airy function center for EE
* calculation (2 * Nyquist/ units). During \f$EE\f$ computation we neglect
* the integral term.
*
*/
/* ---------------------------------------------------------------------------*/
static inline double
compute_psf_flux(double lam, double m1, double m2, double r)
{
/* currently unused */
double e = m2 / m1;
r *= CPL_MATH_2PI * m1 / lam;
double E = 1 - j0(r) * j0(r) - j1(r) * j1(r) + e*e *
(1 - j0(e*r)*j0(e*r) - j1(e*r)*j1(e*r));
E *= 1 / (1 - e * e);
/* Note compared to analytical formula iof the encircled energy, here we
neglect the contribute from integral term: -2*e*integral(j1*j1*2/v dv) */
return E;
}
#endif
/* ---------------------------------------------------------------------------*/
/**
* @internal
* @brief compute Strehl parameter
* @param himg background corrected image
* @param lam wavelength [m]
* @param m1_radius primary mirror radius [m]
* @param m2_radius obstruction radius [m]
* @param pixscale_x image X pixel scale in [arcsec]
* @param pixscale_y image Y pixel scale in [arcsec]
* @param flux_radius radius used to sum the flux [arcsec]
*
* @return an hdrl_value containing the computed Strehl value and its error
* or NAN in case of error.
*
* @note strehl function, assumes background corrected image with peak at
* peak_x/peak_y
*
* @note
* This function assumes that the input image is background corrected.
*
* Initially a synthetic PSF is generated with parameters:
* - base_context.prefix.wavelength
* - base_context.prefix.m1
* - base_context.prefix.m2
* - base_context.prefix.pixel-scale-x
* - base_context.prefix.pixel-scale-y
* and pixel scale upsampling factor 16.
* @see compute_psf()
*
* The synthetic PSF is shifted of an arbitrary value equal to 7 pixels
* (determined ad hoc) and then the synthetic PSF is down-sampled to the
* original PSF sampling. Then synthetic PSF is normalized dividing it by a
* value equal to the ratio of the synthetic PSF peak and the observed PSF peak
* values.
*
* Then the position and the peak of the PSF are determined by a robust fit of
* a 2D Gaussian. @see gaussian_maxpos()
*
* Then an approximate position of the maximum on the observed PSF standard
* is determined, later refined using the associated error (and bad pixel)
* information. This define the value of PSFo_peak
*
* Then is determined the observed PSF flux, PSFo_flux, within the ring centered
* on the peak and user set radius. This is used to compute the ratio
* Ro=PSFo_peak/PSFo_flux
*
* The same ratio is also determined similarly for the synthetic PSF.
* Rt=PSFt_peak/PSFt_flux
*
* Finally the strehl is computed as
* strehl=Ro/Rt
*
* along with its associated error:
* strehl_err=strehl*sqrt((peak_err/peak_val^2)+(flux_err/flux_val^2))
*
*/
static hdrl_strehl_result
compute_strehl2(const hdrl_image * himg, double lam,
double m1_radius, double m2_radius,
double pixscale_x, double pixscale_y,
double peak_x, double peak_y,
double radius_arcsec)
{
const cpl_image * img = hdrl_image_get_image_const(himg);
double min_pscale = CX_MIN(pixscale_x, pixscale_y);
double radius_pix = (radius_arcsec / min_pscale);
/* could be shrunk for better performance as flux beyond a few rings is negligible
* using analytic encircled energy would probably also work */
cpl_size wins = 2 * radius_pix;
cpl_msg_debug(cpl_func, "strehl psf window size %d", (int)wins);
double smallx = peak_x - (floor(peak_x) - wins/2);
double smally = peak_y - (floor(peak_y) - wins/2);
/* sample psf on larger grid for a primitive integration of the flux */
size_t sampling = 16;
intptr_t nnx = wins * sampling;
intptr_t nny = wins * sampling;
cpl_image * lpsf = compute_psf(lam, m1_radius, m2_radius,
pixscale_x / sampling, pixscale_y / sampling,
smallx*sampling,smally*sampling,
nnx, nny);
/* Note: o is a hard-coded offset to get the peak in same position as in data
* after down-sampling, 7 seems to work reasonably well for sampling 16 */
int o = 7;
cpl_image * epsf = cpl_image_extract(lpsf, 1 + o, 1 + o, nnx - o, nny - o);
cpl_image * psf = hdrl_rebin(epsf, sampling);
cpl_image_delete(epsf);
cpl_image_delete(lpsf);
/* normalize for easier comparison, not required */
cpl_image_divide_scalar(psf, cpl_image_get_max(psf)/cpl_image_get_max(img));
cpl_msg_debug(cpl_func, "position/peak of data: %g %g", peak_x, peak_y);
{
/* fit not required, just for debugging */
double xposfit, yposfit, peak;
gaussian_maxpos(psf, 5, &xposfit, &yposfit, &peak);
cpl_msg_debug(cpl_func, "position/peak of psf: %g %g", xposfit, yposfit);
}
/* computes ratio peak/flux over the observed PSF standard */
cpl_mask * im = strehl_disk_mask(img, peak_x, peak_y, radius_pix);
hdrl_value ipeak = hdrl_image_max_where(himg, im);
cpl_msg_debug(cpl_func, "Computing flux on %d pixel radius, total pixels %ld",
(int)(radius_pix),
(long)(cpl_mask_get_size_x(im) * cpl_mask_get_size_y(im) -
cpl_mask_count(im)));
hdrl_value iflux = hdrl_image_sum_where(himg, im);
cpl_msg_debug(cpl_func, "flux ring/total data: %g (%g) %g", iflux.data,
iflux.error, cpl_image_get_flux(img));
cpl_mask_delete(im);
double ratio_img = ipeak.data / iflux.data;
/* computes ratio peak/flux over the synthetic PSF */
double ppeak = cpl_image_get_max(psf);
cpl_mask * pm =
strehl_disk_mask(psf, wins / 2 - 1, wins / 2 - 1, radius_pix);
hdrl_image * tmpimg = hdrl_image_create(psf, NULL);
hdrl_value pflux = hdrl_image_sum_where(tmpimg, pm);
hdrl_image_delete(tmpimg);
cpl_msg_debug(cpl_func, "flux ring/total psf: %g %g", pflux.data,
cpl_image_get_flux(psf));
cpl_mask_delete(pm);
double ratio_psf = ppeak / pflux.data;
cpl_msg_debug(cpl_func, "data peak,flux,ratio: %g %g: %g",
ipeak.data, iflux.data, ratio_img);
cpl_msg_debug(cpl_func, "psf peak,flux,ratio: %g %g: %g",
ppeak, pflux.data, ratio_psf);
double strehl = ratio_img / ratio_psf;
double strehl_err = strehl *
sqrt(ipeak.error * ipeak.error / (ipeak.data * ipeak.data) +
iflux.error * iflux.error / (iflux.data * iflux.data));
cpl_msg_debug(cpl_func, "Strehl ratio %g +/- %g", strehl, strehl_err);
cpl_image_delete(psf);
hdrl_strehl_result r;
r.strehl_value = (hdrl_value){strehl, strehl_err};
r.star_peak = ipeak;
r.star_flux = iflux;
r.star_background = (hdrl_value){0, 0};
/* TODO:
* error on negative flux, error on disk max position != fit position */
return r;
}
/* ---------------------------------------------------------------------------*/
/**
* @brief compute image Strehl
* @param himg background corrected image
* @param lam wavelength [m]
* @param m1_radius primary mirror radius [m]
* @param m2_radius obstruction radius [m]
* @param pixscale_x image X pixel scale in [arcsec]
* @param pixscale_y image Y pixel scale in [arcsec]
* @param flux_radius radius used to sum the flux [arcsec]
* @param bkg_radius_low_def radius used to determine the background [arcsec]
* @param bkg_radius_high_def radius used to determine the background [arcsec]
*
* @return an hdrl_strehl_result containing the computed Strehl value and its error
* or NAN in case of error.
*
* @doc
* This function assumes that the input image is pre-processed to remove
* instrument signatures (flag bad pixels, etc.) and correct for the natural
* noise sources (sky background, etc.). Bad pixels are interpolated.
*
* The routine initially determines the approximate position and flux value of
* the PSF with a Gaussian fit.
* @see gaussian_maxpos()
*
* If the user sets the parameters bkg_radius_low, bkg_radius_high to -1, the
* routine assumes that the input image has zero background level.
* Else if the user set the parameters bkg_radius_low, bkg_radius_high to proper
* values the routine measure the background in the corresponding annular
* region and subtract it. This second option is recommended.
*
* Then the strehl ratio and its associated error are computed.
* @see compute_streh2()
*
*/
/* ---------------------------------------------------------------------------*/
static hdrl_strehl_result
compute_strehl(const hdrl_image * himg_, double lam,
double m1_radius, double m2_radius,
double pixscale_x, double pixscale_y, double flux_radius,
double bkg_radius_low, double bkg_radius_high)
{
hdrl_image * himg = hdrl_image_duplicate(himg_);
double xposfit, yposfit, peak;
double min_pscale = CX_MIN(pixscale_x, pixscale_y);
const cpl_image * img = hdrl_image_get_image_const(himg);
/* interpolate bad pixels, */
if (hdrl_image_count_rejected(himg) != 0) {
cpl_msg_warning(cpl_func,
"%zu bad pixels in strehl input, interpolating.",
(size_t)hdrl_image_count_rejected(himg) );
cpl_detector_interpolate_rejected(hdrl_image_get_image(himg));
/* should have error propagation here .. */
cpl_detector_interpolate_rejected(hdrl_image_get_error(himg));
}
if (gaussian_maxpos(img, 5, &xposfit, &yposfit, &peak) != CPL_ERROR_NONE) {
goto error;
}
if (peak <= 0) {
cpl_error_set_message(cpl_func, CPL_ERROR_DATA_NOT_FOUND,
"detected peak of star smaller than zero, "
"gaussian fit likely failed to fit the star");
goto error;
}
hdrl_value bkg = {0, 0};
double comp_bkg_error = -1;
size_t nbkg_pix = 0;
if ((bkg_radius_low < 0 && bkg_radius_high >= 0) ||
(bkg_radius_low >= 0 && bkg_radius_high < 0)) {
cpl_error_set_message(cpl_func, CPL_ERROR_INCOMPATIBLE_INPUT,
"background radius parameters must be larger "
"zero or both negative");
goto error;
}
else if (bkg_radius_low >= 0 && bkg_radius_high >= 0) {
if (bkg_radius_low >= bkg_radius_high) {
cpl_error_set_message(cpl_func, CPL_ERROR_INCOMPATIBLE_INPUT,
"low background radius parameters must be smaller "
"than large background radius");
goto error;
}
/* compute mask of background ring */
cpl_mask * high = strehl_disk_mask(img, xposfit, yposfit,
bkg_radius_high / min_pscale);
cpl_mask * low = strehl_disk_mask(img, xposfit, yposfit,
bkg_radius_low / min_pscale);
cpl_mask_xor(low, high);
nbkg_pix = cpl_mask_count(low);
if (nbkg_pix == 0) {
cpl_error_set_message(cpl_func, CPL_ERROR_ILLEGAL_INPUT,
"No valid pixels in background");
cpl_mask_delete(low);
cpl_mask_delete(high);
goto error;
}
cpl_mask_not(low);
bkg = hdrl_image_median_where(himg, low);
comp_bkg_error = hdrl_image_stdev_where(himg, low) / sqrt(nbkg_pix);
/* expected difference sqrt(pi / 2) due to median */
cpl_msg_debug(cpl_func, "Median estimated background: %g +- %g "
"(computed error %g)", bkg.data, bkg.error,
comp_bkg_error);
cpl_mask_delete(low);
cpl_mask_delete(high);
hdrl_image_sub_scalar(himg, bkg);
}
hdrl_strehl_result r = compute_strehl2(himg, lam, m1_radius, m2_radius,
pixscale_x, pixscale_y, xposfit, yposfit,
flux_radius);
hdrl_image_delete(himg);
r.star_background = bkg;
r.star_x = xposfit;
r.star_y = yposfit;
r.computed_background_error = comp_bkg_error;
r.nbackground_pixels = nbkg_pix;
return r;
error:
hdrl_image_delete(himg);
return bad_result;
}
/** @endcond */
/* TODO: missing doxygen, add more comments */
/* ---------------------------------------------------------------------------*/
/**
* @brief This function computes the Strehl ratio.
* @param himg input hdrl image
* @param params input hdrl parameters
*
* @see hdrl_strehl_parameter_create()
*
* The raw image is assumed to be pre-processed to remove the instrument
* signatures (bad pixels, etc.) and the natural noise sources (sky background,
* etc.). Nethertheless this function allows also the user to correct a residual
* background by setting the parameters \e bkg_radius_low, \e bkg_radius_high.
* The PSF is identified and its integrated flux (controlled by the parameter
* \e flux_radius) is normalized to 1. The
* PSF baricenter is computed and used to generate the ideal PSF (with
* integrated flux normalized to 1) which takes into account the telescope pupil
* characteristics (radius \e m1, central obstruction, \e m2, .…), the
* wavelength \e wavelength, at which the image has been obtained and the
* related pixel scale (\e pixel_scale_x, \e pixel_scale_y,). Finally the Strehl
* ratio is computed dividing the maximum intensity of the image PSF by the
* maximum intensity of the ideal PSF and the associated error is also computed.
*
*/
/* ---------------------------------------------------------------------------*/
hdrl_strehl_result
hdrl_strehl_compute(const hdrl_image * himg, hdrl_parameter* params)
{
hdrl_strehl_result r;
/* Check Entries */
cpl_error_ensure(himg && params, CPL_ERROR_NULL_INPUT,
return bad_result,
"NULL input");
if (hdrl_strehl_parameter_verify(params) != CPL_ERROR_NONE) {
return bad_result;
}
/* Local Usage Parameters */
const hdrl_strehl_parameter * p_loc = (hdrl_strehl_parameter *)params ;
r = compute_strehl(himg,p_loc->wavelength, p_loc->m1, p_loc->m2,
p_loc->pixel_scale_x, p_loc->pixel_scale_y,
p_loc->flux_radius, p_loc->bkg_radius_low,
p_loc->bkg_radius_high);
return r;
}
/**@}*/
|