1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
/*
igam.c from torch-cephes which is a BSD licensed redistribution of cephes [0]
Minor modifications to use C99 lgamma and removed K&R syntax.
[0] https://github.com/jucor/torch-cephes/blob/master/LICENSE.txt
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the organization nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Incomplete gamma integral -> igam.c
*
*
*
* SYNOPSIS:
*
* double a, x, y, igam();
*
* y = igam( a, x );
*
* DESCRIPTION:
*
* The function is defined by
*
* x
* -
* 1 | | -t a-1
* igam(a,x) = ----- | e t dt.
* - | |
* | (a) -
* 0
*
*
* In this implementation both arguments must be positive.
* The integral is evaluated by either a power series or
* continued fraction expansion, depending on the relative
* values of a and x.
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,30 200000 3.6e-14 2.9e-15
* IEEE 0,100 300000 9.9e-14 1.5e-14
*/
/*
* Complemented incomplete gamma integral --> igamc()
*
*
*
* SYNOPSIS:
*
* double a, x, y, igamc();
*
* y = igamc( a, x );
*
* DESCRIPTION:
*
* The function is defined by
*
*
* igamc(a,x) = 1 - igam(a,x)
*
* inf.
* -
* 1 | | -t a-1
* = ----- | e t dt.
* - | |
* | (a) -
* x
*
*
* In this implementation both arguments must be positive.
* The integral is evaluated by either a power series or
* continued fraction expansion, depending on the relative
* values of a and x.
*
* ACCURACY:
*
* Tested at random a, x.
* a x Relative error:
* arithmetic domain domain # trials peak rms
* IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15
* IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15
*/
/*
* Cephes Math Library Release 2.8: June, 2000
* Copyright 1985, 1987, 2000 by Stephen L. Moshier
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <math.h>
#include <float.h>
double igam(double, double);
double igamc(double, double);
#define MACHEP DBL_EPSILON
#define MAXLOG log(FLT_MAX)
#define mtherr(x, y)
static double big = 4.503599627370496e15;
static double biginv = 2.22044604925031308085e-16;
double igamc(double a, double x)
{
double ans, ax, c, r, t, y, z;
double pkm1, pkm2, qkm1, qkm2;
if ((x < 0) || ( a <= 0)) {
mtherr("igamc", DOMAIN);
return(NAN);
}
if ((x < 1.0) || (x < a)) {
return(1. - igam(a,x));
}
ax = a * log(x) - x - lgamma(a);
if (ax < -MAXLOG) {
mtherr("igamc", UNDERFLOW);
return(0.);
}
ax = exp(ax);
/* continued fraction */
y = 1. - a;
z = x + y + 1.;
c = 0.;
pkm2 = 1.;
qkm2 = x;
pkm1 = x + 1.;
qkm1 = z * x;
ans = pkm1/qkm1;
do {
c += 1.;
y += 1.;
z += 2.;
double yc = y * c;
double pk = pkm1 * z - pkm2 * yc;
double qk = qkm1 * z - qkm2 * yc;
if (qk != 0) {
r = pk / qk;
t = fabs((ans - r) / r);
ans = r;
} else {
t = 1.;
}
pkm2 = pkm1;
pkm1 = pk;
qkm2 = qkm1;
qkm1 = qk;
if (fabs(pk) > big) {
pkm2 *= biginv;
pkm1 *= biginv;
qkm2 *= biginv;
qkm1 *= biginv;
}
} while(t > MACHEP);
return( ans * ax );
}
/* left tail of incomplete gamma function:
*
* inf. k
* a -x - x
* x e > ----------
* - -
* k=0 | (a+k+1)
*
*/
double igam(double a, double x)
{
double ans, ax, c, r;
/* Check zero integration limit first */
if (x == 0) {
return(0.);
}
if ((x < 0) || (a <= 0)) {
mtherr("igam", DOMAIN);
return(NAN);
}
if ((x > 1.) && (x > a)) {
return(1. - igamc(a,x));
}
/* Compute x**a * exp(-x) / gamma(a) */
ax = a * log(x) - x - lgamma(a);
if (ax < -MAXLOG) {
mtherr("igam", UNDERFLOW);
return(0.);
}
ax = exp(ax);
/* power series */
r = a;
c = 1.;
ans = 1.;
do {
r += 1.;
c *= x / r;
ans += c;
} while(c/ans > MACHEP);
return(ans * ax / a);
}
|