1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
from __future__ import with_statement
import sys
try:
import numpy
import re
import reflex
from pipeline_product import PipelineProduct
import pipeline_display
import reflex_plot_widgets
import matplotlib.gridspec as gridspec
import_success = True
except ImportError:
import_success = False
print "Error importing modules pyfits, wx, matplotlib, numpy"
def paragraph(text, width=None):
""" wrap text string into paragraph
text: text to format, removes leading space and newlines
width: if not None, wraps text, not recommended for tooltips as
they are wrapped by wxWidgets by default
"""
import textwrap
if width is None:
return textwrap.dedent(text).replace('\n', ' ').strip()
else:
return textwrap.fill(textwrap.dedent(text), width=width)
class DataPlotterManager(object):
# static members
recipe_name = "kmos_std_star"
star_spec_cat = "STAR_SPEC"
telluric_cat = "TELLURIC"
std_image_cat = "STD_IMAGE"
y_scalefactor = 1000
def setWindowTitle(self):
return self.recipe_name+"_interactive"
def setInteractiveParameters(self):
return [
reflex.RecipeParameter(recipe=self.recipe_name, displayName="imethod",
group="Recons.", description="Interpolation Method (NN, lwNN, swNN, MS, CS)"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="xcal_interpolation",
group="Recons.", description="Interpolate xcal between rotator angles"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="mask_method",
group="Extr.", description="Extraction Method (optimal/integrated)"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="centre",
group="Extr.", description="Centre (integrated only)"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="radius",
group="Extr.", description="Radius (integrated only)"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="fmethod",
group="Extr.", description="Fitting Method (gauss, moffat)"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="neighborhoodRange",
group="Extr.", description="Range for Neighbors"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="flux",
group="Extr.", description="Apply flux conservation"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="cmethod",
group="Comb.", description="Combination Method (average, median, sum, min_max, ksigma)"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="cpos_rej",
group="Comb.", description="The positive rejection threshold"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="cneg_rej",
group="Comb.", description="The negative rejection threshold"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="citer",
group="Comb.", description="The number of iterations"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="cmax",
group="Comb.", description="The number of maximum pixel values"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="cmin",
group="Comb.", description="The number of minimum pixel values"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="startype",
group="Star", description="The star spectral type (O, B, A, F, G)"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="magnitude",
group="Star", description="Star Magnitude"),
]
def readFitsData(self, fitsFiles):
self.frames = dict()
for f in fitsFiles:
self.frames[f.category] = PipelineProduct(f)
# Two cases: the file category is found or not found.
# Define the plotting functions in both cases
if self.std_image_cat in self.frames and self.star_spec_cat in self.frames and self.telluric_cat in self.frames:
# Get the wished files
std_image = self.frames[self.std_image_cat]
star_spec = self.frames[self.star_spec_cat]
telluric = self.frames[self.telluric_cat]
# Initialise
self.star_data_extnames = []
self.qc_std_trace = dict()
self.qc_spat_res = dict()
self.image_std = dict()
self.image_std_avg = dict()
self.image_std_stdev = dict()
self.qc_thruput = dict()
self.qc_zpoint = dict()
self.crpix1 = dict()
self.crval1 = dict()
self.cdelt1 = dict()
self.spec_data = dict()
self.spec_noise = dict()
# READ data
self.qc_nr_std_stars = star_spec.all_hdu[0].header['ESO QC NR STD STARS']
self.qc_thruput_mean = star_spec.all_hdu[0].header['ESO QC THRUPUT MEAN']
self.qc_thruput_sdv = star_spec.all_hdu[0].header['ESO QC THRUPUT SDV']
# Loop on all extensions of std_image to find the std stars extensions
for std_image_ext in std_image.all_hdu:
naxis = std_image_ext.header['NAXIS']
# NAXIS is 2 if there is an image, 0 otherwise
if (naxis == 2):
# extname is like IFU.3.DATA
extname = std_image_ext.header['EXTNAME']
self.star_data_extnames.append(extname)
self.qc_std_trace[extname] = std_image_ext.header['ESO QC STD TRACE']
self.qc_spat_res[extname] = std_image_ext.header['ESO QC SPAT RES']
self.image_std[extname] = std_image_ext.data
self.image_std_avg[extname] = numpy.average(std_image_ext.data)
self.image_std_stdev[extname] = numpy.std(std_image_ext.data)
# Get infos from star_spec using the extname
self.qc_thruput[extname] = star_spec.all_hdu[extname].header['ESO QC THRUPUT']
self.qc_zpoint[extname] = star_spec.all_hdu[extname].header['ESO QC ZPOINT']
self.crpix1[extname] = star_spec.all_hdu[extname].header['CRPIX1']
self.crval1[extname] = star_spec.all_hdu[extname].header['CRVAL1']
self.cdelt1[extname] = star_spec.all_hdu[extname].header['CDELT1']
self.spec_data[extname] = star_spec.all_hdu[extname].data
# noise_extname is like IFU.3.NOISE
noise_extname = re.sub("DATA", "NOISE", extname)
self.spec_noise[extname] = star_spec.all_hdu[noise_extname].data
# Set the plotting functions
self._add_subplots = self._add_subplots
self._plot = self._data_plot
else:
# Set the plotting functions to NODATA ones
self._add_subplots = self._add_nodata_subplots
self._plot = self._nodata_plot
def addSubplots(self, figure):
self._add_subplots(figure)
def plotProductsGraphics(self):
self._plot()
def plotWidgets(self) :
widgets = list()
# Radio button
self.radiobutton = reflex_plot_widgets.InteractiveRadioButtons(self.axradiobutton, self.setRadioCallback,
self.star_data_extnames, 0, title='Standard star selection')
widgets.append(self.radiobutton)
return widgets
def setRadioCallback(self, label) :
# Setup the image display
imgdisp = pipeline_display.ImageDisplay()
imgdisp.setAspect('equal')
imgdisp.z_lim = (self.image_std_avg[label] - self.image_std_stdev[label], self.image_std_avg[label] + 2 * self.image_std_stdev[label])
imgdisp.display(self.img_plot, "Median collapsed cube (STD_IMAGE)\nFWHM "+ r"$\simeq$ " +str( numpy.round(self.qc_spat_res[label], 2) )+ " [arcsec]", self._data_plot_get_tooltip(label), self.image_std[label])
self.img_plot.set_xlabel("pixels")
self.img_plot.set_ylabel("pixels")
# Define wave
pix = numpy.arange(len(self.spec_data[label]))
wave = self.crval1[label] + pix * self.cdelt1[label]
# Plot Spectrum
specdisp = pipeline_display.SpectrumDisplay()
self.spec_plot.clear()
specdisp.setLabels(r"$\lambda$["+"$\mu$m]", "Flux (ADU) [x"+str(self.y_scalefactor)+"]" )
specdisp.display(self.spec_plot, "Extracted Standard Star Spectrum (STAR_SPEC)", self._data_plot_get_tooltip(label),
wave, self.spec_data[label]/self.y_scalefactor) # TO DO: Unify plotting in one function.
if (self.spec_noise[label] is not None):
# Overplot the Noise spectrum
specdisp.overplot(self.spec_plot, wave, self.spec_noise[label]/self.y_scalefactor, 'red') # TO DO: Unify plotting in one function.
self.spec_plot.legend(('Flux', 'Noise'))
def _add_subplots(self, figure):
gs = gridspec.GridSpec(2, 2)
self.axradiobutton = figure.add_subplot(gs[0,0])
self.img_plot = figure.add_subplot(gs[0,1])
self.spec_plot = figure.add_subplot(gs[1,:])
def _data_plot_get_tooltip(self, extname):
# Create the tooltip
tooltip = " \
ESO QC NR STD STARS : %f \n \
ESO QC THRUPUT MEAN : %f \n \
ESO QC THRUPUT SDV : %f \n \
ESO QC STD TRACE : %f \n \
ESO QC SPAT RES : %f \n \
ESO QC THRUPUT : %f \n \
ESO QC ZPOINT : %f \
" % (self.qc_nr_std_stars, self.qc_thruput_mean, self.qc_thruput_sdv, self.qc_std_trace[extname], self.qc_spat_res[extname], self.qc_thruput[extname], self.qc_zpoint[extname])
return tooltip
def _data_plot(self):
extname = self.star_data_extnames[0]
imgdisp = pipeline_display.ImageDisplay()
imgdisp.setAspect('equal')
imgdisp.z_lim = (self.image_std_avg[extname] - self.image_std_stdev[extname], self.image_std_avg[extname] + 2 * self.image_std_stdev[extname])
imgdisp.display(self.img_plot, "Median collapsed cube (STD_IMAGE)\nFWHM "+ r"$\simeq$ " +str( numpy.round(self.qc_spat_res[extname], 2) )+ " [arcsec]", self._data_plot_get_tooltip(extname), self.image_std[extname])
#Please alert if it shuld be latex "\approx" instead of "\simeq".
self.img_plot.set_xlabel("pixels")
self.img_plot.set_ylabel("pixels")
# Define wave
pix = numpy.arange(len(self.spec_data[extname]))
wave = self.crval1[extname] + pix * self.cdelt1[extname]
# Plot Spectrum
specdisp = pipeline_display.SpectrumDisplay()
specdisp.setLabels(r"$\lambda$["+"$\mu$m]", "Flux (ADU) [x"+str(self.y_scalefactor)+"]" )
specdisp.display(self.spec_plot, "Extracted Standard Star Spectrum (STAR_SPEC)", self._data_plot_get_tooltip(extname), wave, self.spec_data[extname]/self.y_scalefactor) # TO DO: Unify plotting in one function.
if (self.spec_noise[extname] is not None):
# Overplot the Noise spectrum
specdisp.overplot(self.spec_plot, wave, self.spec_noise[extname]/self.y_scalefactor, 'red') # TO DO: Unify plotting in one function.
self.spec_plot.legend(('Flux', 'Noise'))
def _add_nodata_subplots(self, figure):
self.img_plot = figure.add_subplot(1,1,1)
def _nodata_plot(self):
# could be moved to reflex library?
self.img_plot.set_axis_off()
text_nodata = "Data not found"
self.img_plot.text(0.1, 0.6, text_nodata, color='#11557c', fontsize=18, ha='left', va='center', alpha=1.0)
self.img_plot.tooltip = text_nodata
#This is the 'main' function
if __name__ == '__main__':
from reflex_interactive_app import PipelineInteractiveApp
# Create interactive application
interactive_app = PipelineInteractiveApp(enable_init_sop=True)
# get inputs from the command line
interactive_app.parse_args()
#Check if import failed or not
if not import_success:
interactive_app.setEnableGUI(False)
#Open the interactive window if enabled
if interactive_app.isGUIEnabled():
#Get the specific functions for this window
dataPlotManager = DataPlotterManager()
interactive_app.setPlotManager(dataPlotManager)
interactive_app.showGUI()
else:
interactive_app.set_continue_mode()
#Print outputs. This is parsed by the Reflex python actor to
#get the results. Do not remove
interactive_app.print_outputs()
sys.exit()
|